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Tuning a Josephson junction through a quantum critical point
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We tune the barrier of a Josephson junction through a zero-temperature metal-insulator transition and study
the thermodynamic behavior of the junction in the proximity of the quantum-critical point. We examine a
short-coherence-length superconductor and a barrier~that is described by a Falicov-Kimball model! using the
local approximation and dynamical mean-field theory. The inhomogeneous system is self-consistently solved
by performing a Fourier transformation in the planar momentum and exactly inverting the remaining one-
dimensional matrix with the renormalized perturbation expansion. Our results show a delicate interplay be-
tween oscillations on the scale of the Fermi wavelength and pair-field correlations on the scale of the coherence
length, variations in the current-phase relationship, and dramatic changes in the characteristic voltage as a
function of the barrier thickness or correlation strength~which can lead to an ‘‘intrinsic’’ pinhole effect!.
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I. INTRODUCTION

The theoretical understanding of Josephson junctions
progressed dramatically over the past four decades.1,2 Recent
advances3 have been fostered by nanofabrication of sup
conducting mesoscopic devices,4 which, together with high-
temperature superconductor junctions, have revived inte
in the transport properties of superconductors wea
coupled through a normal region. The interplay betwe
phase-coherent electron propagation in the normal reg
and macroscopic phase coherence of Cooper pairs in su
conductors generates unique quantum interference phen
ena since the proximity effect in such systems is mediated
a phase-coherent Andreev reflection.5,6 However, little atten-
tion has been paid to quantum effects on transport aris
from many-body correlations in the barrier separating
superconductors. Such junctions are frequently encount
in high-Tc systems where both superconducting electro
and the normal region are highly correlated electro
systems.7

Low-Tc junctions have large superconducting cohere
lengths, and effects on the scale of the Fermi wavelength
usually be averaged over to accurately describe junction
a quasiclassical~single-particle! approach. As the coherenc
length of the superconductor becomes smaller and sm
~as in high-Tc junctions! one can no longer ignore the inte
play between oscillations brought on by the Fermi surfa
and those due to pair-field correlations. In addition, as ju
tion sizes are made smaller and smaller, the barrier need
be tuned close to the metal-insulator transition in order
maintain a large characteristic voltage~where properties of a
Josephson junction have been thought to be optimized8!. The
conventional proximity-effect theory cannot account for s
percurrent transport in junctions where the barrier
proaches a metal-insulator transition.7 Therefore, these junc
tions must be described in a full many-body approach t
can properly account for the change in character of
quantum-mechanical system as the correlations driv
metal-insulator transition. The standard single-particle
proaches, like the full quantum-transport theories~scattering
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formalism5,6,9 and Green’s-function techniques10,11! or tradi-
tional quasiclassical Green’s-function methods12 are inad-
equate for this purpose~in general, the quasiclassical ap
proaches do not require a quasiparticle assumption,13 but the
usual quasiclassical Green’s function, employed in nonu
form superconductivity problems, can be expanded in te
of Andreev quasiparticle eigenfunctions and energies14!.

Recent progress in the dynamical mean-field theory15 has
shown how to generalize the local approximation to inhom
geneous systems16 and to Josephson junctions.17 Here we
utilize this formalism to examine what happens as the bar
material is tuned through a quantum-critical transition wh
the single-particle density of states is suppressed to zero
a correlated metal-insulator transition occurs. The model
choose to describe the barrier is the Falicov-Kimball mode18

that has a metal-insulator transition, but the metallic phas
not a Fermi liquid as it is in a more traditional Hubba
model.19 The Falicov-Kimball model is chosen because
describes correlation effects due to strong disorder scatte
~which is present in many Josephson junctions! and because
the dynamical mean-field theory solution does not requ
quantum Monte Carlo simulation, so it is dramatically eas
to analyze than the Hubbard model. The Falicov-Kimb
model possesses only charge fluctuations, and thereby
nores all Kondo-like~spin-flip scattering! effects in the bar-
rier of the Josephson junction. We expect results for
Falicov-Kimball model and the Hubbard model to be simi
in the insulating phase, but to differ in the metallic phase

