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Intrinsic anharmonic effects on the phonon frequencies and effective spin-spin interactions
in a quantum simulator made from trapped ions in a linear Paul trap
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The Coulomb repulsion between ions in a linear Paul trap gives rise to anharmonic terms in the potential
energy when expanded about the equilibrium positions. We examine the effect of these anharmonic terms on the
accuracy of a quantum simulator made from trapped ions. To be concrete, we consider a linear chain of Yb171+

ions stabilized close to the zigzag transition. We find that for typical experimental temperatures, frequencies
change by no more than a factor of 0.01% due to the anharmonic couplings. Furthermore, shifts in the effective
spin-spin interactions (driven by a spin-dependent optical dipole force) are also, in general, less than 0.01% for
detunings to the blue of the transverse center-of-mass frequency. However, detuning the spin interactions near
other frequencies can lead to non-negligible anharmonic contributions to the effective spin-spin interactions.
We also examine an odd behavior exhibited by the harmonic spin-spin interactions for a range of intermediate
detunings, where nearest-neighbor spins with a larger spatial separation on the ion chain interact more strongly
than nearest neighbors with a smaller spatial separation.
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I. INTRODUCTION

In 1982, Richard Feynman opened the field of quantum
simulation when he proposed that quantum simulators can be
employed in order to study the evolution and interactions of
complex quantum mechanical systems [1]. It is only recently
that ion trap quantum simulators have demonstrated success
in engineering model spin-systems in both one-dimensional
and two-dimensional lattices of trapped ions [2–13]. Starting
with the demonstration of the effective spin interaction
between two ions [2], it was shown that larger numbers
of ions interact with well-defined Ising spin exchange [3],
which can show frustration [4,5], and can be scaled to
approximate the thermodynamic phase transition [6]. Penning
trap experiments [7,8], showed that the same concepts can be
extended to hundreds of ions trapped in a rotating triangular
lattice. The idea of stroboscopic quantum simulation has also
been shown [9]. Recently, Paul trap systems have been scaled
up to 18 ions [10] and properties of dynamics and excited
states have been examined via Lieb-Robinson-like studies
of correlation growth [11,12] and spectroscopy of excited
states [13]. These ion-trap systems work well due to their
long decoherence times, scalability, and ability to be precisely
controlled experimentally.

As the precision of these experiments grows, one needs to
examine perturbations of these systems that carry them away
from the simplest ideal. In addition, as the system sizes grow, it
becomes increasingly difficult to fully cool the systems down
to low temperatures as Raman sideband cooling becomes more
complex and difficult to carry out. Hence, it is often only the
phonon modes that are to be driven that are cooled below the
Doppler limit; the phonons in other spatial directions are often
left at the Doppler limit, which can have them with tens to
hundreds of quanta excited.

Anharmonic effects enter into an oscillator when the period
of the oscillation depends on its amplitude. In solid state
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physics, anharmonic effects are well known in causing lattices
to (typically) expand as they are heated. Another way of
describing this behavior is that as anharmonic terms are consid-
ered, they break the simple picture of free normal modes that
oscillate at their own independent frequencies into a coupled
oscillator system that can have its periods change, that can have
resonantly enhanced dissipations, and that can excite quanta
in the coupled modes. It is impossible to completely remove
anharmonic effects from an ion trap, even if the trapping
potentials can be made purely harmonic, because there is an
intrinsic anharmonicity that arises due to the Coulomb inter-
action between the ions. In this work, we investigate whether
such anharmonic effects are likely to cause inaccuracies in
a quantum simulation. We should emphasize that we are not
examining any other effects that might modify the operation of
these simulators. Our goal is to determine at what level intrinsic
anharmonic effects enter and whether they are small enough
to be neglected in the analysis of the quantum simulator.

Anharmonic effects have been considered previously for
linear Paul traps. Marquet et al. showed how one can determine
the coupling tensors that arise due to the anharmonic nature
of the Coulomb interaction and how one can use those
couplings to resonantly dissipate energy from one mode to
the other modes via optical-mixing-like effects [14]. This
transfer of energy from one mode to another was investigated
experimentally in a two-site chain [15]. The effects of anhar-
monicities in either the potentials or the Coulomb interaction
were investigated to see how phonon frequencies shift due
to the occupancy of other phonon modes [16]. Anharmonic
quantum effects on the zigzag transition were investigated with
a renormalization-group approach based on path integrals [17].
In this work, we focus on how the intrinsic anharmonicity
affects the phonon frequencies and how these, in turn, affect
the Ising spin exchange couplings. Hence, we do not treat
anharmonic effects in the trapping potential, but only those
that arise from the Coulomb interaction.

The remainder of this paper is organized as follows: In
Sec. II, we discuss the formalism for determining anharmonic
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effects, numerical results follow in Sec. III, and we conclude
in Sec. IV. Details of the anharmonic coupling tensors appear
in the Appendixes.

