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Reevaluating electron-phonon coupling strengths: Indium as a test case
for ab initio and many-body theory methods
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Using indium as a test case, we investigate the accuracy of the electron-phonon coupling calculated with
state-of-the-artab initio and many-body theory methods. Theab initio calculations—where electrons are
treated in the local-density approximation, and phonons and the electron-phonon interaction are treated within
linear response—predict an electron-phonon spectral functiona2F(v) that translates into a relative tunneling
conductance that agrees with experiment to within one part in 103. The many-body theory calculations—
wherea2F(v) is extracted from tunneling data by means of the McMillan-Rowell tunneling inversion method
—provide spectral functions that depend strongly on details of the inversion process. For the most important
moment ofa2F(v), the mass-renormalization parameterl, we report 0.960.1, in contrast to the value 0.805
quoted for nearly three decades in the literature. Theab initio calculations also provide the transport electron-
phonon spectral functiona tr

2 F(v) from which we calculate the resistivity as a function of temperature in good
agreement with experiment.@S0163-1829~98!01245-4#
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I. INTRODUCTION

Materials with phonon-mediated superconductivity we
most intensively studied two to three decades ago. In the
decade, especially since the discovery of compounds w
high transition temperatures, the experimental study of s
low-temperature materials has steadily declined. In contr
recent years have seen a steady improvement in comp
tional and theoretical methods aimed at describing
electron-phonon coupling in the ‘‘old’’ materials. State-o
the-artab initio methods can now be used to study details
the interaction between electrons and phonons and to
mate transition temperatures. The accuracy of these calc
tions, in itself worth investigating, also raises the question
how precisely we know the parameters derived from exp
ments.

The understanding of phonon-mediated superconducti
relies on a detailed description of the coupling betwe
phonons and electrons, most explicit in the electron-pho
spectral functiona2F(v) of Eliashberg theory.1 The spectral
function measures the strength with which phonons sca
electrons on the Fermi surface with an imparted energyv.
With the addition of an effective Coulomb repulsion, i.e., t
Morel-Anderson pseudopotentialm* , a2F(v) determines
all the thermodynamic properties of a phonon-mediated
perconductor, including the transition temperatureTC , the
critical field, and the specific-heat jump atTC .2 Rather than
treating all scattering events equally, one can also we
each scattering event according to how much the directio
the electronic velocity changes. This weighting results in
transportelectron-phonon spectral functiona tr

2 F(v), which
PRB 580163-1829/98/58~21!/14511~7!/$15.00
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determines the transport properties in the normal state.
First-principles density-functional calculations can

used to study the electronic structure, vibrational propert
and electron-phonon coupling in real materials. To calcul
quantities such asa2F(v) anda tr

2 F(v), which involve av-
erages over all phonon modes, the density-functional line
response approach is particularly useful.3–7 In this approach,
the electronic response to atomic displacements is de
mined self-consistently, and phonon wave vectors throu
out the Brillouin zone are accessible without having to co
struct the large supercells needed in finite-difference-ba
frozen-phonon or generalized supercell methods.8–10 This
approach has been successfully used to study the elec
phonon interaction and superconductivity in many sim
metals that are suitably treated by the approximations inh
ent in the method, i.e., the local-density approximati
~LDA ! for the electrons and the harmonic approximation
the phonons.6,7,11

Alternatively, a2F(v) and a tr
2 F(v) can be extracted

from tunneling experiments and optical conductivity da
respectively,12,13 using the Migdal-Eliashberg theory of su
perconductivity. In particular fora2F(v), structure in the
tunneling conductance measured across metal-insula
superconductor junctions reflects structure in the superc
ducting gap functionD(E) resulting from the interaction o
the electrons with the phonons.14,15 In the McMillan-Rowell
tunneling inversion method,12 the Eliashberg equations ar
solved iteratively to find ana2F(v) that is consistent with
the measured tunneling spectrum. In recent years, impro
computational strategies for solving the Eliashberg equati
have been developed, allowing for more accurate extract
14 511 ©1998 The American Physical Society
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14 512 PRB 58RUDIN, BAUER, LIU, AND FREERICKS
of a2F(v) from tunneling data.16