We find that in the vicinity of the metal-insulator trans
tion, it is important to include self-consistency effects a
many-body effects. The simple analytical treatments5 of Jo-
sephson junctions rely on the usage of rigid bound
conditions,2 i.e., a step-function model for the pair potenti
at a normal-superconductor interface. This is justified in n
row junctions~barrier width smaller than the bulk coheren
lengthj0) where the effect of the constriction induced by t
narrow barrier on the order parameter of the much wi
superconductors is ‘‘geometrically diluted,’’ or in wide junc
tions with high resistivity barriers~in both cases the critica
current of the junction is much smaller than the bu
©2001 The American Physical Society11-1
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critical current of the superconducting leads20!. On the other
hand, a self-consistent solution for the variation of the or
parameter D(z) @i.e., pair-correlation function F(z)
52D(z)/U(z) with U(z) the site-dependent interactio
strength# induced by the current flow or geometry, not on
ensures current conservation and allows one to find the c
cal current in an arbitrary geometry,21 but is unavoidable in
situations where the proximity effect induces appreciable
perconductivity in the normal region,22 or when the thickness
of the weak link is comparable10 to j0. Thus, the microscopic
self-consistent calculations10 reveal a variation ofD on
length scales~like lF , the Fermi wavelength! smaller than
j0 ~which is also of importance in high-Tc junctions where
the quasiclassical approximation,12 j0@lF , does not hold!.
Our junctions are wide, and even in the tunneling limit~i.e.,
with a correlated insulator barrier!, they require a self-
consistent treatment because the many-body effects prev
description in terms of simple phenomenological parame
~like the barrier transparency!. Both self-consistency effect
and many-body correlations are automatically included
the dynamical mean-field theory.

Our results should shed light on high-Tc superconductors
even though we are restricting ourselves tos-wave symmetry
order parameters. This is because the high-Tc superconduct-
ors have short coherence lengths~on the order of a few lat-
tice spacings! and have barrier materials@either from grain
boundaries, ion damage, or doping~such as Co-doping!# that
are correlated and lie close to the Mott metal-insula
transition.7 Our examination ofs-wave superconductors i
this limit illuminates this physical regime without adding th
complicated geometrical effects that arise fromd-wave order
parameters~which will be investigated in a future study!.

In Sec. II we briefly describe the formalism that is used
our computational techniques. Section III contains results
tuning through the quantum-critical point by increasing t
correlation energy at a fixed barrier thickness. We exam
four cases:~i! thin barrier;~ii ! bilayer barrier;~iii ! barrier on
the order of the bulk coherence length; and~iv! thick barrier.
In Sec. IV we tune the metal-insulator transition by incre
ing the thickness of the barrier at fixed correlation ener
We examine a weakly correlated metal barrier, a stron
correlated metal, and a Mott insulator, finding deviatio
from quasiclassical results for the correlated insulator. O
conclusions are presented in Sec. V.

II. FORMALISM

The computations require a self-consistent calculation
the properties of a Josephson junction within a many-b
formalism. To start, we need to have a solution of the b
superconductor, which will provide the ‘‘boundary cond
tion’’ for the simulations in the bulk boundaries of the jun
tion. The bulk problem can be solved directly in both t
absence of a supercurrent and in the presence of a supe
rent ~where there is a uniform variation in the phase of t
superconducting order parameter!. The uniform bulk solution
is then employed to provide the boundary conditions for
junction beyond the region where we determine proper
self-consistently. The inhomogeneous problem consists oN
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self-consistent planes embedded in the bulk supercondu
on each side~see Fig. 1!. The self consistent region consis
of a sandwich ofNb barrier planes surrounded byNSC planes
on each sideN5Nb12NSC ~the word ‘‘barrier’’ is used
since the material through which the weak link between
perconductors is made will have its properties tuned from
metal to an insulator!. In our solutions we chooseNSC530
and Nb ranges from 1 to 80. Since the coherence length
the superconductor isj05\vF /(pD)'4a ~with a the lattice
spacing! the self-consistent superconducting region is a
proximately eight times the bulk coherence length, which
find to be sufficient for our calculations. This approach do
not require us to make any assumptions about the boun
conditions at the interface between the barrier and the su
conductor, since they are determined self-consistently.
approximation is the presence of a~typically small! discon-
tinuity in the supercurrent at the bulk superconductor-s
consistent-superconductor interface. We have found that
superconducting order has always healed to its bulk valu
that point, but sometimes there can be a jump of the su
conducting phase when one nears the critical current of
junction. This discontinuity in the phase~corresponding to a
breakdown of current conservation at the bu
superconductor-simulated superconductor interface! can be-
come large for thick insulating barriers or when one lies
the decreasing-current side of the current-phase diagram~see
below!.

