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Tuning a Josephson junction through a quantum critical point
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We tune the barrier of a Josephson junction through a zero-temperature metal-insulator transition and study
the thermodynamic behavior of the junction in the proximity of the quantum-critical point. We examine a
short-coherence-length superconductor and a bdthat is described by a Falicov-Kimball modgeising the
local approximation and dynamical mean-field theory. The inhomogeneous system is self-consistently solved
by performing a Fourier transformation in the planar momentum and exactly inverting the remaining one-
dimensional matrix with the renormalized perturbation expansion. Our results show a delicate interplay be-
tween oscillations on the scale of the Fermi wavelength and pair-field correlations on the scale of the coherence
length, variations in the current-phase relationship, and dramatic changes in the characteristic voltage as a
function of the barrier thickness or correlation strengtimich can lead to an “intrinsic” pinhole effegt
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. INTRODUCTION formalisn?®® and Green’s-function techniqués? or tradi-
tional quasiclassical Green's-function methdare inad-
The theoretical understanding of Josephson junctions hasquate for this purposén general, the quasiclassical ap-
progressed dramatically over the past four decadé®ecent proaches do not require a quasiparticle assumpfibwut the
advance$ have been fostered by nanofabrication of superusual quasiclassical Green’s function, employed in nonuni-
conducting mesoscopic devicéshich, together with high-  form superconductivity problems, can be expanded in terms
temperature superconductor junctions, have revived interesf Andreev quasiparticle eigenfunctions and enefdjes
in the transport properties of superconductors weakly Recent progress in the dynamical mean-field thEdmas
coupled through a normal region. The interplay betweershown how to generalize the local approximation to inhomo-
phase-coherent electron propagation in the normal regiogeneous systerfsand to Josephson junctiohSHere we
and macroscopic phase coherence of Cooper pairs in supartilize this formalism to examine what happens as the barrier
conductors generates unigue quantum interference phenommaterial is tuned through a quantum-critical transition where
ena since the proximity effect in such systems is mediated bthe single-particle density of states is suppressed to zero and
a phase-coherent Andreev reflecttdhHowever, little atten-  a correlated metal-insulator transition occurs. The model we
tion has been paid to quantum effects on transport arisinghoose to describe the barrier is the Falicov-Kimball mBdel
from many-body correlations in the barrier separating thehat has a metal-insulator transition, but the metallic phase is
superconductors. Such junctions are frequently encounteratt a Fermi liquid as it is in a more traditional Hubbard
in high-T, systems where both superconducting electrodesnodel’® The Falicov-Kimball model is chosen because it
and the normal region are highly correlated electronicdescribes correlation effects due to strong disorder scattering
systems. (which is present in many Josephson junctjosisd because
Low-T, junctions have large superconducting coherencdéhe dynamical mean-field theory solution does not require
lengths, and effects on the scale of the Fermi wavelength caguantum Monte Carlo simulation, so it is dramatically easier
usually be averaged over to accurately describe junctions bip analyze than the Hubbard model. The Falicov-Kimball
a quasiclassicalsingle-particle approach. As the coherence model possesses only charge fluctuations, and thereby ig-
length of the superconductor becomes smaller and smallerores all Kondo-like(spin-flip scatteriny effects in the bar-
(as in highT. junctions one can no longer ignore the inter- rier of the Josephson junction. We expect results for the
play between oscillations brought on by the Fermi surfacd-alicov-Kimball model and the Hubbard model to be similar
and those due to pair-field correlations. In addition, as juncin the insulating phase, but to differ in the metallic phase.
tion sizes are made smaller and smaller, the barrier needs to We find that in the vicinity of the metal-insulator transi-
be tuned close to the metal-insulator transition in order tdion, it is important to include self-consistency effects and
maintain a large characteristic voltagehere properties of a many-body effects. The simple analytical treatm&ufsJo-
Josephson junction have been thought to be optirfiz&tie  sephson junctions rely on the usage of rigid boundary
conventional proximity-effect theory cannot account for su-conditions? i.e., a step-function model for the pair potential
percurrent transport in junctions where the barrier ap-at a normal-superconductor interface. This is justified in nar-
proaches a metal-insulator transitibitherefore, these junc- row junctions(barrier width smaller than the bulk coherence
tions must be described in a full many-body approach thatengthé&,) where the effect of the constriction induced by the
can properly account for the change in character of thenarrow barrier on the order parameter of the much wider
guantum-mechanical system as the correlations drive auperconductors is “geometrically diluted,” or in wide junc-
metal-insulator transition. The standard single-particle aptions with high resistivity barrieréin both cases the critical
proaches, like the full quantum-transport theofigsattering current of the junction is much smaller than the bulk
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critical current of the superconducting le&sOn the other ¥
hand, a self-consistent solution for the variation of the order BULK Uy
parameter A(z) [i.e., pair-correlation function F(z) So

=—A(2)/U(2) with U(2) the site-dependent interaction
strength induced by the current flow or geometry, not only
ensures current conservation and allows one to find the criti-
cal current in an arbitrary geomeffybut is unavoidable in
situations where the proximity effect induces appreciable su-
perconductivity in the normal regidi,or when the thickness
of the weak link is comparabi®to &,. Thus, the microscopic
self-consistent calculatioHs reveal a variation ofA on
length scaleglike A, the Fermi wavelengihsmaller than
&o (which is also of importance in high; junctions where
the quasiclassical approximatiéh¢,>\g, does not holgd
Our junctions are wide, and even in the tunneling lithi.,
with a correlated insulator barrierthey require a self-
consistent treatment because the many-body effects prevent a
description in terms of simple phenomenological parameters
(like the barrier transparengyBoth self-consistency effects
and many-body correlations are automatically included via
the dynamical mean-field theory.

Our results should shed light on high-superconductors

FIG. 1. Microscopic stacked planar geometry of a Josephson
junction. The sandwich =10 planesNgc=4 superconducting

h h S | planes coupled to a bulk superconductor on the left Biger2
even though we are restricting ourselvesivave Symmetry e, planes on the right, followed by a furtiég.=4 supercon-

order parameters. This is because the higtsuperconduct-  y,cting planes coupled to another bulk superconductor on the right.
ors have short coherence lengtios the order of a few lat-  1he junction is allowed to have spatial inhomogeneity only within
tice spacingsand have barrier materialgither from grain  the N modeled planes, but the calculations are for an infinite sys-

boundaries, ion dama_ge, or dopifgyich as Co-dopingthat  tem. In our calculations we always takésc=30 andN, ranges
are correlated and lie close to the Mott metal-insulatorfrom 1 to 80.