In this contribution, we focus ona2F(v) determined
from ab initio and many-body theory methods to investiga
the accuracy with which electron-phonon parameters
known. The moments ofa2F(v), e.g., the electron-phono
mass-renormalization parameterl, are quoted for many ma
terials with several digits. Our results show that this is m
leading, since for indium we find thatl can only be given to
within approximately 10%.

Indium is an ideal candidate for our discussion beca
high-quality tunneling data are available. It is possible
fabricate clean tunnel junctions and the electron-phonon c
pling strength appears large enough to yield a good sig
to-noise ratio.17,18From the theoretical point of view, indium
also serves as a good test case, since it is a relatively sim
metal in which relativistic effects are small. The cor
valence interaction can be accurately treated with a pse
potential, and since there are onlys andp valence electrons
the electronic wave functions can be expanded efficiently
plane waves. Furthermore, our results indicate that the st
tural and electronic properties of indium are well describ
by the LDA and that anharmonic effects are small at te
peratures near or below the Debye temperature.

Structure of this paper.The first-principles and many
body theory calculations are outlined in Sec. II. We re
readers to the references for discussions of the many fi
technical points not included here. We present and disc
the results of our calculations in Sec. III, and give conclu
ing remarks in Sec. IV.

II. OUTLINE OF THE CALCULATIONS

The ab initio procedure consists of three parts: the el
tronic structure, the vibrational properties, and the electr
phonon coupling. The electronic structure is calculated in
local-density approximation~LDA ! of density-functional
theory, by solving the Kohn-Sham equations se
consistently using the Perdew-Zunger parametrization of
correlation energy.19 Since it is primarily the valence elec
trons that determine the structure and hence interact with
phonons, the core electrons are eliminated from the calc
tion by using a pseudopotential, which is generated by
improved Troullier and Martins scheme.20 The nonlinearity
of the exchange and correlation interaction between the
and valence charge densities is handled with partial c
corrections.21 The Kohn-Sham orbitals are expanded in pla
waves with a kinetic energy cutoff of 20 Ry.

Integrations over the Brillouin zone are approximated
sums over discrete sets ofk points. The Kohn-Sham orbital
are calculated for 1056k points in the irreducible Brillouin
zone ~IBZ!. These points, generated with the Monkhor
Pack scheme,22 originate from a mesh of 243 k points in the
full Brillouin zone. To accelerate convergence for this m
tallic system, we use first-order Hermite-Gaussian smea
with a width of 0.04 Ry.23 The electronic density of states, i
particular the density of states at the Fermi levelN(EF), is
calculated more accurately using the linear tetrahed
method.24

The vibrational properties are determined by calculat
the self-consistent first-order change in the electron den
with respect to atomic displacements.4 For each phonon
re
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wave vectorq, this change is used to calculate the dynami
matrix, which in turn is diagonalized to give the phono
eigenvectorseqn and frequenciesvqn (n is a branch label!.

Because the linear-response calculation is the most ti
consuming step in theab initio procedure, we calculate th
phonons for a relatively small set of 59q points in the IBZ.
The dynamical matrices are obtained on a finer mesh oq
points by a Fourier deconvolution, where the calculated
namical matrices are Fourier transformed to obtain the r
space force constants, which can then be used to form
dynamical matrix at arbitraryq points. The phonon disper
sion in the vicinity ofq50 is found to be sensitive to th
number of atomic shells included in the force-consta
model. To ensure the accuracy of the long-range force c
stants, we also do the full linear-response calculation for s
eral smallq points not in our original mesh of 59 points.