We simulate an inhomogeneous system of stacked sq
lattice planes that correspond to the superconductor-bar
superconductor sandwich of a Josephson junction. A lat
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FIG. 1. Microscopic stacked planar geometry of a Joseph
junction. The sandwich ofN510 planes;NSC54 superconducting
planes coupled to a bulk superconductor on the left andNb52
barrier planes on the right, followed by a furtherNsc54 supercon-
ducting planes coupled to another bulk superconductor on the r
The junction is allowed to have spatial inhomogeneity only with
the N modeled planes, but the calculations are for an infinite s
tem. In our calculations we always takeNSC530 andNb ranges
from 1 to 80.
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TUNING A JOSEPHSON JUNCTION THROUGH A . . . PHYSICAL REVIEW B64 054511
site corresponds to a unit cell~which we normally picture as
being one atomic site!, and we assume a tight-binding pic
ture with the same hopping integralt i j between atomic sites
within a plane and atomic sites between the planes. T
description implies that we are assuming the ‘‘bare’’ kine
energy of the superconductor and the barrier are iden
~note that the renormalized density of states can be very
ferent, especially when the barrier is a correlated insulat!.
Such a condition is not necessary in this formalism, but
include it for simplicity, since it reduces the number of p
rameters that are varied in the junction. The supercondu
is described by an attractive Hubbard model19 in the Hartree-
Fock approximation. This is equivalent to the conventio
~BCS! Bardeen-Cooper-Schrieffer23 @or more accurately, the
Boguliubov–de Gennes24 ~which involves a nonconstan
density of states due to the tight-binding approach!# descrip-
tion, except in this case the energy cutoff is determined
the electronic bandwidth rather than the phonon freque
In fact, the attractive Hubbard model offers richer behav
~that is not employed in this contribution! showing a cross-
over to preformed pairs. By including higher-order proces
in U, through a T matrix25 or a dynamical mean-field
theory26 approach, one can study the crossover27 from BCS
superconductivity, where pair formation and condensat
occur atTc , to preformed pairs that condense at a low
temperature~this should be important in short-coherenc
length superconductors like the high-Tc materials!. The bar-
rier is described by a Falicov-Kimball model18 at half-filling.
This model has two kinds of particles:~i! mobile electrons
and~ii ! static ions. The average concentration of electron
one per site and the average concentration of ions is one
per site. When an electron and an ion occupy the same la
site, there is a Coulomb attractionUFK between them. One
can view this system as a binary alloy ofA and B ions at
50% concentration withUFK being the difference in site en
ergy between theA andB ionic sites~the off-diagonal energy
is assumed to be the same for theA andB ions!. The many-
body problem is solved by taking an annealed average an
essentially the simplest disorder problem~and the simplest
many-body problem!. It undergoes a metal-insulator trans
tion in the bulk28 ~see below!, which is why we adopt it for
study here.

The Hamiltonian for the Josephson junction is then

H5(
i j s

t i j cis
† cj s1(

i
Ui S ci↑

† ci↑2
1

2D S ci↓
† ci↓2

1

2D
1(

is
Ui

FKcis
† cisS wi2

1

2D , ~1!

wherecis
† (cis) creates~destroys! an electron of spins at

site i, t i j is the hopping integral between nearest-neigh
sitesi and j ~we measure energies in units oft), Ui522 is
the attractive Hubbard interaction for sites within the sup
conducting planes,Ui

FK is the Falicov-Kimball interaction
for planes within the barrier, andwi is a classical variable
that equals 1 if anA ion occupies sitei and is zero if aB ion
occupies sitei. A chemical potentialm is employed to deter-
mine the filling. Since we work at half-filling for both th
05451
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superconductor and the barrier, we havem50. Note that if
Ui5Ui

FK50 for all lattice sites, the Hamiltonian describe
tight-binding electrons on a simple-cubic lattice.

