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Using indium as a test case, we investigate the accuracy of the electron-phonon coupling calculated with
state-of-the-artab initio and many-body theory methods. Thaé initio calculations—where electrons are
treated in the local-density approximation, and phonons and the electron-phonon interaction are treated within
linear response—predict an electron-phonon spectral funetféi{w) that translates into a relative tunneling
conductance that agrees with experiment to within one part /i The many-body theory calculations—
wherea?F(w) is extracted from tunneling data by means of the McMillan-Rowell tunneling inversion method
—provide spectral functions that depend strongly on details of the inversion process. For the most important
moment ofa®F (w), the mass-renormalization parameterwe report 0.9 0.1, in contrast to the value 0.805
quoted for nearly three decades in the literature. dhénitio calculations also provide the transport electron-
phonon spectral function?F (w) from which we calculate the resistivity as a function of temperature in good
agreement with experimer{tS0163-1828)01245-4

I. INTRODUCTION determines the transport properties in the normal state.
First-principles density-functional calculations can be
Materials with phonon-mediated superconductivity wereused to study the electronic structure, vibrational properties,
most intensively studied two to three decades ago. In the lagind electron-phonon coupling in real materials. To calculate
decade, especially since the discovery of compounds witguantities such a&a?F(w) and a2F(w), which involve av-
high transition temperatures, the experimental study of suchbrages over all phonon modes, the density-functional linear-
low-temperature materials has steadily declined. In contrastesponse approach is particularly uséfulin this approach,
recent years have seen a steady improvement in computthe electronic response to atomic displacements is deter-
tional and theoretical methods aimed at describing thenined self-consistently, and phonon wave vectors through-
electron-phonon coupling in the “old” materials. State-of- out the Brillouin zone are accessible without having to con-
the-artab initio methods can now be used to study details ofstruct the large supercells needed in finite-difference-based
the interaction between electrons and phonons and to esfirozen-phonon or generalized supercell metttdS. This
mate transition temperatures. The accuracy of these calculapproach has been successfully used to study the electron-
tions, in itself worth investigating, also raises the question ofhonon interaction and superconductivity in many simple
how precisely we know the parameters derived from experimetals that are suitably treated by the approximations inher-
ments. ent in the method, i.e., the local-density approximation
The understanding of phonon-mediated superconductivityL DA) for the electrons and the harmonic approximation for
relies on a detailed description of the coupling betweerthe phonon§:”*!
phonons and electrons, most explicit in the electron-phonon  Alternatively, o?F(w) and a2F(w) can be extracted
spectral functiony®F (w) of Eliashberg theory.The spectral  from tunneling experiments and optical conductivity data,
function measures the strength with which phonons scatteespectively:?2 using the Migdal-Eliashberg theory of su-
electrons on the Fermi surface with an imparted enesgy perconductivity. In particular fow?F(w), structure in the
With the addition of an effective Coulomb repulsion, i.e., thetunneling conductance measured across metal-insulator-
Morel-Anderson pseudopotential*, «?F(w) determines superconductor junctions reflects structure in the supercon-
all the thermodynamic properties of a phonon-mediated suducting gap functiomA(E) resulting from the interaction of
perconductor, including the transition temperatiiig, the  the electrons with the phonof!®In the McMillan-Rowell
critical field, and the specific-heat jump B¢ .2 Rather than  tunneling inversion methotf, the Eliashberg equations are
treating all scattering events equally, one can also weighsolved iteratively to find am?F(w) that is consistent with
each scattering event according to how much the direction ahe measured tunneling spectrum. In recent years, improved
the electronic velocity changes. This weighting results in thecomputational strategies for solving the Eliashberg equations
transportelectron-phonon spectral functiarﬁF(w), which  have been developed, allowing for more accurate extractions
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of @®F(w) from tunneling datd® wave vectorr, this change is used to calculate the dynamical
In this contribution, we focus om’F(w) determined matrix, which in turn is diagonalized to give the phonon
from ab initio and many-body theory methods to investigateeigenvectorgeqy and frequenciesy, (v is a branch labégl
the accuracy with which electron-phonon parameters are Because the linear-response calculation is the most time-
known. The moments o&?F(w), e.g., the electron-phonon consuming step in thab initio procedure, we calculate the
mass-renormalization parameter are quoted for many ma- phonons for a relatively small set of 9points in the IBZ.
terials with several digits. Our results show that this is mis-The dynamical matrices are obtained on a finer mesh of
leading, since for indium we find thatcan only be given to  points by a Fourier deconvolution, where the calculated dy-
within approximately 10%. namical matrices are Fourier transformed to obtain the real-
Indium is an ideal candidate for our discussion becausgpace force constants, which can then be used to form the
high-quality tunneling data are available. It is possible todynamical matrix at arbitrarg points. The phonon disper-
fabricate clean tunnel junctions and the electron-phonon cousion in the vicinity ofq=0 is found to be sensitive to the
pling strength appears large enough to yield a good signahumber of atomic shells included in the force-constant
to-noise ratio-"**From the theoretical point of view, indium model. To ensure the accuracy of the long-range force con-
also serves as a good test case, since it is a relatively simpégants, we also do the full linear-response calculation for sev-
metal in which relativistic effects are small. The core- eral smallq points not in our original mesh of 59 points.
valence interaction can be accurately treated with a pseudo- The finalab initio step is to calculate the coupling of each
potential, and since there are oryandp valence electrons, phonon to the electron states. A phongn will scatter an
the electronic wave functions can be expanded efficiently irslectron from a staténk) to a new statgn’k’) with a
plane waves. Furthermore, our results indicate that the StrUGtrength determined by the resulting first-order Chaﬁggc':