The finalab initio step is to calculate the coupling of eac
phonon to the electron states. A phononqn will scatter an
electron from a stateunk& to a new stateun8k8& with a
strength determined by the resulting first-order changedVq

SCF

in the self-consistent potential. For atoms of massM, the
electron-phonon matrix elements are given by

g~nk,n8k8,nq!5A \

2Mvqn
^n8k8ueqn•dVq

SCFunk&, ~1!

with the restrictionk85k1q. Since only electrons near th
Fermi surface can scatter via phonons, the average coup
of electrons to a phononqn is expressed in the doubly con
strained Fermi surface average^^ugqnu2&&.8 As with the dy-
namical matrices, the electron-phonon matrices are ca
lated on the coarse mesh of 59q points and then interpolate
to a denser mesh by means of a Fourier deconvolution.
electron-phonon spectral function, which involves coupli
to all phonons, is given by25

a2F~v!5N~EF!(
qn

d~\v2\vqn!^^ugqnu2&&. ~2!

In our calculations, thed function in Eq.~2! is replaced by a
Gaussian of width 0.5 meV.

With slight modifications, the above formalism can b
used to compute the transport spectral functiona tr

2 F(v) for
the phonon-limited electrical resistivityr(T), where not all
scattering events are equally important. For examp
forward-scattering events do not change the direction of
electron velocityvnk and do not contribute to the resistivity
To this end an efficiency factor,13

hnk,n8k8512
vnk•vn8k8

uvnku2
, ~3!

is used to weight the electron-phonon matrix elements in
calculations ofa tr

2 F(v). The electrical resistivity is then
given by13,26

r~T!5
3pV

e2N~EF!^v2&

1

2kBTE0

`

\v
a tr

2 F~v!

sinh2~\v/2kBT!
dv,

~4!
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with V the cell volume and̂v2& the Fermi-surface averag
of the electron velocity. This is a variational solution to t
semiclassical Boltzmann equation in which the Fermi surf
is assumed to undergo a uniform rigid shift in an appl
electric field. Here current-current vertex corrections are
cluded via the efficiency factor, but only to lowest order.
written, Eqs.~3! and ~4! are appropriate for isotropic an
nearly isotropic materials sincea tr

2 F(v) is averaged over al
directions and̂ vx

2& is assumed to be equal to^v2&/3.
We compare theab initio electron-phonon coupling with

experiment both by calculating the tunneling conducta
from theab initio a2F(v) and by extracting the experimen
tal a2F(v) from tunneling data. The traditional procedur
for which new computational strategies have been de
oped, is to calculate the experimentala2F(v) from tunnel-
ing data by solving the Eliashberg gap equations.

The extraction ofa2F(v) from tunneling data is done
with the McMillan and Rowell tunneling inversion method.12

We follow their original prescription:~i! we assume an initia
value fora2F(v) for which ~ii ! we adjustm* to reproduce
the experimental superconducting gap at zero tempera
D0 , which is 0.541 meV for indium;~iii ! we compute the
functional derivative of the change in the tunneling dens
of states with respect to a change in the assumeda2F(v);
~iv! we determine the required shift ina2F(v) to produce
the experimental tunneling conductance via a singular-va
decomposition, and~v! we determine the newa2F(v) by
adding a smoothed shiftda2F(v) to it. The newa2F(v) is
then used to begin again with step~ii !, and the entire proces
is repeated until it converges.

While the McMillan-Rowell tunneling inversion proce
dure is well defined, different computational strategies c
be used to solve the Eliashberg equations. We perform
perturbation theory directly on the imaginary-frequency a
with an energy cutoff of six times the maximum phon
frequencyvmax @beyond whicha2F(v)50] and then per-
form an exact analytic continuation to the real axis.16,27 This
method treats the Morel-Anderson pseudopotential prop
because the sharp cutoff on the imaginary-frequency
translates into a smooth cutoff when analytically continu
to the real axis.28 In addition, the perturbation theory is pe
formed relative to the exact result in the normal state. Th
details are necessary to accurately predict a supercondu
TC from the experimental data. The inputs are the exp
mental tunneling conductance and the superconducting
at zero temperature. The outputs are the electron-pho
spectral functiona2F(v) and the Morel-Anderson pseudo
potentialm* . The transition temperatureTC is then calcu-
lated with theT-matrix method of Owen and Scalapino,29

rather than using an approximate equation such as the
Millan formula.