The superconducting regions are described by an att
tive Hubbard model withUi522 andwi50 for all super-
conductor sites. The homogeneous bulk superconductor h
transition temperatureTc50.11 and a zero-temperature ord
parameterD50.198. This yields a standard BCS gap ra
2D/(kBTc)'3.6 and a coherence lengthj05\vF /(pD) that
ranges from 3.5a to 4.3a depending on whether we averag
the absolute value ofvF over the Fermi surface or take th
root-mean-square ofvF ~a cubic lattice at half-filling has a
direction-dependent Fermi velocity!; a fit of the decay of the
superconducting order as it is disturbed at t
superconductor-barrier interface17 gives j0'3.7a. The bulk
critical current per unit area isI c,bulk50.0289(2et)/(\a2).
The value of our bulk critical current density is slight
higher than the one determined by a Landau depairing ve
ity vd5D/\kF ( j c,bulk5envd , where the density of particle
is n5kF

3/2p2, assuming a spherical Fermi surface! because
of the possibility to have gapless superconductivity in th
dimensions at superfluid velocities slightly exceeding29 vd
~note thatkF is direction dependent for a cubic lattice
half-filling!. Calculations on our junction are performed at
temperature ofT50.01, which is effectively at the zero
temperature limit (T/Tc'0.09) for the superconducting
properties. The barrier region is described by a half-fill
Falicov-Kimball model in the symmetric limit of̂wi&50.5.
In the bulk, this barrier undergoes a metal-insulator transit
at UFK'4.9 ~since the bandwidth of the simple cubic lattic
is 12, the metal-insulator transition occurs whenUFK is on
the order of one-half of the bandwidth!. This is illustrated in
Fig. 2~a! where we show the single-particle density of sta
for a bulk barrier as a function ofUFK . The density of states
for this model is independent of temperature.28 Since the
system is not a Fermi liquid for nonzeroUFK , one can see
the density of states first develops a pseudogap and the
suppressed entirely to zero as the correlations are incre
and it becomes a correlated insulator. The opening of the
is continuous. In Fig. 2~b! we show the imaginary part of th
local self-energy at low energies. This result is also tempe
ture independent.28 We see that the curvature of the se
energy has the wrong sign in the metallic regime~which is
one reason why it is not a Fermi liquid! and that it diverges
~and becomes ad function! as the system crosses over in
the insulating phase. This occurs because the self-energy
velops a pole at zero energy in the insulating phase. S
behavior can only be seen in a many-body treatment of
system.

The inhomogeneous system is solved by employing
matrix formulation of Nambu30 for the Green’s function
G(r i ,r j ,ivn) for two lattice sitesr i andr j at the Matsubara
frequencyivn5 ipT(2n11),

G~r i ,r j ,ivn!5S G~r i ,r j ,ivn! F~r i ,r j ,ivn!

F̄~r i ,r j ,ivn! 2G* ~r i ,r j ,ivn!
D ,

~2!

and the corresponding local self-energy,
1-3
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S~r i ,ivn!5S S~r i ,ivn! f~r i ,ivn!

f* ~r i ,ivn! 2S* ~r i ,ivn!
D . ~3!

The diagonal and off-diagonal Green’s functions are defin
respectively, as

G~r i ,r j ,ivn!52E
0

b

dt exp~ ivnt!^Ttĉ j s~t!ĉis
† ~0!&,

~4!

F~r i ,r j ,ivn!52E
0

b

dt exp~ ivnt!^Ttĉ j↑~t!ĉi↓~0!&,

~5!

whereTt denotes time ordering int andb51/T.
The self-energies and Green’s functions are coupled

gether through Dyson’s equation,

G~r i ,r j ,ivn!5G0~r i ,r j ,ivn!

1(
l

G0~r i ,r l ,ivn!S~r l ,ivn!

3G~r l ,r j ,ivn!, ~6!

where we have included the local approximation for the s
energy, S(r i ,r j ,ivn)5S(r i ,ivn)d i j . The noninteracting
Green’s function, G0(r i ,r j ,ivn) is diagonal in Nambu
space, with upper diagonal component given by

G0~r i ,r j ,ivn!5E d3k
eik•(r i2r j )

ivn1m2«k
. ~7!

FIG. 2. ~a! Electronic density of states for the bulk barri
~simple-cubic lattice! described by the Falicov-Kimball model i
the local approximation. The value ofUFK ranges from 1 to 7 in
steps of 1. AsUFK increases, the density of states first develop
pseudogap and then a real gap.~b! Absolute value of the imaginary
part of the local retarded self-energy for low frequency on the r
axis. See how the curvature has the wrong sign for a Fermi liq
and how the imaginary part diverges at zero frequency as one
through the quantum-critical point and a pole develops in the s
energy.
05451
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We emphasize thatG0 is the noninteracting Green’s functio
and is not the effective medium of an equivalent atom
problem.

