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in an ion-trap-based quantum simulator
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Recently a variant on Ramsey interferometry for coupled spin-1/2 systems was proposed to directly measure
the retarded spin-spin Green’s function. In conventional experimental situations, the spin system is initially in a
nonequilibrium state before the Ramsey interferometry is performed, so we examine the nonequilibrium retarded
spin-spin Green’s functions within the transverse-field Ising model. We derive the lowest four spectral moments
to understand the short-time behavior and we employ a Lehmann-like representation to determine the spectral
behavior. We simulate a Ramsey protocol for a nonequilibrium quantum spin system that consists of a coherent
superposition of the ground state and diabatically excited higher-energy states via a temporally ramped transverse
magnetic field. We then apply the Ramsey spectroscopy protocol to the final Hamiltonian, which has a constant
transverse field. The short time allows us to extract the initial transport of many-body correlations, while the
long-time behavior relates to the excitation spectra of the Hamiltonian. Compressive sensing is employed in the
data analysis to efficiently extract that spectra.
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I. INTRODUCTION

One of the main computational tools of quantum many-
body physics is the retarded Green’s function because its
causal structure makes it the physical Green’s function for the
linear response of the system and for describing its equilibrium
behavior. The formal interpretation of the retarded Green’s
function is that it determines the quantum states of the system.
In equilibrium, all single-particle expectation values can be
calculated from the Green’s functions and the Fermi-Dirac
distribution, which determines how those quantum states are
occupied. If one is also interested in exciting systems to
nonequilibrium, then one needs to examine nonequilibrium
many-body theory. Here, one has to determine two inde-
pendent Green’s functions—the retarded Green’s function
(introduced above) and the so-called lesser Green’s function—
the former continuing to determine the quantum states and
the latter determining how those states are occupied (since it
is no longer given by a simple Fermi-Dirac distribution). It
turns out that nearly all experimentally measurable quantities
are actually determined by the lesser Green’s function, not
the retarded Green’s function. This holds in equilibrium too,
as one typically finds any expectation value calculated from
the retarded Green’s function requires an additional Fermi-
Dirac distribution factor, which converts the retarded Green’s
function into the lesser Green’s function. It is due to this
simple relationship between the retarded and lesser Green’s
functions in equilibrium that one can get all the information
from knowing the retarded Green’s functions only.

This then brings up a fundamental question: Is it possible
to directly measure the retarded Green’s function in an
experiment? Most physicists would reasonably respond no,
since the occupancy of the states always plays a role in a
measurement, but recent work showed that this is not the case.
Knap et al. [1] proposed a variant of Ramsey interferometry
for any coupled spin-1/2 system that reduces to the direct
experimental measurement of a retarded Green’s function.
The Ramsey protocol is quite simple, as shown in Fig. 1. One
starts the system in some given quantum state (Knap et al.

assume this is a thermal state, but in most quantum simulators
it will be some other state that the system has evolved into
at time t = t0), applies a local Rabi pulse at site j , lets the
system evolve under the Hamiltonian until time t , applies
a second global Rabi pulse, and then measures the spin at
site i. It is by no means obvious that this will result in
the measurement of the retarded Green’s function, so we
illustrate this in a brief derivation below. Then we describe
how the evolution of the system will change (from that of
an equilibrium Green’s function) due to the nonequilibrium
character of the initial state |ψ0〉 that the system started
from. These effects of the nonequilibrium characteristics of
the state are investigated by studying the initial propagation
of information from the disturbance and comparing that to
the Lieb-Robinson-like bound [2] and extracting the energy
spectra for the transverse-field Ising model.

The organization of this paper is as follows: In Sec. II, we
summarize the derivation of how the Ramsey spectroscopy
protocol results in a pure state retarded spin-spin Green’s
function. We review the formalism of the transverse-field
Ising model as simulated in the linear Paul trap and the
approximation we apply for the time evolution. To further
understand the short time behavior, the spectral moments
are derived. We finally discuss the key ideas of compressive
sensing. In Sec. III, we present numerical examples of the
pure state retarded spin-spin Green’s function. We extract
different features as a function of time to compare to Lieb-
Robinson bounds and we apply compressive sensing to Fourier
transform the measurements as a function of time and extract
the excitation spectra at different transverse fields. Finally,
in Sec. IV, we provide our conclusions.

II. FORMALISM

The Ramsey spectroscopy protocol is completely general,
so we first describe it solely in terms of spins, and then
we discuss the specific implementation via ions trapped
in a linear Paul trap (for the concrete calculations). The
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FIG. 1. Schematic of the Ramsey protocol. (a) Rotate a single
spin j by π/2. (b) Allow the resulting quantum spin state to freely
evolve forward in time. (c) Apply a global rotation and immediately
measure the z component of the ith spin, σ

(z)
i .

procedure involves applying two rotations of the spins (i.e.,
Rabi pulses) at different times, with a free evolution under the
spin Hamiltonian in between; the first rotation is a single-spin
rotation at lattice site j , given by

Rj (φ1) = 1√
2

[
Î + i

(
σ

(x)
j cos φ1 − σ

(y)
j sin φ1

)]
. (1)

Here, σ
(r)
j is the Pauli spin matrix (with eigenvalues ±1); the

index r = x, y, or z denotes the spatial direction of the Pauli
spin matrix; and the index j denotes the spatial site index on
the lattice. The second spin rotation is a global spin rotation
given by

R(φ2) =
N∏

j=1

Rj (φ2) (2)

for a spin lattice with N lattice sites. The Rabi pulse is the
general one used in Ref. [1], with the product of the Rabi
frequency times the time equal to π/2, and φ1 (or φ2) being
the phase of the laser pulse.

