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An exact formalism for calculating the retarded and advanced Green’s functions of strongly correlated
lattice models in a uniform electric field is derived within dynamical mean-field theory. To illustrate the
method, we solve for the nonequilibrium density of states of the Hubbard model in both the metallic and
Mott-insulating phases at half-filling (with an arbitrary strength electric field) by employing the
approximate numerical renormalization group as the impurity solver. This general approach can be
applied to any strongly correlated lattice model in the limit of large dimensions.
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Introduction.—The many-body formalism for nonequi-
librium problems was formulated independently by
Kadanoff and Baym [1] and Keldysh [2] in the 1960s.
One of the main applications of that work was to determine
the nonlinear transport properties of strongly correlated
materials. Recently there has been a significant emphasis
placed on examining small open systems (quantum dots
attached to leads) within the Meir-Wingreen [3] general-
ization of the Kadanoff-Baym-Keldysh approach and there
has been progress in applying Bethe ansatz [4] and nu-
merical renormalization group techniques [5] within a
scattering state formalism, and Hirsch-Fye quantum
Monte Carlo techniques by mapping to an effective imagi-
nary time formalism [6]. In this work, our focus is on larger
systems (bulk materials) placed under large electric fields,
which serves as a counterpart approach to the problem, and
could have direct application to ultracold atomic systems
placed in optical lattices that are driven into nonequilib-
rium by accelerating the lattice through space and measur-
ing the density of states (DOS) [7].

There has also been much effort applied to understand-
ing the original Kadanoff-Baym-Keldysh formalism. The
generalized Kadanoff-Baym approximation [8] and the
reconstruction theorem for the lesser Green’s function [9]
have provided much insight into the way quantum systems
relax and ultimately reach a steady state. But there remains
no exact solutions for strongly correlated bulk systems
placed in large electric fields in the steady state. In this
contribution, we move towards solving this problem by
developing a nonperturbative technique to calculate the
many-body DOS within the dynamical mean-field theory
(DMFT) approach [10]. Since the retarded and advanced
Green’s functions are a needed input into the reconstruc-
tion theorem, this is an initial step toward a complete
steady-state formalism. The development here is more
general than the transient response formalism [11] because
it can be applied to any many-body lattice Hamiltonian that
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can be solved with a real time or real frequency impurity
solver via DMFT; here we show results for the Hubbard
model solved with the (approximate) numerical renormal-
ization group (NRG).

Formalism.—Our focus is on the advanced and retarded
Green’s functions. Since the advanced Green’s function is
directly related to the retarded Green’s function via com-
plex conjugation and an interchange of the two time var-
iables, we will derive results for the retarded Green’s
function only. We use the Keldysh boundary condition
for the nonequilibrium problem: starting our system in an
equilibrium distribution at a constant temperature and then
turning on the constant and spatially uniform electric field.
We then let the system evolve forward in time until all
transients have died off and we are left with the steady-
state response. The electric field is described by a spatially
uniform vector potential in the Hamiltonian gauge, where
the scalar potential vanishes E(z) = —dA(r)/cot and we
ignore all magnetic field effects. For a uniform field, we
then have A(f) = —cErt since the field is turned on in the
infinite past (but after the system has reached equilibrium
at temperature 1/8). The vector potential is input into the
Hamiltonian via the Peierls’ substitution [12], so that the
nonequilibrium Hamiltonian is translationally invariant
and can be described in momentum space; since current
is flowing but the particle density is constant and we al-
ways project onto the lowest band in the lattice, the system
acts as if it is attached to two reservoirs—one serving as a
particle (or current) source and the other as a particle (or
current) drain, allowing the steady state to emerge. The
momentum-dependent retarded Green’s function is defined
to be

GR(t, 1) = —i0(t — ) Tre P ea{c, (1), f (1)}i ) Zey,

D

where the averages are taken with respect to the initial
equilibrium Hamiltonian (Z, is the equilibrium partition
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function), and the time evolution of the creation (clt(r) and
annihilation (cy,,) operators (for electrons with momentum
k and spin o) is in the Heisenberg picture. We will exam-
ine the case where the electric field lies along the diagonal
of a hypercubic lattice in d dimensions E = E(1, 1,1, ...)
and then the limit where d — oo.