Details of the computational scheme have been descr
elsewhere.17 Here we simply summarize the algorithm. Th
junction is inhomogeneous in thez direction only, since it
has translational symmetry within each plane. The algorit
begins by converting the three-dimensional system to
quasi-one-dimensional system using the method of Pott
and Nolting.16 We perform a Fourier transformation withi
each plane to determine the mixed-basis Green’s func
@defined in terms of two-dimensional momenta (kx and ky)
and thez-coordinate of the plane# under the assumption tha
the electronic self-energy is local~but can vary from plane to
plane!. For each momentum in the two-dimensional Br
louin zone, we have a one-dimensional problem with
sparse matrix, since the only coupling between planes is
to the hopping to each neighboring plane. The infinite ‘‘trid
agonal’’ matrix can be inverted by employing the renorm
ized perturbation expansion,31 which calculates both the
single plane and the nearest-neighbor Green’s function
final summation over the two-dimensional momenta p
duces the local Green’s function and the Green’s function
propagation from one plane to its neighboring plane. T
dynamical mean-field theory is then employed to calcul
the local self-energy from the local Green’s function a
then the local Green’s function is calculated from inverti
the quasi-one-dimensional matrix. These two steps are
peated until the Green’s functions have converged to a fi
point. At the fixed point, we have a self-consistent soluti
of the inhomogeneous problem that allows for nonunifo
variations in both the pair-field correlations~or equivalently
the superconducting order parameter! and in the phase. One
important consistency check is total current conservation
each plane in the self-consistent region. All calculations c
serve current except in extreme cases for thick insula
barriers~see below!. But there can be discontinuities in th
current at the bulk-superconductor–self-consistent super
ductor interface~since this is far from the Josephson jun
tion, it has a negligible effect on the results!. This computa-
tional algorithm is a generalization of the convention
Boguliubov–de Gennes approach to allow for correlatio
within the barrier.

This algorithm can be performed for the normal state
for the superconducting state and can be performed on
imaginary or real frequency axes. We work on the real a
in order to calculate the normal-state resistance. Since
have a many-body system, we must use Kubo’s formula
the conductivity. Details for this calculation appear
elsewhere.17 Our formalism calculates the conductivity b
neglecting vertex corrections and evaluating the sim
bubble diagram ~which becomes exact in the infinite
dimensional limit32!.

III. TUNING THE CORRELATION STRENGTH
THROUGH A METAL-INSULATOR TRANSITION

We begin by presenting results for a fixed barrier thic
ness, and vary the Falicov-Kimball coupling strength. W

a

l
id
es
f-
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TUNING A JOSEPHSON JUNCTION THROUGH A . . . PHYSICAL REVIEW B64 054511
study four different systems:~i! a thin barrier withNb51;
~ii ! a bilayer barrier withNb52; ~iii ! a barrier on the order o
the bulk superconducting coherence lengthNb55; and~iv! a
thick barrierNb520.

A. Thin barrier „NbÄ1…

A single-plane barrier must be in the very strong insul
ing limit before it can severely affect the transport perpe
dicular to the plane. Hence we expect to have to increase
Falicov-Kimball interaction to be much larger than 5 befo
the junction starts to display ‘‘insulating’’ behavior. Sim
larly, we expect the critical current to be close to the bu
critical current, because the plane is so thin~at least for me-
tallic barriers!. In this regime, self-consistency is critical i
determining the properties of the junction.20

We begin by examining the proximity effect within th
junction. Since the Hubbard attraction is zero within the b
rier, the superconducting gapD, which is proportional to the
Hubbard attraction, identically vanishes there. But we c
still examine the superconducting pair-field correlations
plotting the anomalous average at equal timesF(t501).
This Green’s function is continuous as one passes thro
the superconductor-barrier interface. We showF(01) in Fig.
3. Notice how the correlated metal (UFK,2.5) appears jus
as we expect it to: the superconductivity is smoothly d
pressed as we approach the barrier and then decreases w
the barrier as correlations increase. As the bulk barrier en
the pseudogap regime (2.5,UFK,5) we see small oscilla
tions appear in the superconductor, and the superconduct
continues to be depressed within the barrier. In the correla
insulator regime (5,UFK,8) the oscillations continue to
grow and the superconductivity within the barrier is sma
but rather insensitive toUFK . In the strong insulating regime
(UFK.8), we find that the oscillations become large and