The Pauli matrices satisfy the standard commutation rela-
tions [

σ
(α)
i ,σ

(β)
j

]
− = 2iεαβγ σ

(γ )
i δij (3)

with ε the completely antisymmetric rank three tensor (Levi-
Civita symbol).

The pure state retarded spin-spin Green’s function is defined
by

Gret
αβ,ij (t,t0) = −iθ (t − t0)〈ψ0|

[
σ

(α)
i (t),σ (β)

j (t0)
]
−|ψ0〉, (4)

where θ (t) is the Heaviside function and |ψ0〉 is a pure quantum
state which can be thought of as the initial spin wave function.
This is a so-called nonequilibrium Green’s function, similar to
the T = 0 Green’s function, except it uses a different quantum
state than the ground state for the matrix elements; for example,
in an ion-trap-based implementation, it can be the time-evolved
state when the system starts in the ground state for a large
magnetic field and then the field is ramped to some final value.
Note that the time evolution between the two spin rotations can
be with respect to a constant Hamiltonian or a time-varying
one; it does not matter for the definition. In addition, the initial
state |ψ0〉 is taken to be any pure quantum state; it need not be
an eigenstate of the Hamiltonian at the initial time.

A. Ramsey spectroscopy protocol

The Ramsey spectroscopy protocol consists of four steps
after starting the system in an initial state |ψ0〉 at time t0:
(1) perform a single-spin rotation on the j th spin, with the
single-spin rotation Rj (φ1) at t0, (2) evolve the system to time
t under the Hamiltonian (which can be time dependent, but will
be chosen to be time independent here), (3) perform a global
rotation R(φ2) at time t , and (4) immediately measure the z

component of the ith spin. The entire Ramsey interferometry
measurement then corresponds to evaluating the following
matrix element (t � t0):

Mi,j (φ1,φ2,t) = 〈ψj (t)|σ (z)
i |ψj (t)〉, (5)

where |ψj (t)〉 is the Schrödinger representation for the final
wave function (after the first three steps of the protocol), which
is given by

|ψj (t)〉 = R(φ2)Û (t,t0)Rj (φ1)|ψ0〉. (6)

Here, Û (t,t0) = Tt exp[−i
∫ t

t0
dt̄H(t̄)] is the evolution opera-

tor, given by a time-ordered product if the Hamiltonian changes
as a function of time. Using the fact that

R†(φ2)σ (z)
i R(φ2) = −σ

(x)
i sin φ2 − σ

(y)
i cos φ2, (7)

and the Heisenberg representation for the spin operators, where
σ

(r)
i (t) = Û †(t,t0)σ (r)

i Û (t,t0), yields

Mi,j (φ1,φ2,t) = − 1
2 〈ψ0|

[
Î − i

(
σ

(x)
j cos φ1 − σ

(y)
j sin φ1

)]
× [

σ
(x)
i (t) sin φ2 + σ

(y)
i (t) cos φ2

]
× [

Î + i
(
σ

(x)
j cos φ1 − σ

(y)
j sin φ1

)]|ψ0〉.
(8)

The most interesting case corresponds to the choice φ1 = 0
and φ2 = π/2 [1] which gives

Mi,j

(
0,

π

2
,t

)
= −1

2
〈ψ0|

[
Î − iσ

(x)
j (t0)

]
σ

(x)
i (t)

× [
Î + iσ

(x)
j (t0)

]|ψ0〉, (9)
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where we trivially represented the spins in Rj (φ1) by the
Heisenberg representation at t0, since Û (t0,t0) = Î . So far,
the Ramsey protocol, and the manipulations we have made,
are completely general. Now, we need to invoke a parity
argument that says all expectation values that correspond to
an odd number of σx

i operators vanish if the initial state |ψ0〉
has definite spin-reflection parity. We will be considering the
evolution with respect to a transverse-field Ising model, which
has this spin-reflection parity (and will be verified in detail
below). In this case, the matrix element becomes

Mi,j

(
0,

π

2
,t

)
= 1

2
Gret

xx,ij (t,t0) (10)

after we drop the odd averages. Hence, the Ramsey spec-
troscopy directly measures the retarded spin-spin Green’s
function. Note that this also implies that the Green’s function
in the time domain is real (which can be easily proven).