tural and electronic properties of indium are well describedy, the self-consistent potential. For atoms of magsthe
by the LDA and that anharmonic effects are small at tem|ectron-phonon matrix elements are given by

peratures near or below the Debye temperature.

Structure of this paperThe first-principles and many-
body theory calculations are outlined in Sec. Il. We refer g(nk,n’k’,vq)=
readers to the references for discussions of the many finer,

technical points not included here. We present and dlscusv%ith the restrictionk’ =k +q. Since only electrons near the

the results of our calculations in Sec. Ill, and give conclud- . . .
: . Fermi surface can scatter via phonons, the average coupling
ing remarks in Sec. IV. ; .
of electrons to a phonogv is expressed in the doubly con-
strained Fermi surface averag@g,,|%)).® As with the dy-
Il. OUTLINE OF THE CALCULATIONS namical matrices, the electron-phonon matrices are calcu-
o . lated on the coarse mesh of §Points and then interpolated

tronic structure, the vibrational properties, and the electrong|ectron-phonon spectral function, which involves coupling
phonon coupling. The electronic structure is calculated in thgg )| phonons, is given By

local-density approximation(LDA) of density-functional

theory, by solving the Kohn-Sham equations self-

consistently using the Perdew-Zunger parametrization of the a?F(0)=N(Eg) Y, S(ho—fog){(|9q1%)). (2
correlation energy® Since it is primarily the valence elec- av

trons that determine the structure and hence interact with thl% our calculations, thé function in Eq.(2) is replaced by a
phonons, the core electrons are eliminated from the CaICUIaGaussian of Width,O 5 meV '

tion by using a pseudopotential, which is generated by the™\\u, “gjight modifications, the above formalism can be

improved Troullier and Martins schemi&The nonlinearity sed to compute the transport spectral funchigri(«) for

of the exchange and correlation interaction between the cor S . o
and valence charge densities is handled with partial cor € phc_>non—l|m|ted electrical res'SF'V'W(T)’ where not all
Scattering events are equally important. For example,

corrections’! The Kohn-Sham orbitals are expanded in plane i L
waves with a kinetic energy cutoff of 20 Ry. forward-scattering events do not change the direction of the

Integrations over the Brillouin zone are approximated byeIectron velocityv,, and do not contribute to the resistivity.

sums over discrete sets bfpoints. The Kohn-Sham orbitals To this end an efficiency factd?,

are calculated for 1058 points in the irreducible Brillouin

zone (IBZ). These points, generated with the Monkhorst- Vink* Vnrk?
Pack schemé& originate from a mesh of 24k points in the ik =1 Vd?
full Brillouin zone. To accelerate convergence for this me- nk
tallic system, we use first-order Hermite-Gaussian smearing used to weight the electron-phonon matrix elements in the

with a width of 0.04 Ry The electronic density of states, in calculations ofa2F(w). The electrical resistivity is then
particular the density of states at the Fermi leM¢EF), is  given by32°
calculated more accurately using the linear tetrahedron

ryr . SCF
2quv<n k |eq1/ 5Vq |nk), (1)

()

method?* 37l 1 e 2E ()
The vibrational properties are determined by calculating = m f hw&d ,
the self-consistent first-order change in the electron density e’N(Eg)(v?) 2kgT Jo sinkP(Zw/2kgT)

with respect to atomic displacemefitssor each phonon (4
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with Q the cell volume andv?) the Fermi-surface average 50 T
of the electron velocity. This is a variational solution to the
semiclassical Boltzmann equation in which the Fermi surface
is assumed to undergo a uniform rigid shift in an applied
electric field. Here current-current vertex corrections are in-
cluded via the efficiency factor, but only to lowest order. As
written, Eqgs.(3) and (4) are appropriate for isotropic and
nearly isotropic materials sinaef,F(w) is averaged over all
directions andv?2) is assumed to be equal {@%)/3.