FIG. 3. Proximity effect for a thin barrier (Nb51). The anoma-
lous average is plotted versus plane number~the insulating barrier
lies at plane 31!. The numbers indicate the value ofUFK ~1, 2, 3, 4,
6, 8, 12, 16, and 20!; the anomalous average monotonically i
creases withUFK in the range between planes 29 and 30. Note h
oscillations develop as the correlations increase until the super
ductivity ultimately becomesenhancedin the barrier for the strong
insulator.
05451
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superconductivity eventually becomesenhanced within the
barrier. We believe that the oscillations and this enhan
ment of the anomalous average are arising from a sur
effect of the superconducting half planes—each half pla
develops oscillations near the surface~as the barrier become
more insulating!.

We show a plot of the Josephson critical current, t
normal-state resistanceRn , and the characteristic voltag
I cRn for the single-plane barrier. The plots are on a semilo
rithmic scale. The critical current drops by about two orde
of magnitude asUFK increases from 0 to 20. This occur
even though the anomalous average increases in the stro
insulating limit. The plot ofRn shows the expected increas
as the correlations increase. But even at a large value
UFK520, the resistance only increases by about two ord
of magnitude over the noninteracting limit. Finally, we sho
the characteristic voltageI cRn in Fig. 4~c!. Its value does not
change much, but shows a mild optimization for the mod
ately correlated metallic phase. In the metallic limitU→0,
the I cRn product approaches the product of the bulk critic
current times the Sharvin resistance, which is 0.287t/e
51.45D/e. This result is different from the clean Kulik
Omelyanchuk limit33 of pD/e because we are treating a di
ferent geometry from a point contact~which can be de-
scribed as a ‘‘plane’’ contact!. As the correlations increas
within the metallic phase, the characteristic voltage peaks
UFK'2 at a value somewhat smaller than the dirty limit
the Kulik-Omelyanchuk formula33 for a superconducting
point contactI cRn50.66pD/e at T50. In fact, there are two
possibilities for theI cRn product of a short contact with dif
fusive scattering. Namely, in the single-particle picture sc

n-

FIG. 4. ~a! Critical current,~b! normal-state resistance, and~c!
characteristic voltage of the Josephson junctions as a function o
Falicov-Kimball interaction within the barrier. The circular symbo
are forNb51 and the squares are forNb52. Note how the critical
current decreases and the junction resistance increases as exp
and how the characteristic voltage does not depend too strongl
the correlation strength. The dependence on correlation strengt
the bilayer junction is much stronger than for the thin junction. T
dashed line in~c! is the Ambegaokar-Baratoff prediction.
1-5
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tering properties of a normal region can be described by
universal distribution of transparenciesD ~defined as the dis
tribution of eigenvalues of the matrixtt†, where t is the
transmission matrix connecting incoming to outgoing tra
verse propagating modes5! given by either the Dorokhov
expression34 PDo(D)5(G/2GQ)@DA12D#21 ~valid for
most bulk conductors!, or the Schep-Bauer distri
bution35 PSB(D)5(G/pGQ)@D3/2A12D#21 ~valid for
subnanometer-thick barriers36!. Here,GQ52e2/h is the con-
ductance quantum andG5*0

1dDP(D)D is the disorder-
averaged conductance. The total current is found by integ
ing the current carried by a single channelI (D) ~with a
transparency ofD) over the distribution functionP(D) as
shown in the multiple Andreev reflection theory.9 This inte-
gral, I 5*0

1dDP(D)I (D), then leads to the following char
acteristic voltages:I cRn50.66pD/e for PDo(D) and I cRn
50.61pD/e for PSB(D). We find that in the case of a single
plane barrier made of an FK correlated metal, the larg
I cRn ~obtained forUFK52) is slightly below the value de
termined byPSB(D). This can be attributed to effects o
self-consistency and the ‘‘inverse’’ proximity effect, or to th
fact that such an interface cannot be described by the Sc
Bauer distributionPSB(D).

As the junction barrier becomes more insulating, the ch
acteristic voltage becomes essentially constant as expe
from the Ambegaokar-Baratoff limit37 pD/(2e) ~dashed
line!. But the magnitude of the characteristic voltage is a
proximately 15% smaller than that predicted by the
@pD/(2e) versus our calculated result of 1.31D/e#. Once
again, this small reduction arises from the self-consiste
and from the~nonspherical! Fermi-surface averaging of th
transport.