transition’ Our examination ofs-wave superconductors in
this limit illuminates this physical regime without adding the self-consistent planes embedded in the bulk superconductor
complicated geometrical effects that arise frdiwave order  on each sidésee Fig. 1 The self consistent region consists
parameterswhich will be investigated in a future stugly of a sandwich oN,, barrier planes surrounded bigc planes
In Sec. Il we briefly describe the formalism that is used inon each sideN=N,+2Ngc (the word “barrier” is used
our computational techniques. Section Il contains results oBince the material through which the weak link between su-
tuning through the quantum-critical point by increasing theperconductors is made will have its properties tuned from a
correlation energy at a fixed barrier thickness. We examingnetal to an insulator In our solutions we choosisc=30
four CaseS(i) thin barrier;(ii) bilayer barrler,(lll) barrier on and Nb ranges from 1 to 80. Since the coherence |ength of
the order of the bulk coherence length; @nd thick barrier.  the superconductor &="7%v /(7A)~4a (with a the lattice
In Sec. IV we tune the metal-insulator transition by ianeaS'spacing the self-consistent Superconducting region is ap-
ing the thickness of the barrier at fixed correlation energyproximately eight times the bulk coherence length, which we
We examine a weakly correlated metal barrier, a stronglyind to be sufficient for our calculations. This approach does
correlated metal, and a Mott inSUlator, flndlng deViationSnot require us to make any assumptions about the boundary
from qU.aSiCIaSSical results for the correlated insulator. Ouf:onditions at the interface between the barrier and the super-
conclusions are presented in Sec. V. conductor, since they are determined self-consistently. The
approximation is the presence of(tgpically smal) discon-
tinuity in the supercurrent at the bulk superconductor-self-
consistent-superconductor interface. We have found that the
The computations require a self-consistent calculation ofuperconducting order has always healed to its bulk value at
the properties of a Josephson junction within a many-bodyhat point, but sometimes there can be a jump of the super-
formalism. To start, we need to have a solution of the bulkconducting phase when one nears the critical current of the
superconductor, which will provide the “boundary condi- junction. This discontinuity in the phageorresponding to a
tion” for the simulations in the bulk boundaries of the junc- breakdown of current conservation at the bulk
tion. The bulk problem can be solved directly in both thesuperconductor-simulated superconductor intejfaes be-
absence of a supercurrent and in the presence of a supercaesme large for thick insulating barriers or when one lies on
rent (where there is a uniform variation in the phase of thethe decreasing-current side of the current-phase diaggam
superconducting order parametdrhe uniform bulk solution  below).
is then employed to provide the boundary conditions for the We simulate an inhomogeneous system of stacked square
junction beyond the region where we determine propertiegattice planes that correspond to the superconductor-barrier-
self-consistently. The inhomogeneous problem consist$ of superconductor sandwich of a Josephson junction. A lattice

II. FORMALISM
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site corresponds to a unit célihich we normally picture as superconductor and the barrier, we have 0. Note that if
being one atomic sije and we assume a tight-binding pic- Ui=UiFK=0 for all lattice sites, the Hamiltonian describes
ture with the same hopping integrigl between atomic sites  tight-binding electrons on a simple-cubic lattice.

within a plane and atomic sites between the planes. This The superconducting regions are described by an attrac-
description implies that we are assuming the “bare” kinetictive Hubbard model witiJ;=—2 andw;=0 for all super-
energy of the superconductor and the barrier are identicajonductor sites. The homogeneous bulk superconductor has a
(note that the renormalized density of states can be very difransition temperatur€.=0.11 and a zero-temperature order
ferent, especially when the barrier is a correlated insulator parameterA =0.198. This yields a standard BCS gap ratio
Such a condition is not necessary in this formalism, but we2A/(kgT.)~3.6 and a coherence length=#v g /(7A) that
include it for simplicity, since it reduces the number of pa-ranges from 3.8 to 4.3 depending on whether we average
rameters that are varied in the junction. The superconductghe absolute value af - over the Fermi surface or take the

is described by an attractive Hubbard mddéei the Hartree- root-mean-square afg (a cubic lattice at half-filling has a

Fock approximation. This is equivalent to the conventionalgirection-dependent Fermi velocitya fit of the decay of the
(BCS)_Bardeen-Cooper-Schri_eff?r_[or more accurately, the superconducting order as it is disturbed at the
Boguliubov—de Genné$ (which involves a nonconstant syperconductor-barrier interfadegives ¢,~3.7a. The bulk
density of states due to the tight-binding approadescrip- critical current per unit area ik, p,=0.0289(2t)/(#a?).

tion, except in this case the energy cutoff is determined byrhe value of our bulk critical current density is slightly
the electronic bandwidth rather than the phonon frequencysigher than the one determined by a Landau depairing veloc-
In fact, the attractive Hubbard model offers richer behaviority ;, .= A/#i ke (j. pu=envy, where the density of particles
(that is not employed in this contributipshowing a cross- g n=k3/272, aséuming a spherical Fermi surfatecause

over to preformed pairs. By including higher-order processegy the possibility to have gapless superconductivity in three

. . 5 . .
in U, éhrough aT matriX® or a dynammg(ll mean-field  gimensions at superfluid velocities slightly exceedg
theory® approach, one can study the crossé/éom BCS (note thatkg is direction dependent for a cubic lattice at

superconductivity, where pair formation and condensation,,t filling). Calculations on our junction are performed at a
occur atTe, to preformed pairs that condense at a loweremneratyre off=0.01, which is effectively at the zero-
temperature(this should _be |mpo_rtant in s_hort—coherence—temloerature limit T/T,~0.09) for the superconducting
length superconductors like the high-material$. The bar- o onerties. The barrier region is described by a half-filled
rier is described by a Falicov-Kimball mod&kt half-filing. £ ji-ov-Kimball model in the symmetric limit ofw;)=0.5
This model has two kinds of particleti) mobile electrons |, e pyk, this barrier undergoes a metal-insulator transition
and (ii) static ions. The average concentration of electrons i Ur~4.9 (since the bandwidth of the simple cubic lattice
one per site and the average concentration of ions is one-h 12FKthe metal-insulator transition occurs wHepy is on

per S'the' When acr; ellectrt())n and an lon gccupy thﬁ Samce)latt'%e order of one-half of the bandwidthrhis is illustrated in
site, there is a Coulomb attractidyic between them. One gy 5 4) where we show the single-particle density of states

car01 view this system as a bi_nary alloy AfandB_ iOUS al " for a bulk barrier as a function &« . The density of states
50% concentration witlJ ¢ being the difference in site en- ¢,. this model is independent of temperatéfeSince the

ergy between thé andB ionic sites(the off—diagonal energy system is not a Fermi liquid for nonzetdgx , one can see
is assumed to'be the same fo_r !andB iong. The many- the density of states first develops a pseudogap and then is
body pr oblem is §olved by_ taking an annealed average and ppressed entirely to zero as the correlations are increased
essentially the simplest disorder probléand the simplest 5yt hecomes a correlated insulator. The opening of the gap
many-body problem It undergoes a metal-insulator transi- g ¢ontinyous. In Fig. @) we show the imaginary part of the
tion in the bulk® (see below, which is why we adopt it for self-energy at low energies. This result is also tempera-
study here. I . L ture independerff We see that the curvature of the self-
The Hamiltonian for the Josephson junction is then energy has the wrong sign in the metallic regifaenich is

1) one reason why it is not a Fermi liquidnd that it diverges

1 ) .
HZE tijCiTg—ng"_E Ui(CiTTCiT_ §><Ci1cii_ > (anc_i becomes a function as the system crosses over into
ijo [ the insulating phase. This occurs because the self-energy de-
1 velops a pole at zero energy in the insulating phase. Such
+> UiFKCiTgCi(T( W, — _)' (1)  behavior can only be seen in a many-body treatment of the
T 2 system.

