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The conventional viewpoint of the strongly correlated electron metal-insulator transition
is that a single band splits into two upper and lower Hubbard bands at the transition.
Much work has investigated whether this transition is continuous or discontinuous. Here
we focus on another aspect and ask the question of whether there are additional upper
and lower Hubbard bands, which stretch all the way out to infinity — leading to an
infinite single-particle bandwidth (or spectral range) for the Mott insulator. While we
are not able to provide a rigorous proof of this result, we use exact diagonalization studies
on small clusters to motivate the existence of these additional bands, and we discuss some
different methods that might be utilized to provide such a proof. Even though the extra
upper and lower Hubbard bands have very low total spectral weight, those states are
expected to have extremely long lifetimes, leading to a nontrivial contribution to the
transport density of states for dc transport and modifying the high temperature limit
for the electrical resistivity.
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1. Introduction

In conventional band theory, metals are classified as systems whose Fermi level lies

within the band and thereby can conduct electricity. But if the repulsive interaction

between electrons is sufficiently large, it can induce a metal-to-insulator transition

called the Mott–Hubbard transition.1,2 One of the hallmarks of this transition is the

appearance of a spectral gap in the single-particle density of states, creating separate

upper and lower Hubbard bands from the original single band (in the absence of the

electron–electron interaction) and an insulating state. Many numerical calculations

confirm this picture.3 We present evidence which shows that there actually are an

infinite number of upper and lower Hubbard bands in the single-particle density of

states! While we are not yet able to provide a rigorous proof of this result, we

present arguments that show a possible pathway for such a proof.

The Mott–Hubbard transition has long been viewed as one of the most impor-

tant and difficult problems to solve in condensed matter physics. Numerically exact

solutions for the spectral function come from dynamical mean-field theory,4 exact

diagonalization of small systems5 and density matrix renormalization group calcu-

lations.6 In all of these solutions, one sees the prominent features of just one upper

and one lower Hubbard band in the insulating state. But systematic projection onto

subspaces with a fixed number of doubly occupied lattice sites—as first performed

by Harris and Lange7 and later extended by Olés and co-workers8 — showed that

there must be at least one more upper and lower Hubbard band, but with a spectral

weight so low, it cannot be easily seen in a linear plot of the density of states.

We present strong evidence that supports the conjecture that this last result is

just the tip of the iceberg — there actually exists an infinite number of upper and

lower Hubbard bands — but the spectral weight of each of these additional bands

is so exceedingly small, that it is difficult to see them in conventional calculations.

Instead, we show (through an analysis of exact diagonalization studies and general

arguments relating to the structure of the eigenfunctions) compelling evidence for

the existence of these extra upper and lower bands. We hope that these results will

ultimately lead to a proof of the counterintuitive result that the Mott–Hubbard

insulator actually has an infinite single-particle bandwidth.

2. Formalism

We will be examining the Hubbard model, which is defined by the following Hamil-

tonian on a graph Λ with vertices x ∈ Λ (which we refer to as sites on the graph)

H = −
∑

x,y∈Λ,σ

txyc
†
xσcyσ − µ

∑

x∈Λ,σ

c†xσcxσ + U
∑

x∈Λ

c†x↑cx↑c
†
x↓cx↓ . (1)

Here the creation (annihilation) operator for a fermion of spin σ at site x is c†xσ (cxσ)

and they satisfy the canonical anticommutation relation {c†xσ, cyσ′}+ = δxyδσσ′

(with all creation operators anticommuting amongst themselves, and similarly for

the annihilation operators). The matrix −txy is the hopping matrix, which is
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required to be Hermitian and to have a vanishing diagonal (txx = 0), µ is the

chemical potential, and U is the on-site Hubbard interaction.

The retarded Green’s function is defined via the following trace over all fermionic

states

GR
xyσ(t) = −

i

Z
θ(t)Tr[e−βH{cxσ(t), c

†
yσ(0)}+] , (2)

where Z = Tr exp[−βH] is the partition function, θ(t) is the unit step function, β =

1/T is the inverse temperature, and the fermionic operators are in the Heisenberg

picture, where

cxσ(t) = eiHtcxσe
−iHt . (3)

The Green’s function is commonly expressed in frequency space after a Fourier

transformation

GR
xyσ(ω) =

∫ ∞

0

dteiωtGR
xyσ(t) , (4)

and the local spectral function (or density of states) is then defined to be

Axσ(ω) = −
1

π
ImGR

xxσ(ω) . (5)

We will focus on the local density of states in this work. Note that if the graph

corresponds to a translationally invariant lattice and the system is paramagnetic,

then there is no spontaneous breaking of translational symmetry or of spin rota-

tional symmetry due to ordered phases. In this case, the local density of states is

independent of x and σ.