We compare thab initio electron-phonon coupling with
experiment both by calculating the tunneling conductance
from theab initio «°F(w) and by extracting the experimen-
tal «®F(w) from tunneling data. The traditional procedure,
for which new computational strategies have been devel-
oped, is to calculate the experimentelF (w) from tunnel-

— ab initio
40  ——- free—electron 7] A

electronic DOS (states/Ry/spin/cell)

ing data by solving the Eliashberg gap equations. 5
The extraction ofa?F(w) from tunneling data is done E-E (eV)
with the McMillan and Rowell tunneling inversion meth&d. _ . o
We follow their original prescription(i) we assume an initial FIG. 1. Electronic density of states from tlé initio calcula-

value forazF(w) for which (ii) we adjustu* to reproduce tion; inset: density of states near the Fermi level. Hieinitio

the experimental superconductin ap at zero tem eratu'rgsults(solid curve are compared to the free-electron density of
A Wf?ich is 0541 r%eV for indit?mg(]iiir)) we computepthe stategdashed curve The inset shows that the calculated density of
0 .

functional derivative of the change in the tunneling density>'2eS changes by only a few percent within the range=pf
*B6wmay, Wherewn,,, is the maximum phonon frequency; this jus-

qf states with r.eSpeCt to a _change_ m. tzhe assum'&!é(w); tifies the assumption of a constant DOS in this region for the many-
(iv) we determine the required shift ia“F(w) to produce ) :

- ; . . body-theory calculations.
the experimental tunneling conductance via a singular-value

decomposition, andv) we determine the newt®F(w) by  neling data is usually constrained by assuming that it has a
adding a smoothed shifie’F () to it. The newa’F(w) IS quadratic dependence at low energy and that it vanishes be-
then used to begin again with stép, and the entire process yond a maximal phonon frequenésome researchers include

is repeated until it converges. o _ a quadratic dependence at high energies, tdofortunately,

While the McMillan-Rowell tunneling inversion proce- neither the upper limit of the low-energy quadratic behavior,
dure is well defined, different computational strategies camor the exact value ofo,, O the frequency dependence
be used to solve the Eliashberg equations. We perform thgear thew. ., is known. In principlew ., should be chosen
perturbation theory directly on the imaginary-frequency axisig pe equal to the maximum bulk phonon frequency, but it
with an energy cutoff of six times the maximum phonon frequently is allowed to be somewhat larger to allow for the
frequencywnax [beyond whicha?F(w)=0] and then per-  effects of interface phonons. We adjust the region of qua-
form an exact analytic continuation to the real aX%ié! This  gratic behavior and the maximal phonon frequency in differ-
method treats the Morel-Anderson pseudopotential properlgn; fitting procedures, and impose a linear formdir ()
because the sharp cutoff on the imaginary-frequency axig, pring it to zero aiw
translates into a smooth cutoff when analytically continued
to the real axi§.8 In addition, the perturbation theory is per- Il RESULTS AND DISCUSSION
formed relative to the exact result in the normal state. These
details are necessary to accurately predict a superconducting The ground-state crystal structure of indium is face-
Tc from the experimental data. The inputs are the experiecentered tetragondfct). As is typical with LDA calcula-
mental tunneling conductance and the superconducting gans, we find that compared to experiment the equilibrium
at zero temperature. The outputs are the electron-phonorolume is approximately 5% too small. The tetragonal lattice
spectral functione®F () and the Morel-Anderson pseudo- parameters are calculated to Be=4.51 A andc=4.84 A;
potential u*. The transition temperatur€ is then calcu- the experimental values ase=4.58 A andc=4.94 A3°The
lated with theT-matrix method of Owen and Scalapifid, calculated and measureda ratios agree to better than 1%.
rather than using an approximate equation such as the M®ur linear-response calculations are all performed using the
Millan formula. theoretical lattice parameters.