II. THEORETICAL FORMULATION

We consider a chain of ions in a linear Paul trap, which uses
a combination of static and time-dependent fields in order to
trap ions. The precise behavior of this system often includes
micromotion due to the time-dependent fields, but it is well
described by a static pseudopotential when the ion equilibrium
positions lie at the nulls of their potential energy surface.
We provide our analysis under the assumption that the static
pseudopotential approach is accurate for describing the motion
of the ions in the trap.

The potential energy describing such a system of N ions
includes both a term describing the Coulomb interaction
between each pair of ions and a term related to the spring
energy of each ion along the z axis (which will be the axis
of longitudinal alignment for the ions). The dimensionless
potential is then given by

V = 1

2

∑
α=x,y,z

N∑
i=1

β2
αx2

iα + 1

2

N∑
i,j = 1
i �= j

1

|ri − rj | , (1)

where the potential has been scaled by mω2
z l

2
0 , and the dimen-

sionless ion coordinates ri = (xix,xiy,xiz) have been renormal-
ized by a characteristic length l0 = [kZ2e2/(mω2

z )]1/3, with k

the Coulomb coupling constant, Z the charge on the ion, e the
charge of an electron, and m the mass of the ion. In addition, we
have βα = ωα/ωz, where ωα is the trapping frequency in the
αth direction. We consider the case with βx = βy � βz = 1,
which gives rise to a one-dimensional chain for the ions, if
the number of ions N lies below a critical value. The choice
βx = βy is for convenience only, as experimental systems
usually change these to be different from one another by a
few percent. The degeneracies that arise from setting them
equal do not affect our general results, and allow us to use one
fewer parameter in the numerical calculations.

From Eq. (1), the equilibrium positions are readily found
numerically by using nonlinear optimization routines to find
where the potential has a minimum and the force vanishes [14].
Then, by expanding the potential to fourth order in the
coordinates of the ions about their equilibrium positions, one
obtains the Hamiltonian written in the phonon creation and
annihilation operator basis as follows:

H =
3N∑
ν=1

εν

(
â†

ν âν + 1

2

)

+
3N∑

ν,ν ′ν ′′ = 1

Bν,ν ′,ν ′′ (âν + â†
ν)(âν ′ + â

†
ν ′ )(âν ′′ + â

†
ν ′′ )

+
3N∑

ν,ν ′,ν ′′,ν ′′′ = 1

Cν,ν ′,ν ′′,ν ′′′ (âν + â†
ν)(âν ′ + â

†
ν ′ )

× (âν ′′ + â
†
ν ′′ )(âν ′′′ + â

†
ν ′′′ ), (2)

where the scaled normal-mode (phonon) energies satisfy εν =
�ων/(mω2

z l
2
0), and the explicit values for the cubic and quartic

coupling tensors B and C are given in the Appendixes. The ν

subscript denotes the specific normal mode, which is indexed
from 1 to 3N .

At this stage, it is appropriate to treat these higher order
terms as a perturbation to the harmonic Hamiltonian because
they should correspond to small corrections to the potential
when the ions remain close to their equilibrium positions.
The third-order term creates no first-order shift to the energy
spectrum, as it contains an odd number of creation and
annihilation operators. Therefore, a second-order perturbation
expansion is required for that term. The quartic term gives
rise to a first-order shift in perturbation theory and hence that
term is also included. Then, using time-independent Rayleigh-
Schrödinger perturbation theory, the anharmonic shifts can be
calculated to first order in C and second order in B, as has been
done in previous work [16]. This approach will calculate the
changes to fourth order in the expansion of the frequencies and
even include some of the sixth-order corrections. To get the
remaining sixth-order corrections would require us to expand
the Coulomb interaction two more orders to determine the
sixth-order coupling tensor and evaluate its shift on the energy
levels to first order in perturbation theory. That calculation and
all other higher order corrections are beyond the scope of this
work. While we cannot rigorously show that this approach
determines all of the anharmonic effects, it should be able
to accurately calculate anharmonic effects for the smallest
deviations from the harmonic model.

Before proceeding, it is relevant to note that the anharmonic
frequency shifts of the center-of-mass modes (both transverse
and longitudinal) can be found to identically vanish through
fourth order. This was shown explicitly to third order [14]
and can be immediately generalized to all orders, because the
center-of-mass mode decouples from anharmonic corrections
when the trap potential is purely harmonic (as we have chosen
here, since we assume that the pseudopotential that describes
the trap has no anharmonic terms) and the inter-ion forces
satisfy Newton’s third law [18,19] (as they do for the Coulomb
interaction). Hence the center-of-mass frequency is fixed at the
corresponding trap frequency.