) The inhomogeneous system is solved by employing the
wherec/ (ci,) creates(destroy$ an electron of spinr at i i , i
ic (Cio Y p matrix formulation of Nambtf for the Green's function

site, t;; is the hopping integral between nearest-neighboigr, i) for two lattice sitesr; andr; at the Matsubara
sitesi andj (we measure energies in unitstgf U;=—2 is frequencyi w,=i7T(2n+1)
the attractive Hubbard interaction for sites within the super-

conducting planesy™™ is the Falicov-Kimball interaction _ G(ri,rjiwy)  F(ri,rj,iwy)
for planes within the barrier, and; is a classical variable G(ri,rjiw,)= = : —G*(ri,riw,)]’
that equals 1 if ai\ ion occupies sité and is zero if &B ion (ri,rjiog) iifj:lon

occupies site. A chemical potential is employed to deter- @
mine the filling. Since we work at half-filling for both the and the corresponding local self-energy,
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0.15 We emphasize thas® is the noninteracting Green’s function
g and is not the effective medium of an equivalent atomic
= 0 problem.
9 005 Details of the computational scheme have been described
Q- elsewheré’ Here we simply summarize the algorithm. The
junction is inhomogeneous in thedirection only, since it
has translational symmetry within each plane. The algorithm
- begins by converting the three-dimensional system to a
: 4 quasi-one-dimensional system using the method of Potthoff
2 and Nolting!® We perform a Fourier transformation within
'zg 2 each plane to determine the mixed-basis Green’s function
T [defined in terms of two-dimensional momentg @ndk,)
0 and thez-coordinate of the plajeunder the assumption that

the electronic self-energy is locdut can vary from plane to
Frequency [t] plane. For each momentum in the two-dimensional Bril-
louin zone, we have a one-dimensional problem with a
(simple-cubic latticg described by the Falicov-Kimball model in sparse mat_rlx, since the qnly co_upllng between. p!a_nes‘,‘ IS due
to the hopping to each neighboring plane. The infinite “tridi-

the local approximation. The value &fr¢ ranges from 1 to 7 in P . be i db lovi h |
steps of 1. AdJg increases, the density of states first develops aagona matrix can be inverted by employing the renormal-

pseudogap and then a real géip. Absolute value of the imaginary '26d Perturbation expansidi, which calculates both the
part of the local retarded self-energy for low frequency on the reafingle plane and the nearest-neighbor Green's functions. A
axis. See how the curvature has the wrong sign for a Fermi liquidinal summation over the two-dimensional momenta pro-
and how the imaginary part di\/erges at zero frequency as one goéglces the local Green’s function and the Green’s function for
through the quantum-critical point and a pole develops in the selfpropagation from one plane to its neighboring plane. The

FIG. 2. (a) Electronic density of states for the bulk barrier

energy. dynamical mean-field theory is then employed to calculate
the local self-energy from the local Green’s function and
S(r iwp,) b(ri iwy) then the 'Iocal Qreen’s_ function i; calculated from inverting

3(r; ,iwn):( R . _ (3) the quasi-one-dimensional matrix. These two steps are re-

¢* (riiwy)  —2*(ri,iwp) peated until the Green’s functions have converged to a fixed

Opoint. At the fixed point, we have a self-consistent solution
of the inhomogeneous problem that allows for nonuniform
variations in both the pair-field correlatiofier equivalently

p the superconducting order paramgtend in the phase. One

G(ri 1) iwy) = _f d 7 expli wpm)(T o T)Cfr(r(o)), important consistency che(_:k is total_ current conservation at

0 each plane in the self-consistent region. All calculations con-
4 serve current except in extreme cases for thick insulating
barriers(see beloy. But there can be discontinuities in the
) B ) - - current at the bulk-superconductor—self-consistent supercon-
F(ri,rj,ion)=- fo d7exp(i wn7)(TCj1(7)Ci | (0)), ductor interface(since this is far from the Josephson junc-
(5) tion, it has a negligible effect on the resylt¥his computa-
tional algorithm is a generalization of the conventional

The diagonal and off-diagonal Green’s functions are define
respectively, as

whereT, denotes time ordering in and 8= 1/T. Boguliubov—de Gennes approach to allow for correlations
The self-energies and Green’s functions are coupled towithin the barrier.
gether through Dyson’s equation, This algorithm can be performed for the normal state or
for the superconducting state and can be performed on the
G(ri.r; Jwn)=GOr; Tiiwp) imaginary or real frequency axes. We work on the real axis

in order to calculate the normal-state resistance. Since we
have a many-body system, we must use Kubo’s formula for
the conductivity. Details for this calculation appeared
elsewheré’ Our formalism calculates the conductivity by
XG(ry,rj,iwy), (6)  neglecting vertex corrections and evaluating the simple

] o bubble diagram(which becomes exact in the infinite-
where we have included the local approximation for the selfyimensional limit?).

energy, =(ri,rj,ioy) =2(r;,iw,) 8. The noninteracting

Green’s function, GO(r; Ij,iw,) is diagonal in Nambu

space, with upper diagonal component given by Ill. TUNING THE CORRELATION STRENGTH
THROUGH A METAL-INSULATOR TRANSITION

+E| GO(ri .1 iwn) 3 () iwpy)

ik-(ri—rj)
GOr, T :iwn):J dSkIe—J. 7) We begin by presenting results for a fixed barrier thick-
lon+u—eg ness, and vary the Falicov-Kimball coupling strength. We

054511-4



TUNING A JOSEPHSON JUNCTION THROUGHA . .. PHYSICAL REVIEW 84 054511

— 0.14 & i
= < 1072
o2 % 107°
o S o107
L 0.1 ‘\‘{ 1073
) > 1078
O-) ~
G 0.08 S 10t
() Q 3
S 0.06 £ 10
e T, 102
2 0.04 %_10'
< ] " 100
€ 0.02 | .
s | ] T
< TR R TR NP NP RN B U PR | i‘__ 2
22 24 26 28 30 32 34 36 38 40 @,
Plane number ¢
1....I....I....I....I
FIG. 3. Proximity effect for a thin barrieN,=1). The anoma- 0 5 10 15 20
lous average is plotted versus plane numilee insulating barrier Interaction strength Ugy

lies at plane 3L The numbers indicate the value d 1, 2, 3, 4, . .
P L B ( FIG. 4. (a) Critical current,(b) normal-state resistance, ang

6, 8, 12, 16, and 20 the anomalous average monotonically in- h teristi It fthe J h uncti funci fth
creases witltUg, in the range between planes 29 and 30. Note howaracterstic voitage of the Josepnson junctions as a tunction ot the

oscillations develop as the correlations increase until the supercorlnz-a''COV'K'mbaII interaction within the barrier. The circular symbols

ductivity ultimately becomesnhancedn the barrier for the strong are forN,=1 and the squares are fqufz. NOtPT how the critical
insulator. current decreases and the junction resistance increases as expected,

and how the characteristic voltage does not depend too strongly on
the correlation strength. The dependence on correlation strength for
the bilayer junction is much stronger than for the thin junction. The
dashed line inc) is the Ambegaokar-Baratoff prediction.