A natural alternative representation of the retarded Green’s
function is the Lehmann representation and here we derive a
similar representation when the transverse-field Ising model
is time independent during the free-evolution stage of the
Ramsey spectroscopy. We first expand |ψ0〉 = ∑

n Cn|n〉, in
terms of the eigenstates of the transverse-field Ising model at
time t0 (H(t0)|n〉 = En|n〉); the Hamiltonian becomes time
independent for t � t0. We introduce |ψ0〉 and an identity
operator into Eq. (4):

Gret
xx,ij (t,t0) = −iθ (t − t0)

N∑
m,n,n′

C∗
mCn

[〈m|σ (x)
i (t)|n′〉〈n′|σ (x)

j (t0)|n〉 − 〈m|σ (x)
j (t0)|n′〉〈n′|σ (x)

i (t)|n〉]. (11)

Because we are assuming that the Hamiltonian is time independent, the time evolution operator acting on an eigenstate satisfies
Û (t,t0)|n〉 = exp[−iEn(t − t0)]|n〉, which is employed to further simplify the above equation to

Gret
xx,ij (t,t0) = −iθ (t − t0)

∑
m,n,n′

C∗
mCn

[
e−i(En′−Em)(t−t0)〈m|σ (x)

i |n′〉〈n′|σ (x)
j |n〉 − e−i(En−En′ )(t−t0)〈m|σ (x)

j |n′〉〈n′|σ (x)
i |n〉]. (12)

In this representation, the individual matrix elements oscillate
at the energy differences of the transverse-field Ising model.
Although some matrix elements might cancel each other once
summed over, the pure-state retarded Green’s function will
oscillate at many energy eigenvalue differences. Additionally
the energy differences are between states with opposite
spin-reflection parity (we discuss the spin-reflection parity
in the next section), because the σ (x) operator is odd under
the spin reflection symmetry. Interestingly, this equation
differs from the conventional Lehmann representation of a
thermal Green’s function because the matrix element is not
proportional to |σ (α)|2. In other words, when we evaluate
the pure state Green’s function—in cases where the state is
a superposition of eigenstates—the Lehmann representation
includes cross terms that do not appear in the conventional
trace (when one evaluates a thermally averaged Green’s
function).

B. Transverse-field Ising model

For concreteness, we consider the evolution of the spin
system in the transverse-field Ising model as generated in
an ion trap quantum simulator. In the linear Paul trap, the
effective spin-1/2 system is encoded onto the 2S1/2 : |F =
0,mf = 0〉 and |F = 1,mf = 0〉 hyperfine clock states of the
trapped 171Yb+ ion. The Ising-like interaction is generated
by applying two optical beams with a frequency difference
of μ, which results in a spin-dependent force. When the
phonons are only virtually occupied, they can be integrated
out to leave behind a spin-only Hamiltonian. These Ising spins
have a long-range interaction that decays approximately with
a power law in the interion distance. The power law is tunable
between the uniform case (α = 0) and the dipole-dipole
interaction case (α = 3). The spin-exchange interactions are

approximated by

|Jij | ≈ J0

|Ri − Rj |α , (13)

where Ri is the position of the ith ion and J0 is the overall
scale for the exchange interactions. The Jij s are positive for
the ferromagnetic case and negative for the antiferromagnetic
case; we will show results only for the ferromagnetic case here.
In general, the Jij s are time dependent but when the detuning μ

is detuned to the blue of the transverse center-of-mass mode,
the system is well approximated by static Jij , which we do
here as well.

The transverse-field Ising model for N ions then becomes

H(t) = −
N∑

i,j = 1
i < j

Jij σ
(x)
i σ

(x)
j − B(y)(t)

N∑
i=1

σ
(y)
i . (14)

Here, B(y)(t) is the time-dependent transverse magnetic field;
we work with � = 1. Note that the transverse-field Ising model
has two symmetries. The first symmetry is a spatial reflection
symmetry, which is described by Jij = JN−iN−j , and derives
from the even symmetry of the axial trapping potential about
the origin. Here, the lattice index is ordered in a strictly
increasing order from left to right. The second symmetry is a
spin-reflection parity, when the Pauli matrices are transformed
by σ (x) → −σ (x), σ (y) → σ (y), σ (z) → −σ (z). In this case, the
spin-spin commutators and the transverse-field Ising model
Hamiltonian both remain invariant. So, if the initial state
|ψ0〉 has a definite spin-reflection parity, then, because the
Hamiltonian H(t) is even under spin-reflection parity (and
hence so is the evolution operator), we have that the matrix
element with respect to |ψ0〉 of any odd number of σ

(x)
i (t)

operators vanishes, as claimed above.
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FIG. 2. Energy spectrum of the transverse-field Ising model with
10 spins and α = 1.00. Near B (y)/J0 = 0.75 there is a minimum
energy gap between the ground state and the (red line) first coupled
state.

The excitations to higher coupled states (i.e., states with
the same symmetry) depend on the energy gaps between those
coupled states and how quickly the transverse magnetic field
changes with time up to the time t0. In Fig. 2, we show the
energy spectra for N = 10 spins with α = 1.00; note that there
is a minimum energy gap near B(y)/J0 = 0.75.

When we examine the spin-spin Green’s function, we can
consider a number of different scenarios. We start the system
at tinit in the ground state of the Hamiltonian when B(y)(tinit) 	
|Jij |, evolve it by decreasing the field to time t0, then apply
the Ramsey protocol. During the Ramsey spectroscopy, we
can keep the transverse field constant (as we will do here)
or we can continue to vary it in time until t , when the final
measurement is made. While we focus on the case when the
Hamiltonian is a constant during the Ramsey protocol in this
work, the more general case allows one to investigate strong
nonequilibrium effects associated with the spin-spin Green’s
function. Unfortunately, there is no simple way to interpret the
results of those such experiments, which is why we focus on
the simpler case here, which can be directly interpreted. The
protocol is illustrated in Fig. 3.