In general, the shifts in frequency (scaled by the transverse
center-of-mass frequency, ωc.m.) can then be written as a
function of the occupation number of each mode as

�ων(nν,{nν ′ })
ωc.m.

= �E(nν + 1,{nν ′ }) − �E(nν,{nν ′ })
εc.m.

, (3)

where c.m. denotes the center of mass, and {nν ′ } is the set
of occupation numbers for all ν ′ �= ν. This is an intuitive
definition for the anharmonic frequency shifts, since it is the
relative energy shift caused by adding one more phonon to the
system with harmonic frequency ων (when there are already
nν phonons in that mode and the other modes are occupied
according to {nν ′ }) [16]. The �E terms are the shifts in the
anharmonic energies from the harmonic result and, hence,
vanish when there is no anharmonicity. Their explicit form is
given in Appendix C.

The ions in the trap often have an internal hyperfine
structure which can be mapped onto Ising spin variables.
For the Yb171+ ion, one usually takes the clock states as the
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“spin-up” and “spin-down” states. This internal (spin) degree
of freedom can be coupled to the motional degrees of freedom
by applying a spin-dependent optical dipole force. This is
usually done by applying red and blue detuned laser beams
(ω ± μ) on top of a carrier beam at ω. By considering the
ac Stark effect caused by these beams and factorizing the
resulting evolution operator, one can realize a spin-dependent
optical dipole force on the ions [20,21]. In this way, the
motional degrees of freedom of the system are coupled to
the spin degrees of freedom, generating the following Ising
Hamiltonian when one has harmonic phonons:

HIsing =
∑
i,j

Ji,j (t)σx
i σ x

j , (4)

with exchange coefficients that depend on time. The time-
independent piece of the spin-spin couplings is [21]

Ji,j = F 2
O

4m

N∑
ν=1

bxν
i bxν

j

μ2 − ω2
ν

, (5)

where FO is the magnitude of the spin-dependent optical
dipole force and bαν

i is the αth spatial component of the
ith ion’s transverse phonon eigenvector corresponding to the
ων mode. In this summation, we only take the modes that
lie in the direction of the driving force, which is typically the
(transverse) α = x direction.

It is difficult to extend this derivation to include the
cubic and quartic phonon-mode coupling terms in the phonon
Hamiltonian, because the operator factorization of the evo-
lution operator becomes much more complicated (see, for
example, Ref. [22], which shows how to factorize the evo-
lution operator and describes the problems that arise from
noncommuting operators). Therefore, rather than calculating
these complicated terms, it is assumed that these terms are
small because the ions do not deviate far from their equilibrium
positions. The factorization of the laser-ion evolution operator
begins with rewriting the evolution operator in the interaction
representation with respect to the phonon Hamiltonian (which
is time independent). The full evolution operator is just
a product of the evolution operator of the phonon-only
Hamiltonian and of the interaction operator written in the
Heisenberg representation with respect to the phonon-only
Hamiltonian. In the harmonic case, this corresponds to the
creation and annihilation operators for the different phonon
normal modes becoming time dependent with a phase factor
that is exp[±iωνt] for the creation and annihilation operator.
If we include the anharmonic phonon potential terms into the
phonon-only Hamiltonian, then the Heisenberg representation
(with respect to the phonon-only Hamiltonian) of the creation
and annihilation operators is more complicated, because the
anharmonic terms do not have simple commutation relations
with the creation and annihilation operators. Analyzing this
exactly becomes cumbersome. In condensed matter physics,
one often invokes a so-called quasiharmonic approximation
to treat such complexities approximately. The quasiharmonic
approximation takes the anharmonic system and replaces it
with an equivalent harmonic one, where the phonon frequen-
cies are chosen to vary with the phonon occupancies in the
same way that the phonon frequencies are shifted due to the
anharmonic terms. Hence, we use the traditional modification

of the creation and annihilation operators by a time-dependent
phase factor, exp[±i(ων + �ων(nν,{nν ′ }))t], that incorporates
the anharmonic shifts. We use this approach in approximately
treating the anharmonic effects on the effective spin-spin
interactions. The corrections to these expressions must arise
from additional commutator effects and should be smaller
than the energy shifts that we include. Once this is done,
the derivation of the spin-spin interactions is unchanged from
the harmonic case, with the exception of using the shifted
frequencies.