We let |n〉 denote an eigenstate of H with eigenvalue En, such that H|n〉 =

En|n〉. Then, introducing the complete set of eigenstates to perform the trace, and

introducing a second complete set of eigenstates inside the anticommutator, allows

us to re-express the retarded Green’s function in the Lehmann representation, as

follows:

GR
xyσ(ω) =

1

Z

∑

mn

e−βEm + e−βEn

ω + Em − En + i0+
〈m|cxσ|n〉〈n|c

†
yσ|m〉 . (6)

The local density of states then satisfies

Axσ(ω) =
1

Z

∑

mn

e−βEm [|〈n|c†xσ|m〉|2δ(ω + Em − En)

+ |〈n|cxσ|m〉|2δ(ω − Em + En)] . (7)

We consider the case of half-filling, where there is one particle for every vertex

on the graph. Let |Λ| denote the number of vertices on the graph, then half-filling

corresponds to the condition that the number of electrons Ne satisfies

Ne =
1

Z
Tr− βH

∑

xσ

c†xσcxσ = |Λ| , (8)

1642001-3

y.



March 23, 2016 10:6 IJMPB S0217979216420017 page 4

J. K. Freericks et al.

which is equivalent to the condition µ = U/2 (in the grand canonical ensemble)

when the hopping matrix is bipartite. A bipartite hopping matrix occurs when the

graph can be separated into two disjoint graphs ΛA and ΛB such that the hopping

matrix is nonzero only when x and y belong to different subgraphs. At half-filling,

the largest contributions to Eq. (7) come from states where |m〉 is one of the half-

filled states, withNe = |Λ|, and the state |n〉 is one of the states with Ne+1 particles

for the leftmost term and Ne − 1 particles for the rightmost term. At T = 0, |m〉

can only be the ground-state for half-filling, which we denote by |gs〉 (although all

states with one additional or one fewer particle enter so the sum over n remains).

For any finite T , all states must be summed over, so the character of the density

of states can change for T = 0 versus T 6= 0, but all nonzero temperatures will

have similar behavior, at least with respect to the question of whether the density

of states is nonzero at any specific frequency. The question of whether there are

states in the gap, and whether there are extra upper and lower Hubbard bands can

be answered by examining just the “canonical” set of states where all states |m〉

are at half-filling (if the answers are affirmative). We focus on these states for the

remainder of the paper.

3. Exact Diagonalization Studies

The Hubbard model has particle-hole symmetry when it is on a bipartite lattice

which implies that the particle removal spectrum and the particle addition spec-

trum are related by the substitution ω → −ω. Since the existence of the infinite

bandwidth does not depend on the presence of particle-hole symmetry, but our

exposition is greatly simplified when we take particle-hole symmetry into account,

we will do so for convenience here. We will also assume a translationally invariant

system. This allows us to focus solely on the local particle removal spectra given by

Arem(ω) =
1

Z

∑

mn

e−βEm |〈n|cxσ|m〉|2δ(ω − Em + En) (9)

for any lattice site x (since it is the same for all lattice sites). At T = 0, the spectra

only has weight at negative frequencies (usually called the lower Hubbard band)

because Em=gs < En for all states n with Ne = |Λ| − 1 electrons. Surprisingly, the

removal spectrum has contributions from the upper Hubbard band with ω > 0 when

we consider the nonzero temperature case (this is easiest to see for the repulsive

Hubbard model by considering any half-filled state with D = Ne/2 = |Λ|/2 double

occupancies, which, upon removal of a particle, overlaps with states that have D′ =

Ne/2−1 = |Λ|/2−1 double occupancies; these states have an energy that is on the

order of U/2 lower — corresponding to a positive energy contribution in the upper

Hubbard band).