B. Bilayer „NbÄ2…

We see similar behavior in the bilayer junctions withNb
52. The correlation strength needed to make an insula
barrier is smaller here, because the barrier is thicker. In
5, we plot the anomalous average as a function of the p
number. The planes numbered 31 and 32 are where the
rier lies. The behavior is like that seen in the thin barr
case—the correlated metal (UFK,2.5) and pseudogap re
gions (2.5,UFK,5) are similar. The correlated insulato
regime, where the oscillations in the anomalous average
crease, but its value within the barrier is rather insensitive
UFK (5,UFK,7) and the strong insulating regime (UFK
.7) shows an enhancement of the anomalous ave
within the barrier at an even larger value ofUFK ~starting at
UFK'14).

In Fig. 6, we show~a! the current versus phase and~b! the
renormalized current-phase relation. As the barrier beco
more insulating, we recover the expected result thatI (u)
5I csinu because all of the phase difference takes place o
the barrier~in general, the majority of the phase differen
occurs over the central plane of the barrier!. More metallic
barriers have the maximum in theI (u) curve pushed to val-
ues ofu less thanp/2 as expected due to the self-consisten
and the proximity to the bulk critical current.
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The critical current, normal-state resistance, and cha
teristic voltage appear in Fig. 4. The critical current d
creases much more rapidly for the bilayer than for the sing
layer junction. The normal-state resistance increases m
rapidly as well, since the bilayer has a resistance that is m
more than two times theNb51 resistance in the strongl
insulating limit. The characteristic voltage is quite intere
ing, because it has nonmonotonic behavior. There is a w
maximum for the moderately correlated metal~near UFK
53), but in the insulating region the voltage increases l
early with the correlation strength, attaining values 40
higher than the Ambegaokar-Baratoff limit. This is quite d
ferent from what we expect—a constant characteris
voltage—and the characteristic voltage shows no sign
saturating even at a correlation energy ofUFK520. Of
course, theI -V characteristic must become hysteretic on
UFK is large enough.

FIG. 5. Anomalous average for differing correlation streng
and Nb52. Note how similar these results are to the thin barr
case—how the anomalous average initially drops within the bar
then oscillations develop, followed by an enhancement for
strongest correlation strengths.

FIG. 6. Current-phase relations forNb52. ~a! Current-phase
relation. Values ofUFK include 1, 2, 3, 4, 5, 6, 8, 10, 12, and 1
~labels included for some of the curves!. ~b! Normalized current-
phase relation. Note how the expected sinusoidal dependence e
for insulating barriers.
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C. Moderately thick barrier „NbÄ5…

The barrier region~with Nb55) is chosen to be slightly
thicker than the bulk coherence lengthj0'4a. Here we ex-
amine properties of a junction outside of the regime of m
analytic approximations. In Fig. 7, we plot the anomalo
average versus plane number~the barrier lies at planes num
bered 31 to 35!. These results are similar to those seen
fore. In the weak correlation regime (UFK,2.5), the anoma-
lous average is a smooth function that decreases as
correlations increase. Oscillations begin to develop for
,UFK,4.5, but the anomalous average continues to
crease within the barrier. As the correlations increase furt
UFK.5, the anomalous average first increases at the ce
of the barrier, then a two-peak structure emerges, which
a large amplitude oscillation and a minimum at the cen
plane of the barrier. We can see clearly here that the osc
tory behavior seen in the previous cases is arising from
fects occurring at the superconductor-barrier interface as
barrier is tuned through the quantum-critical point~this is
further confirmed with theNb520 data below!.

The current-phase relation is similar to that seen for
bilayer, and will not be shown here. The normalized curre
phase relation, is plotted in Fig. 8. This result is quite int

FIG. 7. Anomalous average plotted versus plane number for
Nb55 junction. The values ofUFK chosen are 1, 2, 3, 4, 5, 6, 7, 8
and 10. Note how the large oscillations are now separated f
each other and are clearly tied to the superconductor-barrier in
face.