Note that the average occupation number of each phonon
mode can be shown to be n̄ν = [exp(�ων/kBT ) − 1]−1 when
the ion chain is in thermal equilibrium at a temperature T .
Then, instead of calculating the anharmonic frequency shifts
(and thus the anharmonic spin-spin interactions) in terms of
the occupation numbers, one can write the average occupation
numbers as a function of the temperature, and thus �ων =
�ων(T ). Specifically, there are two temperature limits relevant
to current experimental efforts. The first regime is the Doppler
cooling limit for all modes, where the temperature reached
is of the order of a few hundred microkelvins. The second
temperature regime is Doppler cooling plus sideband cooling
on the transverse modes. For our purposes, the sideband cool-
ing will lead to effectively zero occupation of the transverse
modes, but the longitudinal modes remain at the Doppler
limit temperature. Our assumption for the cooling is that the
Doppler cooling, which is applied to all of the modes, occurs
from a broad atomic resonance that is much broader than
the bandwidth of the phonons, so that all of the phonons are
cooled to a temperature that is proportional to the width of the
atomic resonance. The sideband cooling works with a separate
narrow atomic transition which allows one to remove all of
the phonons in a particular phonon band (like the transverse
modes). Given a fixed temperature for the different phonon
modes, one can then determine their occupation number from
simple Bose statistics, as described above.

III. NUMERICAL RESULTS

In this section, we present numerical examples to illustrate
how anharmonic couplings affect the frequencies and spin-
spin interactions between ions in the linear Paul trap. The
parameters we use reflect typical parameters used in current
experimental efforts. The longitudinal trapping frequency is
ωz = 2π × 500 kHz, and the transverse trapping frequencies
are given by βx = βy = 10. Furthermore, we consider a trap
with 24 ions arranged in it, which, for the above parameters,
is the maximum number of ions without a zigzag transition
(unstable modes); i.e., the ion equilibrium positions lie in a
linear chain. The trapped ions are Yb171+. Note that for these
parameters, the Doppler cooling limit is set by the transverse
center-of-mass frequency and is of the order of kBT ≈ �ωc.m..
This implies the longitudinal modes should have of the order
of 1 to 10 quanta excited at the Doppler cooling limit.

A. Frequency shifts

First, we examine the effects of the anharmonicities on
the frequencies of the modes. Figure 1 shows the anharmonic
shifts of the longitudinal and transverse frequencies both for
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FIG. 1. (Color online) Anharmonic frequency shifts as a function
of the temperature of the phonon modes measured relative to the
transverse center-of-mass phonon frequency ωc.m.. The center-of-
mass mode is shown in black in all panels, while the transverse zigzag
mode is shown in dark gray (red) in (a) and (c). All other modes are
shown in light gray (cyan). (a) Frequency shifts of transverse modes
in the Doppler cooling limit, where both transverse and longitudinal
phonons are at temperature T . (b) Shifts of the longitudinal modes
in the Doppler cooling limit. (c) Shifts of transverse modes with
Doppler and sideband cooling (zero transverse phonon occupation,
so transverse phonons are in the ground state, while longitudinal ones
are at temperature T ). (d) Shifts of longitudinal modes with Doppler
and sideband cooling (zero transverse phonon occupation).

Doppler cooling only and for Doppler cooling with sideband
cooling of the transverse modes.

A few trends are immediately noticeable. First, the shifts
remain smaller than the order of 10−4ωc.m. for the case
of Doppler cooling only [Figs. 1(a) and 1(b)] and smaller
than the order of 10−5ωc.m. for the case with sideband
cooling also [Figs. 1(c) and 1(d)]. This suggests not only
that the anharmonic frequency shifts are relatively small, but
also that sideband cooling can suppress these shifts another
order of magnitude. Furthermore, it is worth noting that, as
anticipated analytically, the shifts for both the transverse and
the longitudinal center-of-mass modes are 0 (black lines in
Fig. 1). In an experiment with the center-of-mass frequency of
the order of a megahertz, the anharmonic shift would be below
the order of 100 Hz for Doppler cooling and below 10 Hz for
Doppler-plus-sideband cooling. We expect effects of the order
of 100 Hz to be experimentally observable, but smaller shifts
will be difficult to see and are unlikely to affect other aspects
of the experiments. In addition, other effects on the experiment
are likely to be more important than these intrinsic anharmonic
frequency shifts, when the shifts become so small.

The frequency shift curves are most nearly linear in
temperature. This may be surprising considering that the
expression for �E has a quadratic dependency on the
occupation numbers of different modes (cf. Appendix C).
However, when we take �E(nν + 1,{nν ′ }) − �E(nν,{nν ′ }),
the quadratic dependencies cancel out, and since nν is roughly
linear with temperature except at extremely low temperatures
(in this case, temperatures below the Doppler limit), we find
that the frequency shifts are linear with temperature.

FIG. 2. (Color online) (a) Proportional shifts in spin-spin in-
teractions for detunings above the center-of-mass mode. (b) The
same for detunings above the fifth lowest transverse frequency
mode. Both plots are shown for δ = 10−1, δ = 10−2, δ = 10−3,
δ = 10−4, δ = 10−5, and δ = 10−6. Symbols show the shifts for all
(24 × 23/2 = 276) spin-spin interactions Jij . Solid horizontal lines
show the corresponding average shift.