study four different systemgi) a thin barrier withN,=1;
(i) a bilayer barrier witiNy = 2; (iii) a barrier on the order of
the bulk superconducting coherence lenf+5; and(iv) a

thick barrierN,=20. o o
superconductivity eventually becomeshanced within the

) ) barrier. We believe that the oscillations and this enhance-
A. Thin barrier (N,=1) ment of the anomalous average are arising from a surface
A single-plane barrier must be in the very strong insulat-effect of the superconducting half planes—each half plane
ing limit before it can severely affect the transport perpen-develops oscillations near the surfdes the barrier becomes
dicular to the plane. Hence we expect to have to increase th®ore insulating
Falicov-Kimball interaction to be much larger than 5 before We show a plot of the Josephson critical current, the
the junction starts to display “insulating” behavior. Simi- normal-state resistanc,, and the characteristic voltage
larly, we expect the critical current to be close to the bulkl R, for the single-plane barrier. The plots are on a semiloga-
critical current, because the plane is so tfdhleast for me-  rithmic scale. The critical current drops by about two orders
tallic barriers. In this regime, self-consistency is critical in of magnitude adJgy increases from 0 to 20. This occurs
determining the properties of the junctith. even though the anomalous average increases in the strongly
We begin by examining the proximity effect within the insulating limit. The plot ofR,, shows the expected increase
junction. Since the Hubbard attraction is zero within the bar-as the correlations increase. But even at a large value of
rier, the superconducting gayp, which is proportional to the Ugx=20, the resistance only increases by about two orders
Hubbard attraction, identically vanishes there. But we carof magnitude over the noninteracting limit. Finally, we show
still examine the superconducting pair-field correlations bythe characteristic voltageR,, in Fig. 4(c). Its value does not
plotting the anomalous average at equal tinkgs=0").  change much, but shows a mild optimization for the moder-
This Green’s function is continuous as one passes throughtely correlated metallic phase. In the metallic lirbit-0,
the superconductor-barrier interface. We sio{@ ™) in Fig.  the | R, product approaches the product of the bulk critical
3. Notice how the correlated metdl fx<2.5) appears just current times the Sharvin resistance, which is Ot287
as we expect it to: the superconductivity is smoothly de-=1.45\/e. This result is different from the clean Kulik-
pressed as we approach the barrier and then decreases witl@melyanchuk limit® of 7wA/e because we are treating a dif-
the barrier as correlations increase. As the bulk barrier enteferent geometry from a point conta¢which can be de-
the pseudogap regime (Z3Jgx<5) we see small oscilla- scribed as a “plane” contagtAs the correlations increase
tions appear in the superconductor, and the superconductivityithin the metallic phase, the characteristic voltage peaks for
continues to be depressed within the barrier. In the correlated .x~2 at a value somewhat smaller than the dirty limit of
insulator regime (5Ug¢<8) the oscillations continue to the Kulik-Omelyanchuk formuf® for a superconducting
grow and the superconductivity within the barrier is small, point contact ;:R,,=0.66rA/e atT=0. In fact, there are two
but rather insensitive td - . In the strong insulating regime possibilities for thd ;R,, product of a short contact with dif-
(Uegk>8), we find that the oscillations become large and thefusive scattering. Namely, in the single-particle picture scat-
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tering properties of a normal region can be described by the
universal distribution of transparenciBs(defined as the dis-
tribution of eigenvalues of the matrit”, wheret is the
transmission matrix connecting incoming to outgoing trans-
verse propagating mod@sgiven by either the Dorokhov
expressioff  Ppo(D)=(G/2Go)[Dy1-D] * (valid for
most bulk conductoy)s or the Schep-Bauer distri-
butior?® Pgg(D)=(G/7Go)[D¥%J1-D]"! (valid for
subnanometer-thick barrié$$ Here,GQ=2e2/h is the con-
ductance quantum an@=[3dDP(D)D is the disorder-

0.16 T
0.14 |
0.12 |
01 L
0.08 |
0.06 |
0.04 |

Anomalous average F(0%) [t]

averaged conductance. The total current is found by integrat- 0.02 - R
ing the current carried by a single chani¢D) (with a 0 T T T
transparency oD) over the distribution functiorP(D) as 20 22 24 26 28 30 32 34 36 38 40 42
shown in the multiple Andreev reflection thedrfhis inte- Plane number

_ 1 .
gral, !—_deDP(D)I(D), then leads to the following char- FIG. 5. Anomalous average for differing correlation strengths
acteristic voltagesl R,=0.66rA/e for Ppo(D) and IRy anqN,=2. Note how similar these results are to the thin barrier
=0.61rA/e for Psp(D). We find that in the case of a single- ¢ase__how the anomalous average initially drops within the barrier,

plane barrier made of an FK correlated metal, the largeshen oscillations develop, followed by an enhancement for the
ICRn (obtalned foru FK:2) IS S|Ight|y below the value de- strongest correlation strengths.

termined byPgg(D). This can be attributed to effects of

self-consistency and the “inverse” proximity effect, orto the  the critical current, normal-state resistance, and charac-
fact that such an interface cannot be described by the Schepsistic voltage appear in Fig. 4. The critical current de-

Bauer distributionPsg(D). _ _ creases much more rapidly for the bilayer than for the single-
As the junction barrier becomes more insulating, the charpayer junction. The normal-state resistance increases more

acteristic voltage becomes essentially constant as expecteghiqly as well, since the bilayer has a resistance that is much
from the Ambegaokar-Baratoff limit wA/(2€) (dashed more than two times thél,=1 resistance in the strongly

line). But the m?gnitude of the characteristic voltage is apjnsylating limit. The characteristic voltage is quite interest-
proximately 15% smaller than that predicted by theming pecause it has nonmonotonic behavior. There is a weak

[wA/(2e) versus our calculated result of 18/e]. Once  maximum for the moderately correlated metakar Ug¢
again, this small reduction arises from the self-consistency. 3), but in the insulating region the voltage increases lin-

and from the(nonspherical Fermi-surface averaging of the earjy with the correlation strength, attaining values 40%

transport. higher than the Ambegaokar-Baratoff limit. This is quite dif-

ferent from what we expect—a constant characteristic

voltage—and the characteristic voltage shows no sign of

saturating even at a correlation energy Of,=20. Of
We see similar behavior in the bilayer junctions witlj ~ course, the-V characteristic must become hysteretic once

=2. The correlation strength needed to make an insulating ¢ is large enough.

barrier is smaller here, because the barrier is thicker. In Fig.