The accuracy of the tunneling experiments suffers at
energy, where the signal near the gap edge shows a l
slope, and at high energy, where the detailed structure
D(E) is washed out because it enters the measurement in
form E22D2(E). The experimental data also depend cr
cally on the precise value of the superconducting gap at z
temperatureD0 because this produces the BCS form for t
tunneling conductance; the strong-coupling correctio
which are employed to extracta2F(v), are the deviations
from the BCS form. Hence ana2F(v) extracted from tun-
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neling data is usually constrained by assuming that it ha
quadratic dependence at low energy and that it vanishes
yond a maximal phonon frequency~some researchers includ
a quadratic dependence at high energies, too!. Unfortunately,
neither the upper limit of the low-energy quadratic behavi
nor the exact value ofvmax or the frequency dependenc
near thevmax is known. In principle,vmax should be chosen
to be equal to the maximum bulk phonon frequency, bu
frequently is allowed to be somewhat larger to allow for t
effects of interface phonons. We adjust the region of q
dratic behavior and the maximal phonon frequency in diff
ent fitting procedures, and impose a linear form ona2F(v)
to bring it to zero atvmax.

III. RESULTS AND DISCUSSION

The ground-state crystal structure of indium is fac
centered tetragonal~fct!. As is typical with LDA calcula-
tions, we find that compared to experiment the equilibriu
volume is approximately 5% too small. The tetragonal latt
parameters are calculated to bea54.51 Å andc54.84 Å;
the experimental values area54.58 Å andc54.94 Å.30 The
calculated and measuredc/a ratios agree to better than 1%
Our linear-response calculations are all performed using
theoretical lattice parameters.

The calculated electronic density of states~DOS! is plot-
ted in Fig. 1. The DOS has a free-electron-like behavior
low energies, but develops more structure at higher ener
where bands cross the Bragg planes. The dashed curve s
the DOS for a free-electron gas with the same aver
valence-electron density as indium. The two curves dif
significantly, indicating that band-structure and correlati
effects within LDA strongly renormalize the electron mass
indium. The DOS atEF is reduced by about 26% compare
to the free-electron value. Unfortunately, it is difficult t

FIG. 1. Electronic density of states from theab initio calcula-
tion; inset: density of states near the Fermi level. Theab initio
results~solid curve! are compared to the free-electron density
states~dashed curve!. The inset shows that the calculated density
states changes by only a few percent within the range ofEF

66vmax, wherevmax is the maximum phonon frequency; this ju
tifies the assumption of a constant DOS in this region for the ma
body-theory calculations.
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14 514 PRB 58RUDIN, BAUER, LIU, AND FREERICKS
compare the calculated DOS directly with magnetic susc
tibility measurements for indium since these experime
find diamagnetic rather than Pauli paramagnetic behavio
low temperatures.

The inset to Fig. 1 shows the DOS nearEF , where the
DOS varies only by a few percent on the scale of phon
energies. This is in particular true over the rangeEF
66vmax, where we assume a constant electronic DOS
the tunneling inversion.

Figure 2 shows the excellent agreement between the m
sured and calculated phonon dispersion curves. The ex
mental data are taken from neutron diffraction, and are
ported with an 11th-neighbor, 19-parameter Born–v
Kármán fit.30 Along the direction fromZ to X for which no
direct experimental data are available, we find good ag
ment between the fit to the experiment and our calcula
phonon dispersion, though the latter shows more struc
than the fit. This structure, if real, may be more detailed th
can be extracted from the available experimental data.