The formula for the Jij have been derived in Refs. [3,4] and
the resulting equation for the static Jij is

Jij = �νR

N∑
m=1

bimbjm

μ2 − ω2
m

. (15)

The Jij depend on the normal mode eigenvector, bim, of the
mth phonon mode at the ith ion site and the corresponding
phonon frequency, ωm—the calculation of bim and ωm can
be found in Ref. [5]. The remaining variables in Eq. (15)
are experimental parameters and we use the same parameters
used in Ref. [6] (we work with conventional frequency units).
The symbol νR = h/(Mλ) = 18.5 kHz is the recoil energy
of a 171Yb+, where M is the ionic mass, λ = 355 nm is the
wavelength of the laser applied to the linear chain of ions, and
� = 600 kHz is the Rabi frequency. The parameter μ is the
detuning and is defined by μ = ωc.m. + 3η� = 1.0233ωc.m.,
where ωc.m. is the transverse center of mass phonon mode and

FIG. 3. Schematic of the complete protocol we use in imple-
menting the Ramsey spectroscopy. (a) We initialize the state in
the ground state of the Hamiltonian when B (y) 	 |Jij |. Then we
decrease the transverse magnetic field via an exponential ramp in
time. We also show the average magnitude of the nearest neighbor
interaction, Jnn, and the next-nearest neighbor, Jnnn, in red (dashed)
lines to give a relative idea of the strength of the transverse
magnetic field to the spin-spin interaction. (b) For the time interval
[t0,t], we apply the Ramsey spectroscopy protocol and perform
signal processing on the resulting measurements as a function of
the final time t .

the Lambe-Dicke parameter η = √
νR/ωc.m. = 0.0621. The

Jij can be adjusted to yield different power law behavior, as
described in Eq. (13), by changing the detuning, μ, or the
asymmetry between the axial and transverse center-of-mass
(c.m.) modes. We use the latter strategy in Sec. III. The axial
center-of-mass mode is adjusted from 620 to 950 kHz, yielding
a power law fit ranging from 0.7 < α < 1.2. The energy unit,
J0, that we use to scale the Jij satisfies J0 ≈ 1 kHz for N = 10
ions. In Sec. III, we focus on the ferromagnetic interaction with
positive spin-exchange coefficients (Jij > 0).

The specifics of the Ramsey protocol we use are as follows:
(1) Initialize the system of spins along the y direction at tinit

and start with B(y)(tinit) = B0 = 10J0, (2) reduce the trans-
verse magnetic field via an exponential ramp with B(y)(t) =
B0 exp(−t/τ ) between tinit to t0, (3) apply the Ramsey protocol
in the time interval [t0,t] with a constant transverse magnetic
field, B(y)(t0), and (4) perform a signal processing analysis on
the resulting measurements. The Ramsey protocol is the same
as described above with the single spin rotation at t0 and the
pure state |ψ0〉 is the state that was time evolved from tinit to t0.
Note that during step 2, the transverse magnetic field changes
in time, requiring a time-ordered-product for the evolution
operator until time t0.
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C. Time evolution

We must evaluate the time evolution with respect to the
time-dependent Hamiltonian that satisfies

i
∂

∂t
Û (t,tinit) = Ĥ(t)Û (t,tinit), (16)

where Û (tinit,tinit) = Î . The resulting time evolution operator is
a time-ordered product, Û (t,tinit) = Tt exp [−i

∫ t

tinit
dt ′Ĥ(t ′)].

After t0, the magnetic field is held constant and the
transverse-field Ising model is time independent, which sim-
plifies the subsequent time-evolution operator to Û (t,t0)|n〉 =
exp[−iEn(t − t0)]|n〉 for the eigenstates defined above at t0.

We follow the same procedure as we did in Ref. [7] and
use the commutator-free exponential time (CFET) approach
to approximate the nontrivial time evolution operator. The
details of the CFET approach can be found in Refs. [8,9].
The central idea of the CFET approach is to use a number
of Trotter approximations to construct a single evolution
operator that evolves a δt forward in time. The Trotter
factors are chosen in a manner that when combined via the
Baker-Campbell-Hausdorff formula [10–12] they produce a
high-order truncated Magnus expansion [13] of the evolution
operator. Depending on the number of Trotter factors used,
the CFET operator can increase the order of the truncated
Magnus expansion. We use the optimized fourth-ordered
CFET approach, that has an error of δt5.

D. The spectral function and spectral moments

The spectral function determines the local density of states
of the quantum system. Spectral moment sum rules are useful
to understand the short time behavior and can ultimately
be applied to compare to Lieb-Robinson bounds. While the
spectral moment sum rules can be derived for the completely
general nonequilibrium Green’s function, we do so only for
the case of a Hamiltonian that is constant for times t > t0
here.