In Fig. 1, we plot the electron removal spectra for the ground state (correspond-

ing to T = 0) and for all half-filled states (corresponding to a “canonical” subset

of the states at T = ∞). In addition, the extra upper and lower Hubbard bands
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Fig. 1. (Color online) Binned weights of the electron removal spectral function for a |Λ| = 6
one-dimensional chain, with a bin width of 0.01U . (a) T = 0 density of states. (b) T = 0 density
of states with the extra bands magnified by the factors shown in the figure. (c) T = ∞ density of
states in the “canonical approximation” which considers just the two electron numbers Ne = 5, 6
and (d) T = ∞ density of states with the extra bands color coded and magnified by the factors
shown in the figure. Note that these results are not particle-hole symmetric, since the electron
addition spectra needs to be added to create the electron-hole symmetric spectra (although the
T = ∞ results are nearly so).

are highlighted by magnifying their signal by the factors shown in the figures. Note

how the extra bands are robust, but have very small total weight. In Fig. 2, we plot

the energy levels for the half-filled case, and for the cases with one more and one

fewer electron. The ground state connects to eigenstates with all possible double

occupancy values in the Ne = |Λ| − 1 sector.

In the large U limit, the zeroth-order energy is given by DU −Neµ where D is

the number of double occupancies and Ne is the number of electrons. These states

are highly degenerate and require degenerate perturbation theory to determine

both the energies and the eigenfunctions in an expansion in powers of t/U . The

O(t) corrections to the energies arise from linear combinations of the zeroth-order

eigenfunctions with a fixed number of double occupancies. Higher order corrections

to the wavefunction involve O(t/U) combinations that have D ± 1, and in gen-

eral O([t/U ]α) combinations with D ± α. In the perturbative expansion for many
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Fig. 2. (Color online) Energy spectra for the half-filled and half-filled plus or minus one particle
cases of the |Λ| = 6 one-dimensional chain with U/t = 10. Note how the eigenstates with different
double occupancies (as labeled in the figure) are grouped together for this typical large-U case.

eigenfunctions, the expansion terminates after a finite number of terms. What is

important here is identifying the minimal power in t/U for a state with a given dou-

ble occupancy to be present in the expansion for the eigenfunction, to estimate the

t/U dependence of the matrix elements in the expansion for the spectral function.

However, this approach is not sufficient to get a correct estimate. For exam-

ple, consider the ground state and the states it couples to with the removal of an

electron. The ground state of the half-filled repulsive Hubbard model has D = 0

as U → ∞, and the ground state for finite U includes an O(1) contribution with

D = 0, an O(t/U) admixture with D = 1, an O([t/U ]2) admixture with D = 2 and

so on. The eigenfunction when there are Ne = |Λ| − 1 electrons has similar behav-

ior, with an O(1) contribution with D = 0, an O(t/U) admixture with D = 1, and

so on. Hence, the overlap between the ground state at half-filling after an electron

is removed, and a state with one fewer electron is O(1) for the D = 0 subspace

with |Λ| − 1 electrons. The energy difference Egs −En is approximately −U/2 plus

corrections of O(t) (recall that µ = U/2). These are states that contribute to the

first lower Hubbard band. We expect the next lower Hubbard band to have ener-

gies centered near −3U/2. The overlap of the half-filled ground state and states

with one fewer electron that have D = 1 in the large U limit, should have matrix

elements that go like t/U and hence the weight of the band should be of order

(t/U)2, but it is of order (t/U)4, as seen in the results above. Similar arguments for

the next lower band (−5U/2) would put that weight at order (t/U)4, but we saw
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it was either order (t/U)8 or (t/U)10. So there is a conundrum about the weight

of the extra bands, in that they are not consistent with a simple power-counting

argument based on perturbation theory. It requires a more sophisticated analysis.

This is discussed in more detail in the next section.

Another question is whether these extra bands, which are present for finite

systems, remain in the thermodynamic limit. The canonical projection method,

described briefly in the next section, shows that the next upper and lower Hubbard

bands do survive into the thermodynamic limit. Yet another question to ask is, do

they survive in the infinite-dimensional limit of dynamical mean-field theory, where

the hopping is scaled to zero as the inverse square root of the dimension. Here,

the question is easily posed for the Bethe lattice (with its finite bandwidth for the

noninteracting case). For the hypercubic lattice, which has a Gaussian density of

states for the noninteracting problem, one has to search for the enhancement of

the extra bands (which are power law) versus the Gaussian decaying tails coming

from the noninteracting band to see the extra bands, which is much harder to do.