The electrical resistivity, calculated with Eq.~4!, is plot-
ted along with experimental data from polycrystallin
samples31 in Fig. 3. Equation~4! is expected to be mos
accurate in the temperature range of aboutQD/5&T
&2QD , with the Debye temperatureQD5129 K.32 At very
low temperatures anisotropy effects become important, w
at high temperatures anharmonic effects must be include33

Although the crystal structure of indium is tetragonal, ele
trical resistivity measurements on single crystals find nea
the same results along thea andc directions. This isotropy
also appears in our calculations, where^vx

2& and ^vz
2& differ

by less than 5%.
The dashed curve in Fig. 3 is calculated usinga2F(v),

which is often used as an approximation toa tr
2 F(v). The

rough agreement between the dashed curve and the mea
resistivity justifies the approximation in cases whena tr

2 F(v)
is not known. However, including the correct weighting wi
the efficiency factorhnk,n8k8 brings the calculated resistivit

FIG. 2. Phonon dispersion along the high-symmetry directi
shown in the inset. The experimental data and corresponding fi
from Ref. 30. Theab initio results are calculated on a uniform gr
of 59 q points in the irreducible wedge of the BZ and then interp
lated to a denser mesh by means of a Fourier deconvolution.
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into much better agreement with experiment for temperatu
up to well above the Debye temperature. The transp
electron-phonon coupling parameterl tr is found to be 0.74,
as compared tol50.88. The effect of the efficiency facto
on the spectral function is shown in the inset of Fig. 3, wh
we also displayF(v) scaled to emphasize the striking
similar shape of the phonon density of states and
electron-phonon spectral functions. The ratio ofa2F(v) to
F(v) gradually increases with frequency at about one-th
of the rate seen in lead.2

Figure 4 shows four electron-phonon coupling functio

s
re

-

FIG. 3. Electrical resistivity as a function of temperature. T
dashed and solid curves are calculated using theab initio results for
the electron-phonon spectral functiona2F(v) and its transport ana
log a tr

2 F(v), respectively. The latter agrees significantly bet
with the experimental data~Ref. 31!. The inset shows the strikingly
similar shape of the phonon density of statesF(v), a2F(v), and
a tr

2 F(v), with the units scaled to displayF(v) with a magnitude
similar to that of the spectral functions.

FIG. 4. Electron-phonon spectral functionsa2F(v) from ab
initio calculations and extracted from experimental tunneling
sults. The three extracted curves are all based on the same tunn
data, but differ in the constraints used in the tunneling invers
procedure. The unconstrained curve shows spurious behavior a
frequencies and above the maximum phonon frequency.
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a2F(v): The calculatedab initio result and three curve
extracted from experimental tunneling data. All three e
tracted curves are based on the same tunneling data tak
T50.35 K,17 which should be more accurate than the d
taken at higher temperatures.18 The extracted curves differ in
the constraints imposed on their low and high frequency
havior. The unconstrained curve is quadratic forv
,0.5 meV and usesvmax521 meV. While this curve
yields the best fit to the relative tunneling conductance
shows what is believed to be unphysical behavior at low
high energies. There is no reason to believe that there
phonon feature at 1.5 meV as shown in the unconstrai
curve. Rather, that shoulder is most likely an artifact rela
to the accuracy of the voltage~and ofD0) for the experimen-
tal data collected at low energies. The features at high en
may be real, i.e., structure from either vertex corrections
from interface phonons, but most likely they arise from fo
ing an accurate fit to the experimental data at approxima
13 meV above the superconducting gap. We estimate
vertex corrections lead to a small reduction ofTC of approxi-
mately 0.3%, based on a simple integral ofa2F(v) ~using
the Fermi-surface averageC50.18).16 This result is the
same size of effect as seen in lead, so vertex corrections
be safely neglected for indium.