The spectral function is then defined via

Aret
xx,ij (ω) = − 1

π
Im

[∫ ∞

0
dtrelG

ret
xx,ij (t0 + trel,t0)eiωtrel

]
(17)

and the nth spectral moment is then defined as follows:

μ
ret,n
xx,ij =

∫ ∞

−∞
dωωnAret

xx,ij (ω). (18)

Using integration by parts n times, one can directly relate
the nth spectral moment to the nth derivative of the retarded
Green’s function as

μ
ret,n
xx,ij = − 2

π
Im

[
in

∂n

∂tnrel

Gret
xx,ij (t0 + trel,t0)

]
trel=0+

. (19)

We calculate the first nonzero spectral moments for arbitrary
lattice sites i and j . The calculations are tedious, but
straightforward, and finally yield

μ
ret,0
xx,ij = 0, (20a)

μ
ret,1
xx,ij = 4

π
B(y)(t0)〈ψ0|σ (y)

i |ψ0〉δij , (20b)

μ
ret,2
xx,ij = 0, (20c)

μ
ret,3
xx,ij = − 8

π
[B(y)(t0)]2Jij 〈ψ0|σ (y)

i σ
(y)
j |ψ0〉 + δij

2π

〈
ψ0|

[
B(y)(t0)

(
16[B(y)(t0)]2 +

∑
kk′

JikJik′σ
(x)
k σ

(x)
k′

)]
σ

(y)
i |ψ0

〉

+ 4δij

π

∑
k

Jik〈ψ0|
[
[B(y)(t0)]2

(
σ

(x)
k σ

(x)
i + σ

(z)
k σ

(z)
i

)]|ψ0〉. (20d)

The zeroth and first two moments vanish except when
i = j , where the first moment is nonzero. This implies the
Green’s function for i �= j is very flat in t initially; the case
with i = j has a nonzero slope that is proportional to the
transverse magnetic field and the polarization of the spin along
the field direction. For i �= j the first nonzero spectral moment
is μ

ret,3
xx,ij (t0) and here the coefficient is proportional to the direct

spin-spin interaction between i and j and rotated from along x

to along y—the coefficient is scaled also by the square of the
transverse magnetic field. The case with i = j is even more
complicated.

E. Signal processing

The generalized Lehmann formula in Eq. (12) shows that
the time dependence of the Green’s function relates to the
different excitation energies of the many-body system. Since
these excitation energies are discrete, the time dependence

is determined by a finite set of exponentials with different
weights. This is precisely the case where compressive sensing
can be employed to extract the frequencies and the weights
most efficiently from the data in the time domain; this becomes
particularly important since the extent of the time domain is
limited by the decoherence time in an experiment. The source
of this decoherence is due to other spontaneous emission
and experimental noise (for example, intensity fluctuations
in the Raman beams). Even though compressive sensing is
optimized for this procedure, it remains experimentally (and
therefore numerically) challenging because there are a fairly
large number of nonzero frequencies that can lie close to one
another and the amplitude associated with the frequencies is
low. So good data are necessary to extract all of them; instead,
we use a small number of points to simulate the case of an
actual experiment and hence we will not be able to pick out all
of the frequencies. In addition, one would need to take multiple
measurements at every time step to decrease the noise due to
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counting statistics and other experimental error. Although we
will not explicitly take into account these errors, we keep these
limitations in mind. A complete review of compressive sensing
for clean and noisy signals can be found at Rice University
[14]. We present a short summary below.

To Fourier transform a data set of M time steps to a
frequency domain with Nstep frequency steps, the following
matrix-vector multiplication equation is solved:

AF−1Gret
xx,ij (ωn) = AGret

xx,ij (tm,t0). (21)

Here, the inverse Fourier transform matrix, F−1, is performed
by a partial discrete Fourier transform, where the matrix size is
M×Nstep, A is the measurement matrix that is of size M×M ,
and the index n runs over the Nstep frequency steps, while
the index m runs over the M time steps. The inverse Fourier
transform matrix satisfies

F−1
mn = 1

Nstep
e−iωntm . (22)

The construction of the measurement matrix, A, is one of
the key elements of compressive sensing. It is a random
orthogonal matrix, whose elements, Aij , are chosen from a
normal distribution and then A is orthogonalized, where the
columns of the matrix are the vectors. When Eq. (21) is solved,
there are an infinite number of possible solutions, due to the
fact that Eq. (21) is an underdetermined system of equations.
The other tenet of compressive sensing is that the solution that
minimizes the absolute value of the signal in the frequency
domain

min
∥∥Gret

xx,ij (ω)
∥∥ = min

∑
n

∣∣Gret
xx,ij (ωn)

∣∣ (23)

is the optimal solution to pick from the different choices.
In addition, one can randomly choose the time coordinates
(instead of having them on a uniform grid), but we do not
use this additional randomness in this work. We employ the
MATLAB toolkit CVX [15] to solve Eq. (21) subject to the
constraint in Eq. (23).

III. RESULTS

We show numerical examples of the application of the
Ramsey spectroscopy protocol to a linear chain of N = 10
spins with a ferromagnetic interaction, Jij > 0. We perform
the single spin rotation on the spin at the left end of the linear
chain, i = 0, and the characteristic transverse magnetic field
ramping time is τ = 0.85/J0.