The retarded Green’s function and self-energy 2 sat-
isfy a Dyson equation that is formally equivalent to the
equilibrium Dyson equation except that all functions now
depend on two time variables instead of just the time
difference

GR (1) =GR, 1)
+ [ dF ] 7GR (1, SR (7, )G, (7. ),
(2

where the noninteracting steady-state Green’s function can
be found exactly [13,14]

t
GEO (1,1) = —if(1 — t’)exp[—i f di(ep s i — M)],
t/
Gﬁ?y(Ty trel) = _ie(l‘rel)ei'ulrel

2(€x COSET — & SinET) . Et,y
Xexp| —i £ Sin > |

3)

Here, the band structure €, satisfies [10] €, =
—lim .t fo:, cosk;/ \/2 the second band structure €
satisfies &, = —lim,_* X%, sink,/+/d (all energies will
be measured in units of * and we set ¢ = 1), and the
second line uses the Wigner coordinates of average time
T = (¢t +1')/2 and relative time 7, = t — r'. We will al-
ways work with the paramagnetic solution, so we drop the
spin label on all functions.

The self-energy has no momentum dependence because
we are working in the infinite-dimensional limit; the per-
turbative result of Metzner [15] and the Langreth rules [16]
show that the self-energy is local in nonequilibrium as
well. Note that the noninteracting steady-state Green’s
function satisfies the gauge property which relates shifts
in momentum to shifts in average time

GﬁgE;(T) trel) = GEO(T + lT, trel)) (4)

where we write the Green’s function as a function of the
Wigner coordinates. It also satisfies the Bloch periodicity
property, which shows the noninteracting system is peri-
odic in the steady state

G{SO(T + 27T/E’ trel) = G{SO(Tr trel)‘ (5)

The gauge property implies that the local (summed over all
momentum) noninteracting retarded Green’s function is
independent of average time, and the Bloch periodicity
property implies that the momentum-dependent noninter-
acting retarded Green’s function is periodic in average time
with the Bloch period 277/ E. The noninteracting lesser and

greater Green’s functions are also periodic in the average
time, with the Bloch period. Combining this with a pertur-
bative expansion for the Green’s functions or self-energies,
immediately shows that both are also periodic functions
with the Bloch period. We define the steady state as being
the state where the retarded self-energy and local retarded
Green’s function are independent of average time, which is
consistent with gauge-invariance arguments [17]. We next
perform a continuous Fourier transformation with respect
to relative time, and a discrete Fourier series expansion
with respect to average time (with frequencies v, = nkE,
integer multiples of the Bloch frequency) [GR(T, t,y) =
Y, [doGR(v,, )exp(=iv,T — iwt,)/27]. Then the
Dyson equation in Eq. (2) becomes

GR(v,, ») = GR(v,, w) + %Gﬁ()(Vm, w + % v, — %Vm)
X 2R<w + lIJ —v )
5 Vn m
1
X G{f(vn —V,, 0 — 3 Vm), (6)

which couples together the Green’s functions at frequen-
cies differing by multiples of the Bloch frequency; this
equation has an underlying matrix structure to it that allows
it to be solved in a straightforward fashion. In particular,
we can restrict 0 = w < E, and determine the Green’s
function at all w + v, (we became aware of a similar
technique to solve the Dyson equation that employs
Floquet matrices after this work was completed [17]).
Summing over the momentum in the Brillouin zone pro-
duces the local Green’s function, which is accomplished
via a two-dimensional integration over the joint DOS
p(e, €) = exp(—€*> — &)/ [13].