The constrained curve is more strongly restricted in
shape at both low and high energies:a2F(v) is forced to
increase quadratically inv for v,2 meV and decay lin-
early to zero at the maximum bulk phonon frequency of
meV. These constraints eliminate what appear to be unph
cal features in the unconstraineda2F(v), while still fitting
the tunneling data extremely well. The fourth curve shown
Fig. 4 is that of Dynes,17 on which the three-decade-ol
value forl is based. His calculation differs from ours in th
it was performed directly on the real axis, which does n
handlem* properly,28 and it was not performed relative t
the normal state, which would enforce the correct ene
dependence at high energies.

For each of thea2F(v) shown in Fig. 4, the difference
between the measured and calculated tunneling conduct
are plotted in Fig. 5. It is remarkable that anab initio calcu-
lation with only one adjustable parameter~the Morel-
Anderson pseudopotentialm* , adjusted to give the super
conducting gap at zero temperature! can fit the experimenta
tunneling conductance to better than one part in 103 ~the
tunneling conductance is on the order of 1!. Furthermore, we
see that the low- and high-frequency features unique to
unconstrained curve greatly improve the fit only in the lo
and high-energy ranges. Since the experimental data are
accurate in these ranges, it makes sense to constrain th
ting procedure to suppress the unphysical features that
from these ranges. Ideally, the best way to proceed would
to use experimental data that have error bars reported
them. Such data would allow a maximum entropy techniq
to be employed to produce the best fita2F(v).34

Table I describes the curves extracted from tunneling d
and theab initio calculation. The electron-phonon spectr
functions are characterized by several moments:2 ~i! the
electron-phonon mass-renormalization parameterl ~twice
the first inverse moment!, ~ii ! the strengthA ~the area under
the curve!, and ~iii ! the characteristic phonon energyv ln ~a
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logarithmic moment!. The extracteda2F(v) and Morel-
Anderson pseudopotentialm* ~adjusted to reproduce the ex
perimentalD0) are employed to calculate the critical tem
peratureTC with no further adjusting of parameters. A
results lie within 5% of the experimentalTC . The errors in
the tunneling conductance are all rather close~with the ex-
ception of the unconstrained curve!, whereas the curves dif
fer significantly in their moments.

One possible explanation for the wide variation in t
moments is the smallness ofl for indium combined with the
experimental uncertainty in the superconducting gap at z
temperatureD0 . Sincem* is adjusted to giveD0 and mate-
rials with smalll do not display strong features in the tu
neling DOS, it is difficult to extracta2F(v) to high accu-
racy. The value ofa2F(v) in the region between 0 and
meV has a large effect on the size of the extractedl, but this
is the region where the experimental data depend most on
precise knowledge ofD0 and the experimental voltage.

Given the range ofl from 0.8 to 1.1 for the different
a2F(v), it is not surprising thatm* also spans a wide range
Conventional wisdom limitsm* to the range of 0.1 to 0.14
for most materials. In fact, this was a criterion used
choosing junctions in the tunneling experiments.18 However,
our ab initio a2F(v) as well as our constrained and unco
straineda2F(v) extracted from tunneling data all givem*
larger than the conventional values. Recent first-princip
calculations ofm* suggest thatm* ,0.14 is an artificial limit
for some simple metals.35 Within the standard Eliashber
theory, where a constant electronic DOS is assumed,m*
5m/$12m ln@N(EF)6vmax#%, and the maximum value is
found by lettingm become infinite. For indium, this gives
maximumm* of about 0.25. We get the same estimate fo
maximalm* by including the energy dependence of the ele
tronic DOS, i.e., theN(E) of Fig. 1, in36,37

mmax* 5
pN~EF!

E
2`

` dy

y
N~EF1y!F tan21S y

6vmax
D2tan21S y

vp
D G ,

~5!