B. Bilayer (N,=2)

5, we plot the anomalous average as a function of the plane & 0.03

number. The planes numbered 31 and 32 are where the bar- g

rier lies. The behavior is like that seen in the thin barrier > o002

case—the correlated metal fx<2.5) and pseudogap re- N

gions (2.5<Ugc<5) are similar. The correlated insulator ;l—‘ 0.01

regime, where the oscillations in the anomalous average in- S

crease, but its value within the barrier is rather insensitive to _o 0

Uek (5<Ug<7) and the strong insulating regimé £« 1F

>7) shows an enhancement of the anomalous average o 08

within the barrier at an even larger value Wgy (starting at > 06 [ -

Upc~14). S o4 | ]
In Fig. 6, we showa) the current versus phase afil the 02k §

renormalized current-phase relation. As the barrier becomes ol o v v W N

more insulating, we recover the expected result i) 0 ! 23

=1.sin @ because all of the phase difference takes place over Phase across barrier

the barrier(in general, the majority of the phase difference  FiG. 6. Current-phase relations fo¥,=2. (a) Current-phase
occurs over the central plane of the baieMore metallic  elation. Values olUg include 1, 2, 3, 4, 5, 6, 8, 10, 12, and 16
barriers have the maximum in thég) curve pushed to val- (labels included for some of the curyesb) Normalized current-

ues off less thanm/2 as expected due to the self-consistencyphase relation. Note how the expected sinusoidal dependence enters
and the proximity to the bulk critical current. for insulating barriers.
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FIG. 7. Anomalous average plotted versus plane number for the e
N,=5 junction. The values df)-x chosen are 1, 2, 3, 4,5, 6, 7, 8, 0 2 | 4 6 8 10
o nteraction strength Ug,
and 10. Note how the large oscillations are now separated from
each other and are clearly tied to the superconductor-barrier inter-

face FIG. 9. (a) Critical current,(b) normal-state resistance, afc)

characteristic voltage of thd,=5 (diamond junction. The metal-
insulator transition can be seen in the critical curri@tand (more
C. Moderately thick barrier (N,=5) easily in the resistancéb), as the regions where the slope of the

The barrier regioriwith N,=5) is chosen to be slightly curves changes most dramatically. In the strongly correlated insu-

thicker than the bulk coherence lengii~4a. Here we ex- !atlng regime, we find the exponential decay of the curremd

amine properties of a junction outside of the regime of most

analytic approximations. In Fig. 7, yve .plot the anomaloushavior: it first decreases in the metallic regime, then has a sharp
average versus plane numliéire barrier lies at planes NnUM- 0356 at the metal-insulator transition, followed by a decrease as
bered 31 to 3p These results are similar to those seen bethe correlations increase furthéthe Ambegaokar-Baratoff predic-
fore. In the weak correlation regimé&J¢<2.5), the anoma-  {jon is the dashed lineNote how the characteristic voltage is maxi-
lous average is a smooth function that decreases as thfized just on the insulating side of the metal-insulator transition,
correlations increase. Oscillations begin to develop for 2.%nd how the maximal value is about 40% larger than the
<Ugk<4.5, but the anomalous average continues to deAmbegaokar-Baratoff prediction.

crease within the barrier. As the correlations increase further, ) ]
Ugk>5, the anomalous average first increases at the cent&8ting. In the weakly correlated regirg-x <2.5, the maxi-

of the barrier, then a two-peak structure emerges, which ha®um of the current-phase relation occurs at a phase smaller
a large amplitude oscillation and a minimum at the centrafh@n7/2 as expected for a thin metallic barrier. As the cor-
plane of the barrier. We can see clearly here that the oscilld€lations increase, the maximum first overshosf& (U

tory behavior seen in the previous cases is arising from ef=3,4), and then returns to its expected locationé for
fects occurring at the superconductor-barrier interface as thelrk>5. There is a delicate interplay between the strength of
barrier is tuned through the quantum_critica| po(ﬂ‘“s is the correlations and the location of the maximum of the
further confirmed with theN,=20 data below current-phase relation.

The current-phase relation is similar to that seen for the The critical current, normal-state resistance, and charac-
bilayer, and will not be shown here. The normalized currentieristic voltage are plotted in Fig. 9 fd#,=5 (diamond. It
phase relation, is plotted in Fig. 8. This result is quite inter-iS difficult to locate the metal-insulator transition from the
N,=5 critical current datd&except by focusing on the inflec-
tion poiny, but the transition is clearer in the resistance,

ncrease of the resistanchas a different slope than in the corre-
ated metal regime. The characteristic voltdgehas complex be-

0113 - ' = ': which has a sharp increase in the range fidpx =5 to 6.
_o L The characteristic voltage has striking behavior. Starting at a
% 0.6 - SN\ value about 20% less than the Ambegaokar-Baratoff limit in
= 04r R\ the metallic regime, the voltage initially decreases with cor-
02 . relation strength, then has a sharp increfageover 100% at

ot the metal-insulator transition, reaching a maximum almost
40% higher than the Ambegaokar-Baratoff result, until it fi-
nally starts to decrease as correlations increase further, con-

FIG. 8. Normalized current-phase relation. Note how the maxi-tinuing to decrease at the largest value of correlations where
mum lies at an angle less that2 for Ugc=1,2, increases to a We performed calculations. Hence, junctions in this regime
value larger thanr/2 for moderate correlatiorld=3,4 and then ~do see an enhancement of the characteristic voltage on the
settles down tom/2 for larger correlationsJg>5 (curves with a  insulating side of the metal-insulator transition. The behavior
dotted ling. is quite complex.

Phase across barrier
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FIG. 10. Anomalous average for a thick junctibiy=20. Val- 10'156 : 1' : é : é : "t : é : ('3 : ; =
ues ofUgk |nclgded are 1,2,3,4,45,5,55, 6, 6.5, ar_ld 7 Note Interaction strength Ug,
how the metallic regime behaves as expected, but oscillations de-
velop in the insulating regime that become huge just inside the g\G. 11. (g Critical current,(b) normal-state resistance, af
barrier. characteristic voltage of thid,= 20 (triangle junctions. Note how
) ) the thick junction behaves much like the bulk material. The metal-
D. Thick barrier (N,=20) insulator transition can be clearly seen in the critical current and in
The thick-barrier junctionN,=20 behaves in many re- the resistance, as the regions where the slope of the curves changes
spects like the bulk barrier material. The transition from amost dramatically. In the strongly correlated insulating regime, we

metal to an insulator occurs at approximately,=5 as in find the exponential decay of the curréand increase of the resis-
. . . At . tance has a different slope than in the correlated metal regime.
nction rapidl vel illations in th : . o
the bulk, and the junction rapidly develops oscillations in t eNote that the thick barrier has a sharply suppressed characteristic

anomalous average &trx~4. This is shown in Fig. 10. . .
Note how the correlated metal regime behaves entirely a\éoltage because the decreasé.iis much sharper than the increase
in R,,. We believe this occurs because the temperature dependence

expected—the anomalous averag(f: decregses as one€ @Pipe resistance is strong, even at these low temperatures. The
proaches and then enters the barrier, but it never gets tg

: . - = ¥hshed line is the Ambegaokar-Baratoff prediction.
small in the metallic regime because of the proximity effect.
As the correlations increase, oscillations first develop in theurs far from the barrier region. This scenario is similar to
superconductor and then move into the interfacial regionthat of Josephson’s original analytic schelngince in his
penetrating about one coherence length into the barrier bease, there is no phase gradient over the superconductors, so
fore they are rapidly suppressed within the barrier. We seéhey carry no current, but there is current in the barrier, since
the same phenomenon as in the thinner junctions: in the irthere is a phase difference across it.
sulating regime, the anomalous average can increase to The critical current, normal-state resistance, and charac-
above it bulk value within the barrier, but only close to theteristic voltage appear in Fig. 11. One can see the metal-
superconductor-insulator interface. As the correlations ininsulator transition clearly in thk, curve. Within the metal,
crease, the peak of the anomalous average grows. the critical current has an exponential dependencé) pg,