Next, we consider the shifts in the effective static spin-
spin interactions. Particularly, we discuss how the spin-spin
interactions are affected when μ = ων(1 + δ), for which we
say that the spin-spin interactions are detuned by δ above
mode ν. Figure 2 plots the proportional change in the spin-
spin interactions between the harmonic and the anharmonic
Hamiltonians for Doppler cooling only with a temperature that
satisfies kBT = 10�ωz ≈ �ωc.m.. Figure 2(a) shows the shifts
in the spin-spin interactions for detunings above the transverse
center-of-mass mode, while Fig. 2(b) has detunings above the
fifth lowest transverse frequency. We choose a wide range of
detunings for completeness, even if some may be difficult to
achieve in an actual experiment.

Clearly, Fig. 2(a) exhibits negligible shifts, especially for
detunings smaller than δ = 10−2. For the δ = 10−1 detuning
(black curve), the spin interactions are shifted by as much
as 1%, although the average is more toward the order of
0.01%. Furthermore, as the detuning decreases by an order of
magnitude, so do the shifts. In this vein, the smallest detuning
of δ = 10−6 (magenta curve) shifts the spin-spin interactions
by a factor of approximately 10−9. These shifts are obviously
negligible.

On the other hand, Fig. 2(b), which shows detuning above
the fifth lowest frequency mode, exhibits quite different
behavior. First, the shifts are on average about 10% for the
largest detuning (black curve). Furthermore, for detunings as
small as 10−5, there are still shifts by a factor of 1%, although
the average shift is more toward 0.01% for these smaller
detunings. Then, in general, the anharmonic effects on the
spin-spin interactions are not negligible for this case, even for
the small detunings.

This phenomenon can be attributed to the fact that �ωc.m. =
0. Since the shift in the center-of-mass frequency is 0, the
changes in Ji,j that one might expect to see due to the
(μ2 − ω2

c.m.)
−1 term are largely suppressed. However, due to

nonzero shifts in frequency for other modes, detuning above
other modes makes the spin-spin interactions more sensitive
to anharmonic effects.

Figure 3 shows how the spin-spin interactions between the
first ion and every other ion shift as a function of temperature
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FIG. 3. (Color online) Dependence of the spin-spin interactions
detuned above the center-of-mass mode as a function of the
system’s temperature. Left: Doppler cooling only. Right: Doppler
plus sideband cooling. Spin-spin interactions plotted are J1j , that is,
spin interactions between the leftmost ion in the chain and every other
ion, and we use three detunings, corresponding to the three colors.
The most significant trend in this plot is that the shifts are nearly linear
as a function of temperature. Furthermore, in (a) and (b), and even in
(c) and (d), there are clear outliers that shift much more than the other
lines. As expected, these lines plot spin interactions between ions on
either side of the chain; the shifts are proportionally large because the
spin-spin interactions between distant sites are quite small to begin
with, hence the effects of these shifts on the dynamics of the system,
even though they appear to be large, are likely to be rather small.

for detunings above the center of mass. The spin-spin inter-
actions appear roughly linear as a function of temperature.
Furthermore, particularly for the larger detunings, there are
some outliers that shift significantly more than the others.
These shifts are for the interactions between the first ion and the
ion that is farthest away. Since these interactions themselves
are small for larger detunings and far distances, even small
changes in the spin interactions will change the interaction
between these sites by a significant amount. In fact, even for
the 10−1 detuning, many of the interactions change by no more
than a factor of 10−7.

Finally, we found an interesting trend in the harmonic
spin-spin interactions that warrants further discussion. Figure 4
shows the harmonic spin-spin couplings Ji,j ’s as a function of
the distance between the interacting spins (all 24 × 23/2 =
276 spin-spin couplings are plotted). As a whole, the graph is
in fact fairly typical: the smallest detunings produce the largest

FIG. 4. (Color online) Harmonic spin-spin interactions as a func-
tion of the distance between interacting spins. Note that for in-
termediate detuning, δ = 10−2 [(red) square] and δ = 10−3 [(blue)
triangle] curves, and for small separations between spins, there can
be increasing spin interactions for increasing separation between the
ions. This suggests that ions towards either end of the chain interact
more strongly with their neighbors than those in the middle of the
chain do, a surprising result since ions in the middle of the chain
are closer together. For larger distances, spin-spin couplings become
approximate power laws, as expected.