FIG. 5. Differences between the measured and calculated
neling conductances based on the spectral functionsa2F(v) in Fig.
4. The unconstraineda2F(v) yields errors in the conductance th
are two orders of magnitude smaller than any of the othera2F(v)
curves.
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TABLE I. Parametric description of thea2F(v) functions from theab initio calculation and extracted
from tunneling data. The electron-phonon spectral functions are characterized by several moments~i! the
electron-phonon mass-renormalization parameterl ~twice the first inverse frequency moment!, ~ii ! the
strengthA ~the area under the curve!, and~iii ! the characteristic phonon energyv ln ~a logarithmic moment!.
The Morel-Anderson pseudopotentialm* is adjusted to reproduce the experimental gap atT50. Results for
the critical temperatureTC , calculated froma2F(v) andm* , all lie within 5% of the experimentalTC . Also
listed are the maximum and the rms errors in the tunneling conductance.

Error in tunneling conductance
l A ~meV! v ln ~meV! m* TC ~K! max (1023) rms (1024)

Expt. ~Ref. 39! 3.40

ab initio 0.882 3.00 5.61 0.161 3.31 1.1 6
Unconstrained 1.108 3.66 5.20 0.326 3.24 0.04 0.08
Constrained 0.984 3.24 5.51 0.224 3.28 2.3 5
Ref. 17 0.805 2.74 5.84 0.119 3.32 0.9 7
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with a plasma frequencyvp'12 eV. We expectm,1 in
indium because it is ans-p metal, well described by the
free-electron model, so expected values ofm* should be less
than 0.2. All these estimates indicate that the unconstra
curve is unphysical.

Even if we discount the unconstrained curve, the rema
ing values for l differ by up to 20%. Low-temperature
specific-heat data can be used to provide an additional
mate forl. Using the linear coefficientg from experiment38

and our calculated electronic DOS at the Fermi level,
estimatel50.86, which is close to theab initio value. This
estimate is uncertain because the experimentalg itself is
known only to a few percent,38 and furthermore, the estimat
relies on a precise knowledge of the electronic DOS at
Fermi level and on the assumption that electron-electron
fects do not contribute significantly to the mass renormali
tion. Taken together, these results lead us to conclude
for indium l50.960.1.

IV. CONCLUSIONS

State-of-the-artab initio methods deliver a very accura
description of the electron-phonon coupling in indium: T
calculated relative tunneling conductance agrees with exp
ment to better than one part in 103; the calculated intrinsic
resistivity as a function of temperature is also in good agr
ment with experiment. The achieved accuracy justifies
approximations invoked: The local-density approximati
used to calculate the electronic structure and the harm
approximation for the phonons.

Indium is a good choice for the comparison also beca
of the high-quality experimental tunneling data. Still, we
not know the strength of the electron-phonon ma
renormalization parameterl as well as it would seem from
ed
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ti-

e

e
f-
-
at

ri-

-
e

ic

e

-

the literature. Based on our calculations with state-of-the
many-body theory methods, we estimate thatl can only be
determined to within 10%, because of uncertainties in
data at low and high energies. The uncertainties lead to
question of how to best extract the electron-phonon spec
function a2F(v) from experimental data: Is it better to fi
the data as precisely as possible or to allow for experime
errors at low and high energies by constraining the curve
be physically reasonable? All thea2F(v)—ab initio, many-
body with and without constraints—show the same struct
with roughly the same magnitude. The tunneling cond
tance obtained from ourab initio a2F(v) is as accurate as
the tunneling conductance obtained from the most lik
spectral function extracted from the experimental data.

From our study we conclude that the accuracy with wh
the electron-phonon coupling strength is extracted from
periment could be improved. In particular, we hope to mo
vate further experimental work that reports error bars for
tunneling conductance and the superconducting gap so th
maximum-entropy technique can be employed to determ
the best fita2F(v). In materials where vertex correction
are more important, the improved accuracy ofa2F(v)
would also allow the effects of vertex corrections to be o
served in the multiphonon region.
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