The current-phase relation is essentially sinusoidal irwithin the insulator it has a different exponential depen-
these junctions. For the weakly correlated metals, the peak afence. In the transition region, it decreases most sharply. We
thel (6) curve occurs just above/2, but as it becomes more believe the reduction in the rate of decrease in the critical
insulating, the peak moves downward toward? and the current asUgi is increased into the correlated insulator re-
current-phase relation become®) =1, sin6, as expected. gime arises in part from the fact that the effective junction
There is a computational difficulty that enters when we are irthickness is thinner than the true junction thickness due to
the strong-insulator regime for a thick-barrier junction. Herethe oscillations in the anomalous average that develop within
the critical current gets exponentially small, and the computhe barrier region. The resistance shows the expected behav-
tational algorithm loses current conservation through the enior as well. One can clearly see the metal-insulator transition
tire junction (when the calculation is halted at a self- as the region where the conductivity changes its functional
consistency error of one part in 1Gor the anomalous dependence sharply. Note, however, that the characteristic
average at=0). Instead, we see an exponential decrease ofoltage is severely affected by the metal-insulator transition,
the current from the value fixed at the bulk superconductor taince the decrease in the critical current far outweighs the
the value within the barrier. The current is constant withinincrease in resistance, and the characteristic voltage de-
the barrier itself, and the current-phase relation is a nice sinereases by many orders of magnitude as one enters the
curve, so we believe that the critical current found from ourstrongly correlated insulator. One reason why this occurs is
algorithm is accurate, even though, the boundary conditionbecause the resistance for the correlated insulator depends
with the bulk are trying to force more current through thestrongly on temperature. A§—0, the resistance becomes
junction than it can have; i.e., the current discontinuity oc-very large, but it can be sharply reduced as the temperature
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increases. Hence, even though the critical current is at théor the correlated insulator that ultimately decreases as the
zero-temperature limit fol/T.= 0.1, the resistance still has correlations increase further. The Ambegaokar-Baratoff re-
strong temperature dependence in this regime, which causg#ime does not hold here either. Finally in the thick-junction

the characteristic voltage to be sharply suppressed. Perhagsgime (N,= 20), the resistance has a strong dependence on
this behavior plays a role in some junctions that appear teemperature in the insulating regime, and even at what is a
work well at low temperatures, but then fail as the temperatow temperature for the superconducting properties, the char-
ture is increased, because on the insulating side of the metaicteristic voltage can decrease significantly as the correla-
insulator transition, the resistance has strong temperature dgens increase. The conclusion that can be drawn from this is

pendence. that one requires a careful tuning of the thickness of the
_ _ barrier, the proximity to the metal-insulator transition, and
E. Summary of tuning the correlation energy the operating temperature to optimize the properties of a

We have discovered a number of interesting features aunction. This idea is further supported in the next section.
Josephson junctions for short-coherence-length supercon-
ductors that have their barrier tuned through the quantum- ; ;\NG THE JUNCTION THICKNESS THROUGH
_crltlcal point of a m_etal-lns_ulator_tran5|t_|0n. Th_e most strik- THE METAL-INSULATOR TRANSITION
ing feature we find is that in the insulating regime, there are
oscillations with a wavelength on the order of the Fermi Here we present results on tuning the junction from the
wavelength, that appear at the superconductor-barrier intethin to thick barrier at three values &fgx: (i) Ugx=2 a
face and decay on the order of the coherence length on eithereakly correlated metalii) Ugx=4 a strongly correlated
side of the interface. They can have very large amplitudegpseudogapmetal; and(iii) Urx=6 a correlated insulator.
(on the order of the bulk value of the anomalous averageln the correlated metal case, the junction can be viewed as a
within the barrier. We believe that these oscillations are ocsuperconductor—normal-metal—supercondu¢®XS weak
curring from a “surface” effect intrinsic to the supercon- link,? while the correlated insulator barrier eventually leads
ductor, and depending on how close the two interfaces ar® a superconductor-insulator-supercondu¢®if) junction.
(determined by the thickness of the baryitiey are either In the case withJgx=2, the normal region is a non-Fermi
independent of each other or can interfere. Note that thes@&uid metal that can be described as dirty mdtakistivity
results differ from those found in metallic junctions with p, =240 wQ cm with the assumption that the lattice con-
“geometrically diluted” barriers’® There, oscillatory behav- stant is 3 A), forUgc=4, we get a “bad metal” p,
ior was seen even for metallic barriedg =0, and the de- =2700 u{) cm; such huge resistivities do not necessarily
cay length was much longer, leading to a number of cyclesequire electronic correlatior’§,but are also seen in model
before the oscillations are damped. We also found interestingalculations involving disordered Fermi liquitds The early
results for the current-phase relations. As expected, thil@xperiment;ﬂO and theoretic4l work on SNS junctions re-
junctions typically havel. occur at a phase difference vealed that the supercurrent in these structures arises from
smaller thanz/2, but in all but the single-plane junction, as the proximity effect: superconducting correlations are gener-
the correlations increase, the maxinhgloccurs atm/2 and  ated in the normal region with the density of pairs decreasing
the curve becomes sinusoidal. For thick barriers, we find thexponentially from the SN interface on a scale set by the
maximum occurs larger than, but close 462 for metallic  normal metal coherence lenggh= (A D/27kgT)Y? (here,D
barriers and then migrates towardg2 as the barrier be- is a classical diffusion constantThe equilibrium current
comes more insulating. Finally, we found a different behav-then flows at zero voltage because of the overlap of pair-field
ior in the characteristic voltage of a junction. The characterwave functions from the two superconductors. Recent meso-
istic voltage is limited in the metallic regime by the bulk scopic advances have supplemented this “crude” picture
critical current of the superconductor multiplied by the junc-with the analysis of energy-resolved quantitfe® that be-
tion resistance for a clean barrighe so-called “planar con- come important for phenomena on small length scales at low
tact” limit). This value is approximately 1.A%e, which is  temperatures and voltagés. The initial theoretical
about 8% smaller than the Ambegaokar-Baratoff result for arstudie$*** relied on Ginzburg-Landau theor§which for-
insulating barrier. As the correlations increakgdecreases mally requiresT to be close tdT;) in the dirty limit (¢o>1,
to be much below the bulk critical current of the junction, with | the mean free pajtand for long junctions,> &,,).4*
andR, increases. The characteristic voltage has a rich behavn the ensuing approaches, based on quasiclassical Green’s-
ior. For the thin junction l,=1) it is maximized in the function formalism, junctions with more general parameters
correlated metallic regime, and becomes constant for the inwere described”® where the proximity effect on the super-
sulator. As the thickness increases\g=2, we continue to  conducting side(i.e., a depression of the order parameter
see a small maximum in the metallic regime, but the internear the SN interfagavas taken into accoutft(such effects
esting behavior is that for a wide range of correlationare treated from the onset in self-consistent studies like ours
strengths, the Ambegaokar-Baratoff result does not hold, an@ihus, the conventional proximity-effect theories show that
the characteristic voltage increases with correlation strengthhe critical current is determined primarily by the behavior of
For barrier thicknesses on the order of the correlation lengtithe superconducting order parameter when crossing a SN
(Np=5), the behavior is even more complex. The voltageboundary, while its thickness dependence, and temperature
initially decreases with correlation strength, then has a shargependence are affected by the way quantum coherence is
rise at the metal-insulator transition, followed by a maximumlost in the normal metal. However, it is only recently that
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mesoscopic studiéshave emphasized the importance of the 10! -
Thouless energfr,=%DIN2=27kgT£2/N2 for the prox- S ]
imity effect? Although E+y, is determined by the classical 1072k i
diffusion time N2/D for a particle to cross the sample, it N 18:2: 04 ]
plays a prominent role in various quantum phenomena en- o 10%L ~g LF i
countered in disordereghorma) metal electron physic®.In < 10:3 - .
the long junction limitA>Eq,, the critical current is set by ]8-8 i N
Eq—according to the recent quasiclassicaion-self- 10_‘1?) = 0 10 20 30 40
consistent calculationd” el.R,(T=0)=10.8ZF,. In the R R B A
short junction limitEq,>A, for T—0, the product ;R is 0.01 0.1 1 10
expected to be given by the diffusive limit 0-66/e of the gb/Nb