The accuracy of the tunneling experiments suffers at low The calculated electronic density of stat€S) is plot-
energy, where the signal near the gap edge shows a larged in Fig. 1. The DOS has a free-electron-like behavior at
slope, and at high energy, where the detailed structure itow energies, but develops more structure at higher energies
A(E) is washed out because it enters the measurement in thvehere bands cross the Bragg planes. The dashed curve shows
form E2—A2(E). The experimental data also depend criti-the DOS for a free-electron gas with the same average
cally on the precise value of the superconducting gap at zergalence-electron density as indium. The two curves differ
temperaturel ; because this produces the BCS form for thesignificantly, indicating that band-structure and correlation
tunneling conductance; the strong-coupling correctionseffects within LDA strongly renormalize the electron mass in
which are employed to extraci’F(w), are the deviations indium. The DOS aEg is reduced by about 26% compared
from the BCS form. Hence an’F(w) extracted from tun- to the free-electron value. Unfortunately, it is difficult to

max-
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FIG. 3. Electrical resistivity as a function of temperature. The
FIG. 2. Phonon dispersion along the high-symmetry directionsdashed and solid curves are calculated usingthiitio results for
shown in the inset. The experimental data and corresponding fit anhe electron-phonon spectral functieAF (») and its transport ana-
from Ref. 30. Theab initio results are calculated on a uniform grid log «%F(w), respectively. The latter agrees significantly better
of 59 g points in the irreducible wedge of the BZ and then interpo- with the experimental datdref. 31). The inset shows the strikingly
lated to a denser mesh by means of a Fourier deconvolution. similar shape of the phonon density of stafs»), a?F(w), and
af,F(w), with the units scaled to display(w) with a magnitude
compare the calculated DOS directly with magnetic suscepsimilar to that of the spectral functions.
tibility measurements for indium since these experiments
find diamagnetic rather than Pauli paramagnetic behavior ahto much better agreement with experiment for temperatures
low temperatures. up to well above the Debye temperature. The transport
The inset to Fig. 1 shows the DOS ndag, where the electron-phonon coupling parametey is found to be 0.74,
DOS varies only by a few percent on the scale of phonoras compared ta =0.88. The effect of the efficiency factor
energies. This is in particular true over the ranBe on the spectral function is shown in the inset of Fig. 3, where
+6wmnax, Where we assume a constant electronic DOS fowe also displayF(w) scaled to emphasize the strikingly
the tunneling inversion. similar shape of the phonon density of states and the
Figure 2 shows the excellent agreement between the meatectron-phonon spectral functions. The ratioadF (w) to
sured and calculated phonon dispersion curves. The expefi~(w) gradually increases with frequency at about one-third
mental data are taken from neutron diffraction, and are reef the rate seen in lead.
ported with an 11th-neighbor, 19-parameter Born—von Figure 4 shows four electron-phonon coupling functions
Karman fit.3° Along the direction froniZ to X for which no
direct experimental data are available, we find good agree-
ment between the fit to the experiment and our calculated
phonon dispersion, though the latter shows more structure
than the fit. This structure, if real, may be more detailed than
can be extracted from the available experimental data.
The electrical resistivity, calculated with E@), is plot-
ted along with experimental data from polycrystalline
sampled! in Fig. 3. Equation(4) is expected to be most
accurate in the temperature range of abddp/5<T
<20, , with the Debye temperatu®,=129 K32 At very
low temperatures anisotropy effects become important, while

04 17—

0.3

o’ F(®)

at high temperatures anharmonic effects must be incléted.
Although the crystal structure of indium is tetragonal, elec-
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—- constrained
— ab initio

trical resistivity measurements on single crystals find nearly Wy
the same results along tleeand ¢ directions. This isotropy 0.0
also appears in our calculations, whérg) and(v?) differ

by less than 5%.

'_I'he_dashed curve in Fig. 3 is C_alcu_lated usm@:(w), FIG. 4. Electron-phonon spectral functiongF(w) from ab
which is often used as an approximation ¢§F(w). The  initio calculations and extracted from experimental tunneling re-
rough agreement between the dashed curve and the measutggls The three extracted curves are all based on the same tunneling
resistivity justifies the approximation in cases WhefF (o) data, but differ in the constraints used in the tunneling inversion
is not known. However, including the correct weighting with procedure. The unconstrained curve shows spurious behavior at low
the efficiency factom, ¢+ brings the calculated resistivity frequencies and above the maximum phonon frequency.