We show examples of the Ramsey spectroscopy protocol
as a function of time for four pairs of spins; the first spin
is always site i = 0 and the second spin is j = 0, 1, 4, and
9 (for the N = 10 spin chain). We study four different final
transverse magnetic fields, B(y)(t0)/J0 = 0.94, 0.74, 0.49, and
0.35. From this point on, we will assume t0 = 0 to make the
discussion simpler. As expected from Eq. (20), the Green’s
function for all spins at t2 = t0 = 0 starts at 0. A little
afterwards, the Gret

xx,00(t,0) decreases linearly as a function
of time, and the slope becomes more shallow as the transverse
magnetic field decreases, also as expected from the sum rules.
Additionally, at the three other sites, j = 1, 4, and 9, the
Green’s function begins with a very flat t dependence, because

FIG. 4. Examples of the Ramsey spectroscopy as a function of
time for i = 0 and j = 0 (black), 1 (red), 4 (blue), and 9 (green) with
4 different B (y)(t0)/J0 values [B (y)(t0)/J0 is equal to the following:
(a) 0.94, (b) 0.74, (c) 0.49, and (d) 0.35].
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FIG. 5. First local minimum (blue circles), local maximum (red circles), and zero (black circles) of the pure state Green’s function for
i = 0 and all other j lattice sites. Here the x axis is labeled at the equilibrium position from the left edge i = 0, |R0 − Rj |.

the first two derivatives vanish, and then decreases at different
rates dependent on the distance of the spin from the left edge
i = 0 of the lattice. Note, that as the transverse magnetic field
decreases the amplitude of the measurements also decreases.
The decrease in the amplitude is due the eigenstates of the
transverse-field Ising model becoming the eigenstates of σ (x)

as B(y)(t0) −→ 0.
The oscillations for i = j = 0 can be interpreted in an al-

ternative manner via a Loschmidt echo [1,16]. The Loschmidt
echo describes a forward propagation in time with one
Hamiltonian H = H0 + V , and then a backward propagation
in time with another Hamiltonian H0,

L(t − t0) = 〈ψ |eiH0(t−t0)e−iH(t−t0)|ψ〉. (24)

The pure state Green’s function in Eq. (4) can then be
defined in terms of a Loschmidt echo by realizing that
σx

i exp−iH0(t−t0) σx
i = exp−iH(t−t0), so that the local pure state

retarded Green’s function is rewritten as

Gret
xx,ii(t,t0) = −iθ (t − t0)[L(t − t0) − L(−t + t0)]. (25)

We examined the Loschmidt echo time trace over a long
time interval given by a length of 100 ms. The Green’s
function has significant oscillations here, sometimes including
low-frequency oscillations with large amplitudes (not shown
here). By comparing the features at different times by eye, we
notice that the amplitude of the oscillations appears to remain
large and does not decay exponentially. This spin system
appears to be in the localized regime because the oscillations

do not seem to decay as a function of time (if they did decay,
then it would be in the diffusive regime).

A. Lieb-Robinson bounds

Next, we want to identify how the pure state Green’s
function can be employed to examine Lieb-Robinson-like
behavior. Here, we have a system that has a perturbation
initiated at the left end of the chain, and we can ask how
long before the initial response of the perturbation will be
seen elsewhere in the chain. Since the system has long-range
interactions, we expect the information to flow with a power-
law behavior rather than a light cone, as determined recently
[17,18]. One idea to track this information flow is to track
some feature of the Green’s function which measures the time
delay for the response. In looking at the results in Fig. 4,
we see that the first minimum, first maximum, and first zero
crossing of Gret

xx,ij (t,0) all seem to correlate with the distance
from the left end of the chain. So we plot the times at which
those features occur for the different lattice sites in Fig. 5, with
each panel corresponding to a different final transverse field:
B(y)(t0)/J0 = 0.94, 0.74, 0.49, and 0.35.

In Fig. 5(a), the first local minimum and maximum of
Gret

xx,ij (t,0) seemingly have a power law behavior as a function
of the relative distance from i = 0, while the first zero is
only observed for lattice sites with j < 5. As the transverse
magnetic field, in Figs. 5(b)–5(d), is decreased, the power law
behavior of the first local minimum and maximum becomes
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FIG. 6. Extraction of the first intercepts of 5 different values of c for 4 values of B (y)(t0)/J0: (a) 0.94, (b) 0.74, (c) 0.49, and (d) 0.35.
The values of the intercepts c are −0.0002 (black circles), −0.0005 (red squares), −0.001 (blue triangles), −0.0015 (purple plus signs), and
−0.002 (green diamonds). In addition, the dashed lines show a power law fit, |R0 − Rj | ∝ tγ |, for each of these values. The −0.0002 power
law fits are the most consistent among the other intercepts. Interestingly, the −0.0005 intercept is able to recover the power law behavior in
(d). Here the x axis is labeled at the spin’s relative distance from i = 0, |R0 − Rj |.

unrecognizable. The first zero crossing in Fig. 5(c) seemingly
jumps from j = 2 to j = 9. The behavior of these features
at the low transverse magnetic field appear not to be saturat-
ing Lieb-Robinson bounds. They show no regular behavior
and hence must be governed by other longer-time physical
phenomena than the initial propagation of information.