spin interactions (which are approximately constant), while the
largest detunings cause smaller spin-spin interactions that fall
off like J = r−3. However, if one looks closely at the curves
corresponding to intermediate detunings δ = 10−3 and δ =
10−2 [(blue) triangle and (red) square curves, respectively],
then one notices local regions at small distances (less than
the characteristic length) for which the spin interactions
increase as the distance between the interacting ions increases.
Essentially, since nearest-neighbor ions on the inside of the
chain are compressed more closely together than neighbors on
the outer edges of the chain, this suggests that ions toward the
outside of the chain interact more strongly with their neighbors
than the inner ions do with their neighbors. This effect is
also readily seen for smaller detunings, although the scale of
Fig. 4 does not easily show this. Such spin-spin couplings
could potentially allow for interesting types of spin models to
be examined, since the couplings change character—initially
growing with distance and then decaying, and they also show
that it is not always true that the spin-spin couplings can
be described by a simple power-law behavior, as is often
assumed. This behavior is due to the fact that the phonon
modes with frequencies close to the center-of-mass mode
(such as the tilt mode) have larger phonon displacements
for the ions farthest from the center than phonon modes
farther from the center-of-mass phonon frequency, hence the
ions farther away make a larger contribution to the spin-spin
interaction coming from the tilt mode. As the detuning is
increased from 0, the tilt mode and other phonon modes with
similar properties enter the summation that determines the
spin-spin interactions with a higher weight than phonon modes
that emphasize motion toward the center of the chain. This
result gives rise to the anomalous increase in the spin-spin
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interactions for nearest neighbors and for second nearest
neighbors at intermediate detunings. When one is detuned
sufficiently far from the center-of-mass mode, then all modes
contribute equally, and the spin-spin couplings decay like the
inverse third power of the distance between the ions. Hence,
once the detuning is large enough, this anomalous behavior
disappears.

IV. CONCLUSION AND DISCUSSION

In this work, we have treated the anharmonic effects in the
linear Paul trap due to the Coulomb interaction to fourth order
in order to consider the effects of anharmonic couplings on the
normal-mode frequencies and spin-spin interactions between
trapped ions. We find that the frequency shifts are small (of the
order of 10−4ωc.m.) when only Doppler cooling is utilized and
another order of magnitude smaller when sideband cooling
is also implemented. Furthermore, we find that spin-spin
interactions that are detuned above the center-of-mass mode
change by no more than a factor of 10−4 except at the
largest detuning considered. This lack of significant change
is a consequence of the fact that �ωc.m. = 0. However, for
spin interactions detuned near other modes, the anharmonic
couplings can have an appreciable effect, as large as 10%
for the largest detuning considered and as large as 1% for
the smaller detunings. Finally, we find that the spins toward
the ends of the ion chain counterintuitively interact more
strongly with their neighbors than do the spins on the inside
of the chain for a wide range of detunings to the blue of the
transverse center-of-mass mode. The mechanism behind this
phenomenon follows by analyzing the contributions of the dif-
ferent phonon eigenmodes to the spin-spin couplings. The
modes closest to the center-of-mass mode have the largest
relative phonon displacements for ions farthest from the center
of the trap, compared to those that have phonon frequencies
farther from the center-of-mass frequency, where the ion
motion of the normal modes is dominated by ions closer to the
center of the trap, and this results in the anomalous behavior.
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APPENDIX A: DERIVATION OF THE ANHARMONIC
COUPLING HAMILTONIAN

In order to generate the Hamiltonian given by Eq. (2),
first we expand the potential to fourth order about the
equilibrium positions of the ions, and then we transform this
result from the ion-position basis to the phonon-mode basis.
Let H0 denote the harmonic Hamiltonian for the system.
Then

H = H0 + 1

6

∑
α,β,γ

= x,y,z

N∑
i,j,k = 1

∂3V

∂xαi∂xβj ∂xγ k

∣∣∣∣
0

εαiεβj εγ k

+ 1

24

∑
α,β,γ,δ

= x,y,z

N∑
i,j,k,l = 1

∂4V

∂xαi∂xβj ∂xγ k∂xδl

∣∣∣∣
0

× εαiεβj εγ kεδl, (A1)

where εαi is given by εαi = xαi − x0
αi for equilibrium positions

x0
αi and where the partial derivatives are evaluated at the

equilibrium positions.
Now define

B̃αi,βj,γ k = ∂3V

∂xαi∂xβj ∂xγ k

∣∣∣∣
0

(A2)

and

C̃αi,βj,γ k,δl = ∂4V

∂xαi∂xβj ∂xγ k∂xδl

∣∣∣∣
0

. (A3)

These tensors can of course be solved for by taking the third
and fourth derivatives of the potential [given by Eq. (1)]
and then evaluating them at the equilibrium positions of
the ions (which is what the subscript 0 indicates). However,
the calculations themselves are quite tedious, so the lengthy
algebra is omitted. The final results for B̃ and C̃ are shown in
Appendix B.