Ref. 17
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@’F(w): The calculatedab initio result and three curves T
. . !
extracted from experimental tunneling data. All three ex- 0.002 T

i —-- unconstrained
tracted curves are based on the same tunneling data taken at —- constrained
T=0.35 K" which should be more accurate than the data - aRbfi"if;O

“““““ (1

taken at higher temperaturThe extracted curves differ in
the constraints imposed on their low and high frequency be-
havior. The unconstrained curve is quadratic far
<0.5 meV and usesw;,, =21 meV. While this curve
yields the best fit to the relative tunneling conductance, it
shows what is believed to be unphysical behavior at low and
high energies. There is no reason to believe that there is a
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error in the tunneling conductance

phonon feature at 1.5 meV as shown in the unconstrained =~ | "~
curve. Rather, that shoulder is most likely an artifact related 0.000 ~\,/
to the accuracy of the voltagand ofA) for the experimen- . e

2 4 6 8 10 12 14 16 18

tal data collected at low energies. The features at high energy o (meV)

may be real, i.e., structure from either vertex corrections or

from interface phonons, but most likely they arise from forc-  FIG. 5. Differences between the measured and calculated tun-
ing an accurate fit to the experimental data at approximatelyeling conductances based on the spectral funcéfs ») in Fig.

13 meV above the superconducting gap. We estimate thdt The unconstrained?F (w) yields errors in the conductance that
vertex corrections lead to a small reductioriTef of approxi- ~ are two orders of magnitude smaller than any of the otét(«)
mately 0.3%, based on a simple integralfF (w) (using  CUrves.

the Fermi-surface averag@_=0.18).16 This result is the  |ogarithmic moment The extracteda®F(w) and Morel-
same size of effect as seen in lead, so vertex corrections ca{hderson pseudopotential* (adjusted to reproduce the ex-
be safely neglected for indium. . . perimentalA,) are employed to calculate the critical tem-
The constrained curve is more strongly restricted in itsperature T with no further adjusting of parameters. All
shape at both low and high energieg’F(w) is forced to  results lie within 5% of the experimental.. The errors in
increase quadratically i for «<2 meV and decay lin- the tunneling conductance are all rather closéh the ex-
early to zero at the maximum bulk phonon frequency of 16ception of the unconstrained cujyevhereas the curves dif-
meV. These constraints eliminate what appear to be unphysfer significantly in their moments.
cal features in the unconstrainedF (w), while still fitting One possible explanation for the wide variation in the
the tunneling data extremely well. The fourth curve shown inmoments is the smallness »ffor indium combined with the
Fig. 4 is that of Dyned! on which the three-decade-old experimental uncertainty in the superconducting gap at zero
value for\ is based. His calculation differs from ours in that temperatured,. Sinceu™ is adjusted to givel, and mate-
it was performed directly on the real axis, which does notfials with smalx do not display strong features in the tun-
handlex* properly?® and it was not performed relative to neling DOS, it is difficult to extract*F(w) to high accu-

the normal state, which would enforce the correct energy@cy. The value ofxF(w) in the region between 0 and 3
dependence at high energies. meV has a large effect on the size of the extradtebut this

For each of thax?F () shown in Fig. 4, the differences is the region where the experimental data depend most on the
between the measured and calculated tunneling conductaneéeGC'_se knrc])wledge Qﬁﬁ afnd thg 8expegnl1efntal r\]’c’lt(??fe'
are plotted in Fig. 5. It is remarkable that ah initio calcu- ~ ,>/ven the range ok from 0.8 to 1.1 for the different
lation with only one adjustable paramet¢the Morel- < F(w), itis not surprising thf‘ﬂ also spans a wide range.
Anderson pseudopotential*, adjusted to give the super- Conventional W!sdom limitg. to the range_of 0.1100.14
. ' , : for most materials. In fact, this was a criterion used for
conducting gap at zero temperatuoan fit the experimental o . . ; :

) . choosing junctions in the tunneling experimelitsiowever,
tunnel!ng conductance'to better than one part i @ our ab initio «?F(w) as well as our constrained and uncon-
tunneling conductance is on the order ¢f Burthermore, we straineda?F (o) extracted from tunneling data all give®
see that the low- and high-frequency features unique to thF ; 9 all give”
unconstrained curve greatly improve the fit only in the low- arger than the*convennonal \ialues. Recent f_w_s@-pr_mqples
and high-energy ranges. Since the experimental data are Ie?csafrIC:cl)ﬁ'gnssir%wle S;g?;ét :/r\]/ﬁin<tgélélstlzr?;a?étlfllzﬁilggurggr
accurate in these ranges, it makes sense to constrain the fj P ' 9

ting procedure to suppress the unphysical features that ste eory, where a constant electronic DOS is assumet,