We next plot the first intercepts of when Gret
xx,ij (t,0) = c for

5 different values of c, as shown in Fig. 6. The values we chose
are c = −0.0002, −0.0005, −0.001, −0.0015, and −0.002 for
the same transverse magnetic fields as previously used. The
Gret

xx,ij (t,0) = −0.0002 intercept consistently seems to behave
closest to a power law, since the black circles do not vary far
from the fitted dashed line. However, for the higher intercepts
Gret

xx,ij (t,0) = −0.001, −0.0015, and −0.002, the power law
fits well only for Fig. 6(a). As the transverse magnetic field
decreases, the oscillations begin to dominate the pure state
retarded Green’s function and the power law fit begins to fail.
Although for Gret

xx,ij (t,0) = −0.0005, a power law fit can be
calculated for B(y)(t0)/J0 = 0.94, 0.74, and 0.35, as shown
in Figs. 6(a), 6(b), and 6(d), it cannot be for the intermediate
transverse magnetic field in Fig. 6(c). Since the retarded spin-
spin Green’s function is measuring the initial response, we
expect this approach to work best in the limit as the intercept
c → 0. But this limit would be essentially impossible to reach
experimentally, where one wants to use as large an intercept as

possible. The net result is that for any realistic system, we need
to use a compromise to determine how rapidly the information
is transferred and to examine how close that rate is to saturating
generalized Lieb-Robinson bounds.

In the short time limit, we expect the pure state retarded
Green’s function to be proportional to Jij multiplied by a
spin-spin expectation value, as described by the third spectral
moment in Eq. (20c) for i �= j . And following from Eq. (13),
the pure state retarded Green’s function is then proportional to
|R0 − Rj |−αt3〈ψ0|σ (y)

0 σ
(y)
j |ψ0〉. If this spin-spin expectation

value were a constant with distance (which would occur for
a fully ordered ferromagnetic state), then one could predict
the power law to approach 3/α. Instead, we observe that the
power law |R0 − Rj | ∝ tγ has γ inversely proportional to
α. This relation shows that increasing α should reduce γ ,
which we see in our data, and was also seen in the experiment
which approached these bounds in a different way [19,20].
This relationship between the relative distance of the spins to
t examines a generalized Lieb-Robinson bound, which puts
an upper bound on how quickly information travels down the
chain of spins. Note that the original Lieb-Robinson bound was
derived using the maximum value (or maximum eigenvalue)
of the retarded Green’s function, ‖Gret

xx,ij (t)‖ [2], and we are
considering the expectation value of the retarded Green’s
function given a pure state |ψ0〉 that is not typically a single
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TABLE I. Power law fits |R0 − Rj | ∝ t̄ γ for 3 different ranges of Ising interaction, α = 0.90, 1.00, and 1.12. Each are calculated at
B (y)(t0)/J0 = 0.94, 0.74, 0.49, and 0.35. The calculated γ are for the following features: Gret

xx,ij (t̄ ,0) = −0.0002, −0.0005, −0.001, −0.0015,
and −0.002; first local minimum; first local maximum; and the first zero crossing. Here, the empty cells are for γ ’s that inadequately fit the
data or are negative. The Gret

xx,ij (t̄ ,0) = −0.0002 case gives a consistent γ for the 3 Ising interaction ranges. Other cases do not work as well.

B (y)(t)/J0 α 0.0002 0.0005 0.001 0.0015 0.002 First local minimum First local maximum First zero

0.94 0.90 2.47 2.41 2.43 2.44 2.43 1.34 1.78 6.09
1.00 1.91 1.95 1.95 1.95 1.96 2.12 3.211 0.892
1.12 1.72 1.77 1.77 1.77 1.78 2.21 2.92 1.31

0.74 0.90 2.39 2.38 2.33 2.28 2.25 8.94 9.81
1.00 1.93 1.94 1.93 1.93 1.92 5.26 1.19
1.12 1.75 1.76 1.76 1.75 1.75 1.21 2.05 7.05

0.49 0.90 2.64 2.77 2.82 2.83 2.81 1.41 0.85
1.00 1.87 1.0 0.38 0.30 3.20
1.12 1.69 1.59 1.01 4.29 2.88

0.35 0.90 1.96 1.22 0.82 1.71
1.00 1.97 1.95 0.51 0.31
1.12 1.59 1.72 1.75 0.75 1.2

eigenstate of the retarded spin-spin Green’s function operator.
So the results are a bit different.

In Table I, we show the power law fits, |R0 − Rj | ∝ t̄ γ ,
for the different features discussed previously for 3 different

Ising interaction power laws: α = 0.9, 1.00, and 1.12. The
power law fits for the first local minimum, first local maxi-
mum, and the first zero crossing vary with little discernible
behavior as the transverse magnetic field is decreased. The

FIG. 7. Fourier transform of the i = j = 0 pure state retarded Green’s function of the data taken in the time interval of [0,6] ms. The results
of the compressive sensing (black line) are compared to the scaled coefficients of the Lehmann representation, 1024Gret

xx,00(t,0) (blue and red
circles), and to the partial Fourier transform (green line). The blue circles are energy differences that are associated with a δ function peak and
the red circles are those that cannot be easily associated with a δ function peak. There are also spurious δ functions peaks that are due to the
addition of two energy differences.
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Gret
xx,ij (t,0) = −0.0002 gives consistent values for γ for all

the Ising interactions we considered. The γ s are higher than α,
suggesting that the spin-spin expectation value is not a constant
with distance. More than likely the intercept is still set too
high and higher order spectral moments are being observed as
well. Although from the Gret

xx,ij (t,0) = −0.0002 fits, the γ ’s
are inversely proportional to the α’s. The fits for intercepts
where Gret

xx,ij (t,0) = −0.0005, −0.001, −0.0015, and −0.002
are less consistent for low transverse magnetic field. The
inconsistency and negative γ are due to the oscillatory behavior
of the pure state retarded Green’s function.