Kulik-Omelyanchuk formul&® or 1.92\/e in the case of
dirty interface with Schep-Bauer distribution of FIG. 12. Characteristic voltage plotted versus the inverse of the
transparenci(-fi'sf’6 (as discussed in Sec. JlIThe high versus effective thickness of the barrier on a log-log plot. Using the corre-

low-temperature limit is sét by the ratio ofkgT andEqy,, lation length extracted from the fit, allows us to plot the character-
or, equivalentlyN,, andé¢,, sinceN,= &, is defined to be the istic voltage against a measure of the Thouless endfgy
length scale at whicksT=Eqy. =27kg TEX/NZ . Such a plot should show scaling behavior, accord-

While the energy gap is determined by théattractive ing to the quasiclas_sic_al th_eory; we find this to be approximately
electron-electron interaction in the superconducting leaddrue for the metalic junctions Ugc=2, circles; andUg=4,
Eqp, is a single-electron concept, and as such is not directlzquare; but the correlated insulating barrier has a much sharper
applicable to our correlated metahich has no well-defined ocPendence on the barrier thickndgscluding an *oscillation”)
Landau quasiparticlesNevertheless, it is a common practice and the scaling _of the _quasnclasglcal theor)_/ breaks down. Note the
. . ; . N sharp onset of insulating behavior at a thickndgs=7 for Ugg
n experlznental StUdléSO_ extract estimates for such “qua- =6. Inset is the resistance versus barrier thicknessUfpg=6.
S|part|gle paramete_?susmg measured valugs Ph, _and . Note the sharp location of the metal-insulator transition near
check if the conventional treatment can describe the junctiory _ 7.
We extract a diffusion constam® from the Einstein relation
1/p,=2e>N(Eg) D [with N(Eg) the (single-spin interacting ~ for &, are only about 20% larger than the estimates &or
density of states at the Fermi enelg¥his is independent of given above Note that this fitting procedure is not well
band-structure effect&lassicallyD=uv¢l/3, butD can also  defined, since we do not have data over many decades of
be defined quantum-mechanically from the Kubo formula inbarrier thicknesses and because we can trade off some effects
an exact state representatfnyhich then allows one to use Of the fitting by simultaneously changing the exponent and
a diffusivity even when the semiclassical picture of thethe coherence length. But in all cases shown, we fit all of the
mean-free patH breaks dowh For the dirty-metal case data fromN,=5 to N,=80 to an accuracy of better than
Urc=2 we find DUFK:2%2taz/ﬁ and for the bad-metal 10% for the critical currenfthe accuracy decreases to about
25% for N,=1). This fitting scheme with nontrivial expo-

case we find>,_ _,~0.32a?/#. The corresponding normal ; e ,
FK nents is definitely more accurate than the best fits one can

metal coherence lengths agg~5.6a and {,~2.3a @ T  , hieve withk=1 orx=0. We find the case withl rx =4 to

0. e former e I s, ESDECINEI. g N fthestcase 1ot o s othe spread i eror s
F 0 i 0 = i
ing from Ny=1 to Ny—=80 (1, 2, 5, 10, 15, 20, 30, 40, 60, about 10% here, with 25% error faX,=1), while the

and 80 and fit to the following form: gg Kb;i?] gcziiulfattgetg %%I/S'St’ with a fit for all valég=1 to
In Fig. 12, we plot the characteristic voltage units of
lc=ANgexp —Np/&p], (8 Ale) versus the ratio of the barrier coherence lengtéter-
mined from the fit of the critical current and equivalent to the
with A a constant¢y, the coherence length in the barrighe  Thouless lengthto the barrier thickness. This is our analog
symbol &, is used here to differentiate it from the phenomo-of the recent results of a quasiclassical thédmyghich show
nological &, determined from a diffusive metal analogy deviations of the Kulik-Omelyanchuk relation for long diffu-
above, andx an exponent. We find that the fits vary from the sjve junctions. The results for metallic junctiobl:x=2,4,
analytic forms for the thick-barrier limitx=1). For ex- have the same shape as seen in the quasiclassical theory, and
ample we find that the coherence length decreases &pm they nearly scale with each othé&he scaling could be im-
=6.66 for Upx=2, to £,=2.96 forUpc=4, to £,=0.665 proved by slightly changing the barrier coherence lenhgth
for Ugc=6. Similarly, the exponent varies from=—0.40  The correlated-insulator resultsl-x=6, however, show a
for Upg=2, to x=—0.45 for Ugc=4, to x=—0.53 for  different functional shape, with the transition from the nearly
Urk=6. The value for the exponent never becomes close tgonstant characteristic voltage to the region where it de-
the asymptotic result ok=1 for a thick junction. But the creases sharply, occurring much more rapidly than in the
coherence length behaves as expected—as the scattering imetallic casgand having a small “oscillation” at the “tran-
creases, the coherence length decreases, becoming veijion”). One can be more quantitative in the comparison
small as the barrier goes through the metal-insulator transiwith the quasiclassical predictions: in the long-junction limit,
tion and becomes a correlated insulatior fact, our values the characteristic voltage is predictédo behave like
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| Rn= AN exif = No/&], © = o
with the coherence length determined from the functional Y
dependence of the critical current oM, in Eq. (8). The o 0.08
quasiclassical prediction giveA’~5.49D/§§ and x'=1. N
While we can fit reasonably well to this functional form in O 0.06
the regime wheré,/Np<1, we typically find the constant g
A’ is about three to five times larger and the exponénis » 0.04
about a factor of 2 smaller than the quasiclassical predictions 3
for the correlated metal caseld £x =2 or 4). The parameters T 02
deviate significantly for the correlated-insulator phesbere g
the fitting breaks down severely fép/N,>0.1). This shows £ /o
that the correlated-insulator regime cannot be described by 10 20 30 40 50 60 70 80
the conventional quasiclassical approacthere appears to Plane number