= ul{1— wIN[N(Ep)6wmad}, and the maximum value is
from these ranges. Ideally, the best way to proceed would b und by lettingz become infinite. For indium, this gives a

to use experimental data that have error bars reported wit . * of about 0.25. W t th timate f
them. Such data would allow a maximum entropy techniqué“ax!mum": ot about ©.25. Ve get the same estimate for a
to be employed to produce the bestdfF (w).3 maximalx* by including the energy dependence of the elec-

Table | describes the curves extracted from tunneling datonic DOS, i.e., theN(E) of Fig. 1, ir’
and theab initio calculation. The electron-phonon spectral

. - . N(E
functions are characterized by several moméntd: the W= mN(Er) ,
electron-phonon mass-renormalization parameteftwice Jm d_yN(E +y)|tant —tan 1 l)
the first inverse momeht(ii) the strengthA (the area under Y/ F B6wmax wp

the curve, and(iii) the characteristic phonon energy, (a (5)
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TABLE |. Parametric description of the®F(w) functions from theab initio calculation and extracted
from tunneling data. The electron-phonon spectral functions are characterized by several m@Gntas:
electron-phonon mass-renormalization paramateftwice the first inverse frequency momgntii) the
strengthA (the area under the curyeand(iii ) the characteristic phonon energy, (a logarithmic moment
The Morel-Anderson pseudopotentjaf is adjusted to reproduce the experimental gap-a0. Results for
the critical temperatur&. , calculated fromw?F(w) andu*, all lie within 5% of the experimentdl . Also
listed are the maximum and the rms errors in the tunneling conductance.

Error in tunneling conductance
N AmeV) o, (meV) u* Tc(K) max (103 rms (10 %)

Expt. (Ref. 39 3.40

ab initio 0.882 3.00 5.61 0.161 3.31 1.1 6
Unconstrained  1.108 3.66 5.20 0.326 3.24 0.04 0.08
Constrained 0.984 3.24 5.51 0.224 3.28 2.3 5
Ref. 17 0.805 2.74 5.84 0.119 3.32 0.9 7

with a plasma frequency,~12 eV. We expecu<1 in  the literature. Based on our calculations with state-of-the-art
indium because it is as-p metal, well described by the many-body theory methods, we estimate thatan only be
free-electron model, so expected valueudfshould be less determined to within 10%, because of uncertainties in the
than 0.2. All these estimates indicate that the unconstrainedata at low and high energies. The uncertainties lead to the
curve is unphysical. guestion of how to best extract the electron-phonon spectral
Even if we discount the unconstrained curve, the remainfunction «?F(w) from experimental data: Is it better to fit
ing values for\ differ by up to 20%. Low-temperature the data as precisely as possible or to allow for experimental
specific-heat data can be used to provide an additional estérrors at low and high energies by constraining the curve to
mate fork. Using the linear coefficieny from experiment  be physically reasonable? All the’F (w)—ab initio, many-
and our calculated electronic DOS at the Fermi level, webody with and without constraints—show the same structure
estimate =0.86, which is close to theb initio value. This  with roughly the same magnitude. The tunneling conduc-
estimate is uncertain because the experimenptaiself is  tance obtained from ouab initio @’F(w) is as accurate as
known only to a few percerif and furthermore, the estimate the tunneling conductance obtained from the most likely
relies on a precise knowledge of the electronic DOS at thepectral function extracted from the experimental data.
Fermi level and on the assumption that electron-electron ef- From our study we conclude that the accuracy with which
fects do not contribute significantly to the mass renormalizathe electron-phonon coupling strength is extracted from ex-
tion. Taken together, these results lead us to conclude th@eriment could be improved. In particular, we hope to moti-
for indium A=0.9+0.1. vate further experimental work that reports error bars for the
tunneling conductance and the superconducting gap so that a
maximum-entropy technique can be employed to determine
the best fita?F(w). In materials where vertex corrections
State-of-the-artib initio methods deliver a very accurate are more important, the improved accuracy @fF(w)
description of the electron-phonon coupling in indium: Thewould also allow the effects of vertex corrections to be ob-
calculated relative tunneling conductance agrees with experserved in the multiphonon region.
ment to better than one part in % 0the calculated intrinsic
resistivity as a fupct|on of temperature is also in gooq.agree- ACKNOWLEDGMENTS
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