B. Energy spectrum

We present numerical examples for extracting the energy
spectrum via Fourier transformation of the i = j = 0 data. The
measurement, or calculation, of the energy spectrum has been
previously examined experimentally [21,22] and theoretically
[1,7]. The Fourier transform of the i = j = 0 data in Fig. 4 is
performed over a time interval of [0,6] ms for α = 1.00 with
B(y)(t0)/J0 = 0.94, 0.74, 0.49, and 0.35. As described above,
the Fourier transformation is performed by using compressive
sensing. We employ M = 64 time steps that map to Nstep =
1024 steps in the frequency domain in Fig. 7 and compare
the resulting δ function peaks to scaled coefficients from the
Lehmann representation of 1024Gret

xx,00(t,t0).
In Fig. 7, the blue dots represent scaled coefficients that

can be identified to a δ function peak and the red dots are
the coefficients that cannot be readily identified with a δ

function peak. When the number of steps in the compressive
sensing data, M , is increased, the number of associated scaled
coefficients increases, as does the accuracy. Note though that
the majority of the red dots do cluster near blue dots and the
compressive sensing might not be able to distinguish between
the different peaks. There are a few spurious high-frequency
δ function peaks that are due to frequencies being added
together; however, identifying what frequencies are being
added together is not easily done. So the Green’s function is
showing that it contains much information about the spectra;
unfortunately it is difficult to extract these data from a series
of temporally short experimental runs. Here we used a basic
compressive sensing scheme but a more advanced compressive
sensing algorithm (i.e., basis pursuit) might be able to further
reduce the number of measurements as a function of time,
reduce the time interval, and produce more accurate δ function
peaks. In addition there are compressive sensing algorithms
that can reduce the effects of noise and counting statistical
error (i.e., basis pursuit denoise).

IV. CONCLUSION

In this work, we investigated the nonequilibrium behavior
of the pure state retarded spin-spin Green’s function produced
by a variant of a Ramsey spectroscopy protocol by exploring
its application to the transverse-field Ising model as simulated
in a linear Paul trap. First, we showed that the Lehmann
representation of the pure state retarded Green’s function is
generalized and we determined the first three spectral moment
sum rules. We proceeded to present numerical examples of

the Ramsey spectroscopy as a function of time. We then
extracted the various features to simplify the pure state retarded
Green’s function behavior. The features we chose to extract
are the first local minimum, the first local maximum, the first
zero crossing, and when Gret

xx,ij (t,0) = c. From these features,
we fit power laws to investigate generalized Lieb-Robinson
bounds. The feature that gave the most consistent power laws
was the smallest intercept; however, the resulting power law
was higher than expected. This is most likely due to the
intercept being too high and the oscillatory behavior affecting
the signal. The final example was to Fourier transform the
measurement as a function of time into the frequency domain.
Compressive sensing was used to extract the excitation
energies weighted by the matrix elements of the generalized
Lehmann representation. This analysis was not able to extract
all of the energy differences. Additionally there are spurious
high-frequency δ function peaks that are most likely due to
two frequencies being added together.

What are the experimental implications of these results? It
appears that it would be difficult to use this method to extract
the initial speed with which information is transferred in the
system, because the results work best for small intercepts,
but experimental error would make the data there very noisy.
Similarly, one can extract some of the excitation energy
differences, but not all of them, because there are too many;
hence it is not clear precisely what one would do with the
experimentally measured subset of data. Perhaps the most
interesting aspect of this Green’s function is the Green’s
function itself. After all, it is surprising to be able to extract a
retarded Green’s function from an experimental measurement,
and a full knowledge of the Green’s function allows for a
wealth of different information to be determined about the
system. Indeed, this is likely the most important result of
the Ramsey experiment in these trapped ion systems. This
becomes even more interesting if one examines the more
nonequilibrium case where the Hamiltonian continues to
change between times t0 and t . Unfortunately, it is not clear
precisely what one would use that data for.

Another interesting question is the following: In cases
where the pure state |ψ0〉 represents a thermal distribution well,
in the sense that the coefficients |Cn|2 are nearly proportional
to the Boltzmann factor [23], then does the pure state retarded
spin-spin Green’s function represent the thermally averaged
retarded Green’s function well? One might expect this to be
true, because the diagonal elements in the summation will
closely resemble the trace employed in the calculation of
the thermal Green’s functions, and the off-diagonal elements
should become small as the system size becomes large due to
cancellations from the complex phases.

We hope future studies will clarify these issues.
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