Now we must change to the phonon-mode basis. In
the phonon-mode basis, the harmonic Hamiltonian is given
in terms of the creation and annihilation operators, and
the displacement from equilibrium εαi is replaced by the
phonon displacement operator Xν , which must be summed
over all phonon modes and weighted by the normal-mode
eigenvectors to yield the total displacement. The Hamiltonian
becomes

H = Hphon
0 + 1

6

∑
{α,β,γ = x,y,z}

N∑
{i,j,k = 1}

3N∑
{ν,ν ′,ν ′′ = 1}

bαν
i b

βν ′
j b

γ ν ′′
k B̃αi,βj,γ kXνXν ′Xν ′′

+ 1

24

∑
{α,β,γ,δ = x,y,z}

N∑
{i,j,k,l = 1}

3N∑
{ν,ν ′,ν ′′,ν ′′′ = 1}

bαν
i b

βν ′
j b

γ ν ′′
k bδν ′′′

l C̃αi,βj,γ k,δlXνXν ′Xν ′′Xν ′′′ , (A4)
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where the symbol bαν
i denotes the eigenvector of the harmonic phonon Hamiltonian for the νth mode, showing the displacement

of the ith ion in the αth direction [14]. Define the ladder operators

âν =
√

1

2εν

(
ων

ωz

Xν + iPν

)
,

(A5)

â†
ν =

√
1

2εν

(
ων

ωz

Xν − iPν

)
,

which satisfy the canonical commutation relations [aν,a
†
ν ′ ] = δνν ′ . Then, by expressing the Hamiltonian in terms of the phonon

creation and annihilation operators, we obtain [14]

H =
3N∑
ν=1

εν

(
â†

ν âν + 1

2

)
+

3N∑
ν,ν ′,ν ′′ = 1

Bν,ν ′,ν ′′ (âν + â†
ν)(âν ′ + â

†
ν ′ )(âν ′′ + â

†
ν ′′ )

+
3N∑

ν,ν ′,ν ′′,ν ′′′ = 1

Cν,ν ′,ν ′′,ν ′′′ (âν + â†
ν)(âν ′ + â

†
ν ′ )(âν ′′ + â

†
ν ′′ )(âν ′′′ + â

†
ν ′′′ ), (A6)

where

Bν,ν ′,ν ′′ = 1

6

(
�

2ml2
0

)3/2

(ωνων ′ων ′′ )−1/2
3N∑

{i,j,k = 1}

∑
{α,β,γ=x,y,z}

B̃αi,βj,γ kb
αν
i b

βν ′
j b

γ ν ′′
k (A7)

and

Cν,ν ′,ν ′′,ν ′′′ = 1

24

(
�

2ml2
0

)2

(ωνων ′ων ′′ων ′′′ )−1/2
3N∑

{i,j,k,l=1}

∑
{α,β,γ,δ = x,y,z}

C̃αi,βj,γ k,δlb
αν
i b

βν ′
j b

γ ν ′′
k bδν ′′′

l . (A8)

Note that B and C are simply the coefficients of the third- and fourth-order potential terms (B̃ and C̃ are in the ion-position basis)
written in the phonon basis with some constants absorbed.

APPENDIX B: EXPRESSIONS FOR B̃ AND C̃

We now evaluate the exact expressions for the cubic and quartic phonon-mode coupling tensors in terms of the equilibrium
positions, as follows:

α = {x,y} : B̃αi,αj,zk =

⎧⎪⎪⎪⎨
⎪⎪⎪⎩

−3
∑N

h = 1
h �= i

sgn(h−i)∣∣x0
zh−x0

zi

∣∣4 , i = j = k;

3 sgn(j−i)
|x0

zj −x0
zi |4

, two indices are i, the other is j ;

0, i �= j,j �= k,k �= i.

B̃zi,zj,zk =

⎧⎪⎪⎪⎨
⎪⎪⎪⎩

6
∑N

h = 1
h �= i

sgn(h−i)∣∣x0
zh−x0

zi

∣∣4 , i = j = k;

−6 sgn(j−i)∣∣x0
zj −x0

zi

∣∣4 , two indices are i, the other is j ;

0, i �= j,j �= k,k �= i.

α = {x,y} : C̃αi,αj,αk,αl =

⎧⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎩

∑N
h = 1
h �= i

9∣∣x0
zh−x0

zi

∣∣5 , i = j = k = l;

−9∣∣x0
zi−x0

zj

∣∣5 , three indices are i, the other is j ;

9∣∣x0
zi−x0

zj

∣∣5 , two indices are i, the other two are j ;

0 otherwise.