be a critical length at which point the characteristic voltage

changes from an essentially constant dependence on the bar-FIG. 13. Anomalous average versus plane number Eg(

rier thickness to a rapidly decreasing dependence on thg#4) and thicknesses ranging frovp=1, 2, 5, 10, 15, 20, 30, and
thickness(which is N,~7 for Ugc=6). The difference in 40 (the thickness of each barrier is obvious from thde rgnglefof the
shapes seen in Fig. 12 arises mainly from the behavior of thB'tS- Notle hovtv ﬂ:ﬁ shapes of gheste %UW?S 3": |fent|cat olr the
resistance, which assumes a linear scaling with the thickneé gions close 1o the  superconductor-barer intertace at planes
N, in the metallic regime and in the thick insulating regime —34(and within the superconducting region to the right or the
(akftho h it has an additional constant there. when extra OI_eft for the right or left interface, respectivglySince this shape
lated UQN I—O but h It id ! m i P stops changing afteN,=2, we conclude that the oscillations are
Qte toNy= )’_ lj't as a rapI. Crossovgr to the Inear. ' an intrinsic property of the bulk superconductor terminated on the
gime for the thin insulato(semilogarithmic plot shown in . ier

the inset to Fig. 1p

~ One may wish to conclude from Fig. 12 that correlatedine pylk superconductor coming in contact with the barrier.
insulating barriers are superior to metallic barriers since therhese results are also true for thir,=2 and Ugc=6
parameteg, /N, can be reduced to much smaller values thangases, but we do not show those results here, because the

in the metallic cases before the characteristic voltage beagreement is essentially the same as seen inUthe=4
comes reduced. But such a view is erroneous, because ttﬁ%ure below.

significantly smaller values of,, for the insulating barriers
means that the barrier thicknesses where the characteristic
voltage starts to decrease are indeed smaller for the corre-
lated insulator. What can be inferred from the figure, how- In this work we have examined what happens as the bar-
ever, is that once one reaches the critical thickness where thér of a junction is tuned from a metal to an insulator for
barrier has a metal-insulator “transition,” the characteristicshort coherence-lengtiwave superconductors. We studied
voltage is very strongly dependent on the thickness of the¢he transition both as a function of the correlation strength
junction. Hence variations in the thickness of the barrier carand of the barrier thickness. We found a number of interest-
have a large effect on the performance of a junction with @ng results. First, in regimes where the critical current density
correlated-insulator barrier. In particular, variations in theapproaches that of the bulk superconductor, self-consistency
thickness could make junctions appear to have “pinholes’is important in determining the current-phase relation, and it
because slightly thinner areas can have greatly enhanced Je-modified dramatically from simple sinusoidal behavior. As
sephson coupling. This can possibly explain why it appearshe correlations increase, and the current density decreases,
to be more difficult to attain small spreads in junction prop-the sinusoidal behavior is restored, but in some cases, the
erties for highT.-based junctions, even if the barrier is free maximum of the current-phase curve overshoet2 and
of conventional pinholes because the proximity to the thickthen becomes sinusoidal only at an even larger correlation
ness triggered metal-insulator transition generates “intrinsictrength. Second, we found that as the barrier becomes more
pinholes” within the correlated insulator. insulating, the anomalous pair-field average develops oscil-
It is also interesting to examine how the anomalous avertations on the order of the Fermi wavelength, which can be
age behaves as a function of the thickness of the barrier aguite substantial in amplitudéup to about twice the bulk
well. We find the following result shown fdd =4 in Fig. anomalous average These oscillations are tied to the
13: once the thickness is larger than the bulk coherencsuperconductor-insulator interface, and depend little on the
length (i.e., for all barriers simulated withl,=5), we find thickness of the barrier once the thickness is larger than
that the shape of the anomalous average is identical for aibout twice the bulk coherence length. Third, we found that
thicknesses for the planes that lie within the superconductinthe critical current has a nontrivial dependence on the thick-
region and that penetrate two to three planes into the barrieness of the barrier—while it decays exponentially with thick-
What this tells us is that the thickness of the barrier is nohess, it also has a power-law prefactor that varies with cor-
influencing the shape of the anomalous average excepelation strength, and deviates sharply from the
within the barrier itself, so the oscillations are a property ofquasiclassical prediction. The barrier coherence length de-

V. CONCLUSIONS
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creases, of course, as the correlation strength increases irttetween superconductivity and oscillations brought on by the
the insulating regime. Fourth, we found that the characterisunderlying Fermi surface, play increasingly important roles
tic voltage has rich behavior. It is maximized for weakly in short-coherence-length superconductors. In particular, op-
correlated metallic barriers for thin junctions and thetimizing the characteristic voltage of a junction near the
Ambegaokar-Baratoff result is recovered at strong correlametal-insulator transition is possible, but requires a careful
tions. As the barrier thickness increases, the maximum in theuning of the thickness of the barrier, the proximity to the
metallic region is reduced, but the Ambegaokar-Baratoff reimetal-insulator transition, and the operating temperature of
sult fails as the correlations increase, with the characteristithe device. Correlated insulating barriers can mimic effects
voltage increasing linearly withd-x over a wide range of due to pinholes because the Josephson coupling depends
correlation strengths. The intermediate thickness junctionsery strongly on the thickness leading to an “intrinsic” pin-
have the most interesting behavior—the voltage initially de-hole effect. In the future, we plan on extending this work to
creases, has a sharp increase at the metal-insulator transiti@hwave superconductors for direct applications to high-
and then decreases in the large correlation limit. Thick insusuperconductors.
lating barriers have very low characteristic voltages and
strong temperature dependence, as expected at finite tem-
peratures, since the junction resistance decreases rapidly as
the temperature is increased in the insulating regime. We also We are grateful to the Office of Naval Research for fund-
saw that self-consistency can renormalize the Ambegaokaing under Grant No. NO0014-99-1-0328. Real-axis analytic
Baratoff limit, reducing it by about 10% for the single-plane continuation calculations were partially supported by the Na-
barrier. Fifth, we saw a dramatic deviation from the quasi-tional Computational Science Alliance under Grant No.
classical predictions as the barrier becomes insulating due ©MR990007N (utilizing the NCSA SGI/CRAY ORIGIN
strong electron correlations. The characteristic voltage re2000 and were partially supported by a grant of HPC time
mains high for a larger range of Thouless energy than irfrom the Arctic Region Supercomputer Center. We wish to
metallic junctions, and then decreases very rapidly as thacknowledge useful discussions with T. Van Duzer, J. Ketter-
barrier passes through a critical thickness where the metason, T. Klapwijk, J. Luine, J. Mannhart, I. Nevirkovets, N.
insulator transition occurs. This behavior leads to the possiNewman, J. Rowell, and S. Tolpygo. J.K.F. thanks the hos-
bility of “intrinsic pinholes.” pitality of the IBM, Almaden Research Center, where this
This work shows that correlation effects, and the interplaywork was completed.
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