Unfortunately, there are no known calculational methods that are accurate enough

to determine whether these extra upper and lower Hubbard bands exist for the

Hubbard model. But for the spinless Falicov–Kimball model, it is known that they

do not exist for the Bethe lattice, since there is an exact cubic equation for the

density of states that has only a single upper and lower Hubbard band in the

insulating phase. They also do not look like they are present on the hypercubic

lattice.

4. Canonical Projection Methods

The canonical projection method was introduced by Harris and Lange7 shortly after

the Hubbard model was created. They described the first extra upper and lower

Hubbard bands. Olés and co-workers8 confirmed this result along with the fact that

the weight of these bands is of order (t/U)4. This clearly demonstrates the existence

of extra upper and lower Hubbard bands that survive the thermodynamic limit.

The approach of Harris and Lange involves using canonical transformations to

project the Hubbard model onto different sectors with fixed double occupancies.

The lowest-energy sector for the repulsive model is the D = 0 sector. The pro-

jection approach is to determine the canonical representation of the creation and

annihilation operators projected onto the different constant double occupancy sec-

tors. Using these results, one can show the different weights of the spectral function

in the different sectors. The approach is tedious and becomes increasingly difficult

for higher orders. To date, it has only been carried out far enough to show the

weight of the next upper and lower Hubbard bands being (t/U)4. It explains the

lower order of the weight than the naive prediction made in the previous section

arises from a sum rule which is related to a commutator, which vanishes to lowest

order. Since we expect there to be a similar effect occurring for the next extra upper

and lower Hubbard bands, due to their very low weight, this indicates that there

1642001-7
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may be an interesting algebra associated with the weights of these bands. A full

extension of the Harris–Lange procedure to higher order could lead both to a proof

of the existence of the extra upper and lower Hubbard bands and to a determina-

tion of the weight of those extra bands as well. It is not clear whether this can be

done analytically for the general case.

5. Towards a Full Proof

There is another strategy that can be used to determine the energy differences of

the coupled states. It starts by using one of two identities to determine the energy

difference

(Egs − En)〈n|cxσ|gs〉 = −〈n|[H, cxσ]−|gs〉 (10)

and

(Egs − En)〈n|cxσc
†
x−σcx−σ|gs〉 = −〈n|[H, cxσc

†
x−σcx−σ]−|gs〉 . (11)

Evaluating each commutator and dividing by the matrix element (in cases when

the matrix element is nonzero) yields

Egs − En = −
∑

x∈Λ

txy
〈n|cyσ|gs〉

〈n|cxσ|gs〉
+ U

〈n|cxσc
†
x−σcx−σ|gs〉

〈n|cxσ|gs〉
(12)

and

Egs − En = −
∑

x∈Λ

txy
〈n|cyσc

†
x−σcx−σ|gs〉

〈n|cxσc
†
x−σcx−σ|gs〉

−
∑

x∈Λ

txy
〈n|cxσc

†
x−σcy−σ|gs〉

〈n|cxσc
†
x−σcx−σ|gs〉

+
∑

x∈Λ

txy
〈n|cxσc

†
y−σcx−σ|gs〉

〈n|cxσc
†
x−σcx−σ|gs〉

+ U . (13)

We can also evaluate similar commutators using creation and annihilation operators

for one-electron states that are eigenstates of the hopping term in the Hamiltonian

by starting with the hopping matrix eigenvectors

−
∑

y∈Λ

txyf
λ
y = ǫλf

λ
x (14)

and forming the additional matrix element identities (by dividing by the matrix

element when it is nonzero) to give the following:

Egs − En = ǫλ + U

〈n|
∑

x∈Λ

fλ∗
x cxσc

†
x−σcx−σ|gs〉

〈n|
∑

x∈Λ

fλ∗
x cxσ|gs〉

(15)

and

Egs − En = −

〈n|
∑

x∈Λ

txyf
λ∗
x cyσc

†
x−σcx−σ|gs〉

〈n|
∑

x∈Λ

fλ∗
x cxσc

†
x−σcx−σ|gs〉

−

〈n|
∑

x∈Λ

txyf
λ∗
x cxσc

†
x−σcy−σ|gs〉

〈n|
∑

x∈Λ

fλ∗
x cxσc

†
x−σcx−σ|gs〉

1642001-8
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+

〈n|
∑

x∈Λ

txyf
λ∗
x cxσc

†
y−σcx−σ|gs〉

〈n|
∑

x∈Λ

fλ∗
x cxσc

†
x−σcx−σ|gs〉

+ U . (16)