α,β = {x,y}; α �= β : C̃αi,αj,βk,βl =

⎧⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎩

∑N
h = 1
h �= i

3∣∣x0
zh−x0

zi

∣∣5 , i = j = k = l;

−3∣∣x0
zi−x0

zj

∣∣5 , three indices are i, the other is j ;

3∣∣x0
zi−x0

zj

∣∣5 , two indices are i, the other two are j ;

0 otherwise.
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α = {x,y} : C̃αi,αj,zk,zl =

⎧⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎩

∑N
h = 1
h �= i

−12∣∣x0
zh−x0

zi

∣∣5 , i = j = k = l;

12∣∣x0
zi−x0

zj

∣∣5 , three indices are i, the other is j ;

−12∣∣x0
zi−x0

zj

∣∣5 , two indices are i, the other two are j;

0 otherwise.

C̃zi,zj,zk,zl =

⎧⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎩

∑N
h = 1
h �= i

24∣∣x0
zh−x0

zi

∣∣5 , i = j = k = l;

−24∣∣x0
zi−x0

zj

∣∣5 , three indices are i, the other is j ;

24∣∣x0
zi−x0

zj

∣∣5 , two indices are i; the other two are j ;

0 otherwise.

APPENDIX C: DERIVATION OF ANHARMONIC ENERGY SHIFTS VIA
NONDEGENERATE PERTURBATION THEORY

To solve for the energy shifts, we consider the first- and second-order Rayleigh-Schrödinger corrections for the quartic and
cubic perturbations, respectively. The anharmonic energy shifts are then given by the following:

�E({nν}) = 0〈{nν}|V (4) |{nν}〉0 +
∑

{mν }�={nν }

|0〈{mν}|V (3) |{nν}〉0 |2
E0

n − E0
m

. (C1)

Recall that the first-order correction for the third-order potential term is 0 since there are an odd number of creation and
annihilation operators. Furthermore, recall that we ignore the second-order correction for the fourth-order potential term.

Keeping in mind that E0
n = ∑3N

ν=1 εν(nν + 1
2 ) and that

V (3) =
3N∑

ν,ν ′,ν ′′ = 1

Bν,ν ′,ν ′′ (â†
ν + âν)(â†

ν ′ + âν ′)(â†
ν ′′ + âν ′′ ), (C2)

V (4) =
3N∑

ν,ν ′,ν ′′,ν ′′′ = 1

Cν,ν ′,ν ′′,ν ′′′ (â†
ν + âν)(â†

ν ′ + âν ′ )(â†
ν ′′ + âν ′′ )(â†

ν ′′′ + âν ′′′ ), (C3)

one can directly solve for the anharmonic energy shifts. After some tedious algebra, the final expression for the anharmonic
energy shifts becomes

�E({nν}) = 3
3N∑
ν=1

[(
2n2

ν + 2nν + 1
)
Cν,ν,ν,ν + 2(2nν + 1)

3N∑
ν ′ �=ν

(2nν ′ + 1)Cν,ν,ν ′,ν ′

]

+
(

ω2
z l

2
0m

�

)[
−

3N∑
ν=1

B2
ν,ν,ν

30n2
ν + 30nν + 11

ων

− 18
3N∑
ν=1

3N∑
ν ′ �=ν

Bν ′,ν ′,νBν,ν,ν

(2nν ′ + 1)(2nν + 1)

ων

+ 9
3N∑
ν=1

3N∑
ν ′ �=ν

B2
ν ′,ν ′,ν

(−4ων ′ (2nν ′ + 1)(2nν + 1)

4ω2
ν ′ − ω2

ν

+ 2
(
n2

ν ′ + nν ′ + 1
)

4ω2
ν ′ − ω2

ν

− (2nν ′ + 1)2

ων

)
− 18

3N∑
ν=1

3N∑
ν ′ �=ν

3N∑
ν ′′ �= ν

ν ′′ �= ν ′

Bν ′,ν ′,ν

×Bν ′′,ν ′′,ν
(2nν ′ + 1)(2nν ′′ + 1)

ων

+ 36
3N∑
ν=1

3N∑
ν ′ �=ν

3N∑
ν ′′ �= ν

ν ′′ �= ν ′

B2
ν,ν ′,ν ′′

(
− (ων + ων ′)(1 + nν + nν ′ )(2nν ′′ + 1)

(ων + ων ′ )2 − ω2
ν ′′

+ ων ′′(1 + nν + nν ′ + 2nνnν ′)

(ων + ων ′)2 − ω2
ν ′′

+ (ων − ων ′)(nν − nν ′)(2nν ′′ + 1)

(ων − ων ′)2 − ω2
ν ′′

+ ων ′′(nν + nν ′ + 2nνnν ′)

(ων − ων ′ )2 − ω2
ν ′′

)]
. (C4)

This formula is used to evaluate the anharmonic shifts in the phonon frequencies throughout this paper. Note that these formulas
are at most quadratic in the phonon occupation numbers and become linear when differences are taken with neighboring
occupancies. Hence, we only need the average phonon number in each mode for the thermal distributions to determine the
temperature-dependent shifts.
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