The iterative DMFT algorithm [18] immediately applies
to the nonequilibrium steady-state problem because the
diagrammatic expansion for the local self-energy of the
lattice, and for the self-energy of an impurity problem in an
effective medium defined on the Keldysh contour are
identical. Unfortunately, no general real-time impurity
solver on the Keldysh contour has been developed yet, so
we instead invoke the time-translation invariance of the
retarded functions and Fourier transform the relative time
to a frequency. Now a conventional solver in frequency
space can be used, like the NRG impurity solver, but it
requires us to use the steady-state density matrix for the
impurity in weighting the expectation values for the
Green’s function. Since we do not know how to determine
this density matrix without solving the full time evolution
problem, we approximate the density matrix as a simple
function of the impurity Hamiltonian, namely, the
Boltzmann distribution exp(—BH imp). It is difficult to
quantify the errors that arise from this approximation, but
the influence of the density matrix on the retarded Green’s
function is substantially smaller than on the lesser or
greater Green’s functions because the energy distribution
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of the quantum many-body states should not depend on
how those states are occupied. If the density matrix is just a
function of the impurity Hamiltonian and can be deter-
mined independently, a simple modification of our NRG
approach would then become an exact solution to the entire
nonequilibrium problem. Nevertheless, the constant term
in the self-energy and the first two moments of the imagi-
nary part of the self-energy are exact within this approach
[19], because they are determined solely by the filling of
the electrons and the particle-hole symmetry; hence devia-
tions can only enter at the second moment or higher. This
approach is also known to be accurate when E is small
[since corrections to the equilibrium DOS enter to O(E?)],
when U is small [since the distribution functions enter to
O(U?) in the perturbative expansion for the self-energy],
and when U is large at half-filling because the paramag-
netic Mott insulator is well described by a Hubbard III
approximation (where the distribution functions enter only
via the particle densities which are explicitly conserved).
All of the remaining nonequilibrium effects enter through
the momentum-dependent Dyson equation and the self-
consistency condition. Once the retarded Green’s function
is known, we compute the interacting DOS from p(w) =
—ImGR (v, = 0, w)/7. We verify the accuracy of this
nonperturbative numerical solution by calculating the first
three DOS moment sum rules [20] and the zeroth and first
self-energy moment sum rule [19] (odd moments vanish at
half-filling). In all cases considered here, the zeroth mo-
ment of the DOS satisfied the sum rule to 1% or better, the
second moment had errors in the range from 1%-25%,
while the zeroth moment of the self-energy had errors in
the 15%-30% range. The accuracy for these moments is
better than what is typically seen in exact equilibrium
calculations, where errors for the second moment of the
Green’s function are often in the 40%-50% range (or
higher) due to an overestimation of the bandwidth. All of
this indicates that our approach is likely to be quite accu-
rate for the nonequilibrium DOS in spite of the issues
described above.

Results.—For concreteness, we solve for the nonequilib-
rium steady-state response of the Hubbard model [21] in
infinite dimensions; the Hubbard model involves electrons
hopping between nearest-neighbor sites, with an on-site
repulsion U. The equilibrium Hamiltonian is

.7-[ kackgcko- + U Z CkTCk chglcprql) (7)
k.qp

and the nonequilibrium Hamiltonian results from the
Peierls’ substitution (€ — €., for the steady-state
problem).