Since these identities hold in all cases when the denominators on the right-hand

side are nonzero, they must hold in the cases of the extra upper and lower Hubbard

bands. But the details for exactly how that happens are not yet clear. This does

seem like a good starting place, though, to try to complete a rigorous proof of the

existence of the extra upper and lower Hubbard bands. If one could show that the

second term on the right-hand side of Eq. (15) is close to a positive integer, then

we would prove the existence of the extra lower Hubbard bands.

6. Transport

We next discuss dc transport for a translationally invariant lattice that has momen-

tum as a good quantum number. If we neglect vertex corrections (which is usually

a good first approximation), the dc conductivity is equal to

σ(t) = σ0

∑

kσ

∫

dω|vk|
2

(

−
df(ω)

dω

)

A2
σ(k, ω) , (17)

where vk = ∇ǫk is the band velocity, Aσ(k, ω) = −ImGR
σ (k, ω)/π is the spectral

function, f(ω) = 1/[1 + exp(βω)] is the Fermi–Dirac distribution function and σ0

is some dimensionful constant that gives the dimensions of conductivity to the

final expression. The momentum-dependent retarded Green’s function is defined

precisely as before for the real-space Green’s functions, except we use the creation

and annihilation operators that have definite momentum, because they diagonalize

the hopping matrix. Since the zeroth moment of the imaginary part of the self-

energy satisfies a sum rule which holds to high accuracy when one uses just the

integration over the first upper and lower Hubbard bands, the imaginary part of

the self-energy in the extra bands must be small in magnitude.

If we make an approximation that there is no momentum dependence to the

self-energy in these extra upper and lower bands, then we can perform the integrals

by transforming the sum over momentum to an integral over the noninteracting

transport density of states ρtr(ǫ) which is defined by

ρtr(ǫ) =
∑

k

|vk|
2δ(ǫ− ǫk) (18)

and can be related to the noninteracting density of states via a differential equation9

that usually takes the form

d

dǫ
ρtr(ǫ) = −cǫρ(ǫ) (19)

for some constant c. We define a transport Green’s function Gtr(ω) via

Gtr(ω) =

∫

dǫρtr(ǫ)
1

ω + µ− Σ(ω)− ǫ
(20)

1642001-9
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[with Σ(ω) the self-energy] and then find the conductivity can be written as

σ(T ) = σ0

∫

dω

(

−
df(ω)

dω

)

τ(ω) , (21)

where the many-body transport relaxation time (neglecting vertex corrections) is

τ(ω) =
1

π2

[

ImGtr(ω)

ImΣ(ω)
−

dGtr(ω)

dµ

]

. (22)

Hence, the transport relaxation time has a term proportional to the ratio of the

imaginary part of the transport Green’s function to the imaginary part of the self-

energy. Both imaginary parts are small, but their ratio can be substantial and

hence it can contribute to the high-temperature transport. This is one reason why

the existence of these low spectral weight bands may, nevertheless, be important

when studying properties of the insulating phase of the Hubbard model.

7. Conclusions

In this work, we provided evidence for the existence of additional upper and lower

Hubbard bands going beyond the classic canonical transformation work of Har-

ris and Lange7 who established the existence of one additional lower and upper

Hubbard band. The evidence comes from small cluster calculations which clearly

show how these extra bands must extend out to an infinite number in the thermo-

dynamic limit. Those results also showed that the weights get extremely small for

these higher bands, which explains why they are not ordinarily seen in conventional

calculations.

We described some methods that might be able to be used to rigorously show

the existence of these extra bands, but we are not able to complete such a proof

at this time. We also discussed why such small bands might, nevertheless, have an

important contribution to high-temperature transport.

There is another question that is similar to what we discussed here but appears

to require more work to establish, which is the question of whether the Mott gap

fills in as a function of temperature for high T . There is numerical evidence to

indicate this is true close to the metal-insulator transition,10 but it appears that it

should hold for all U . We do not have a proof for this either, but it is an interesting

area for further study.
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