Details of the NRG algorithm appear in Ref. [22]. In
most cases, we take A = 1.6 and keep 1600 states. We start
by showing calculations for a weak field case, where E =
0.5 in Fig. 1. The four panels show progressively larger
values of the interaction strength U ranging from metals (in
equilibrium) to Mott insulators. In panel (a), we have the
weak coupling result with U = 0.5. This behaves as ex-

pected, showing a broadening of the Wannier-Stark ladder
delta functions [23], which are located at integer multiples
of the Bloch frequency (0.5n here). As the interactions
increase further, the minibands broaden and merge into a
single band, but with a shape unlike that seen in equilib-
rium [panel (b) for U = 2], and then they start to form the
upper and lower Hubbard bands [panel (c) for U = 4 and
panel (d) for U = 8]; note that in panel (c) there is still a
small peak appearing at the center of the density of states.
When comparing the Mott insulator results to those of the
Falicov-Kimball model, where an exact solution is pos-
sible, the Mott-Hubbard bands of the Falicov-Kimball
model are modulated at the Bloch frequencies and change
their characteristic shape for dc fields; the upper and lower
Mott-Hubbard bands do not show this behavior here, which
could be a result of the approximate nature of the NRG
impurity solver or could be a genuine difference between
the two models (indeed for ac fields, the Falicov-Kimball
model solution does not show such modulation [17]).

Note that the peak at low frequency should not be
confused with the quasiparticle peak that appears in equi-
librium. Indeed, the self-energy does not have a Fermi
liquid form at all. The imaginary part does approach zero
at w = 0 for small U, but it does not have a quadratic
behavior in w, and instead looks more like a cusp. When
the interaction strength gets large enough, the self-energy
develops a sharp peak at @ = 0 reminiscent of the delta
function peak for the Mott insulator in equilibrium.

In Fig. 2, we plot the nonequilibrium DOS for the strong
field case of E = 4. Here the Bloch frequencies occur at
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FIG. 1. Density of states for the infinite-dimensional Hubbard
model with E = 0.5. The panels run from systems that are
metallic to insulating (when in equilibrium): (a) U = 0.5;
(b) U=2;(c) U=4; and (d) U = 8. Note the change in the
vertical axis size for the different panels.
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FIG. 2. Density of states for the infinite-dimensional Hubbard
model with E = 4. The panels run from systems that are metallic
to insulating (when in equilibrium): (a) U = 0.5; (b) U = 2;
(c) U =4; and (d) U = 8. Note the change in the vertical axis
size for the different panels.

4n. For small U, the DOS corresponds to the Wannier-
Stark ladder with the delta functions broadened but now
also split by U [panel (a) with U = 0.5]; most of the
spectral weight lies around w = *=U/2, but there are still
visible peaks around w = *4 = U/2. When U is in-
creased, the minibands also merge as in panel (b) for U =
2. One can see the splitting of the delta functions continues
to increase, producing structure at 4n = 1 now. In panel
(c), we see a DOS for U = 4 that looks quite similar to the
equilibrium DOS (but at a nonzero 7). Panel (d) shows a
new, and interesting effect. This case, with U = 8§, has the
delta functions (split by =U/2) that originate from the
Wannier-Stark bands at @ = *£4 “meeting” at w = 0 =
4—U/2 = —4+ U/2, giving rise to the low-frequency
peak in the DOS. The self-energy does not behave like a
Fermi liquid here, though. Instead the self-energy has a
three-peak structure for small U—two broad peaks cen-
tered near @ = *U and a narrow peak centered at w = 0.
As U is increased, the broad self-energy peaks remain at
w = *=U, but the low-frequency peak disappears. Here,
the self-energy looks like it is developing a power-law cusp
at low frequency. The case with U = 8 is anomalous, with
the shape of the DOS differing significantly from what is
seen at U =6 or U = 10, due to the anomaly of the
meeting of the split Wannier-Stark peaks in the DOS.
Conclusions.—In this work, we have shown how to
generalize DMFT to nonequilibrium steady-state situations
and examined the many-body DOS for the Hubbard model
driven by different magnitude electric fields. We find a rich
array of behavior, including a broadening of the Wannier-
Stark ladders, an evolution toward the equilibrium DOS

when U is large enough, and a splitting of the Wannier-
Stark delta functions when E is large. The self-energy also
is anomalous, and never appears to illustrate behavior
similar to that of a Fermi liquid—the nonequilibrium
steady state simply behaves differently.
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