FIG. 8. Normalized current-phase relation. Note how the ma
mum lies at an angle less thanp/2 for UFK51,2, increases to a
value larger thanp/2 for moderate correlationsUFK53,4 and then
settles down top/2 for larger correlationsUFK.5 ~curves with a
dotted line!.
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esting. In the weakly correlated regimeUFK,2.5, the maxi-
mum of the current-phase relation occurs at a phase sm
thanp/2 as expected for a thin metallic barrier. As the co
relations increase, the maximum first overshootsp/2 (UFK
53,4), and then returns to its expected location atp/2 for
UFK.5. There is a delicate interplay between the strength
the correlations and the location of the maximum of t
current-phase relation.

The critical current, normal-state resistance, and cha
teristic voltage are plotted in Fig. 9 forNb55 ~diamond!. It
is difficult to locate the metal-insulator transition from th
Nb55 critical current data~except by focusing on the inflec
tion point!, but the transition is clearer in the resistanc
which has a sharp increase in the range fromUFK55 to 6.
The characteristic voltage has striking behavior. Starting
value about 20% less than the Ambegaokar-Baratoff limit
the metallic regime, the voltage initially decreases with c
relation strength, then has a sharp increase~by over 100%! at
the metal-insulator transition, reaching a maximum alm
40% higher than the Ambegaokar-Baratoff result, until it
nally starts to decrease as correlations increase further,
tinuing to decrease at the largest value of correlations wh
we performed calculations. Hence, junctions in this regi
do see an enhancement of the characteristic voltage on
insulating side of the metal-insulator transition. The behav
is quite complex.

e

m
r-

i-

FIG. 9. ~a! Critical current,~b! normal-state resistance, and~c!
characteristic voltage of theNb55 ~diamond! junction. The metal-
insulator transition can be seen in the critical current~a! and~more
easily! in the resistance~b!, as the regions where the slope of th
curves changes most dramatically. In the strongly correlated in
lating regime, we find the exponential decay of the current~and
increase of the resistance! has a different slope than in the corre
lated metal regime. The characteristic voltage~c! has complex be-
havior: it first decreases in the metallic regime, then has a sh
increase at the metal-insulator transition, followed by a decreas
the correlations increase further~the Ambegaokar-Baratoff predic
tion is the dashed line!. Note how the characteristic voltage is max
mized just on the insulating side of the metal-insulator transiti
and how the maximal value is about 40% larger than
Ambegaokar-Baratoff prediction.
1-7
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D. Thick barrier „NbÄ20…

The thick-barrier junctionNb520 behaves in many re
spects like the bulk barrier material. The transition from
metal to an insulator occurs at approximatelyUFK55 as in
the bulk, and the junction rapidly develops oscillations in t
anomalous average atUFK'4. This is shown in Fig. 10.
Note how the correlated metal regime behaves entirely
expected—the anomalous average decreases as one
proaches and then enters the barrier, but it never gets
small in the metallic regime because of the proximity effe
As the correlations increase, oscillations first develop in
superconductor and then move into the interfacial regi
penetrating about one coherence length into the barrier
fore they are rapidly suppressed within the barrier. We
the same phenomenon as in the thinner junctions: in the
sulating regime, the anomalous average can increas
above it bulk value within the barrier, but only close to t
superconductor-insulator interface. As the correlations
crease, the peak of the anomalous average grows.

The current-phase relation is essentially sinusoidal
these junctions. For the weakly correlated metals, the pea
the I (u) curve occurs just abovep/2, but as it becomes mor
insulating, the peak moves downward towardp/2 and the
current-phase relation becomesI (u)5I c sinu, as expected
There is a computational difficulty that enters when we are
the strong-insulator regime for a thick-barrier junction. He
the critical current gets exponentially small, and the com
tational algorithm loses current conservation through the
tire junction ~when the calculation is halted at a se
consistency error of one part in 107 for the anomalous
average att50). Instead, we see an exponential decreas
the current from the value fixed at the bulk superconducto
the value within the barrier. The current is constant with
the barrier itself, and the current-phase relation is a nice
curve, so we believe that the critical current found from o
algorithm is accurate, even though, the boundary conditi
with the bulk are trying to force more current through t
junction than it can have; i.e., the current discontinuity o

FIG. 10. Anomalous average for a thick junctionNb520. Val-
ues ofUFK included are 1, 2, 3, 4, 4.5, 5, 5.5, 6, 6.5, and 7. N
how the metallic regime behaves as expected, but oscillations
velop in the insulating regime that become huge just inside
barrier.
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curs far from the barrier region. This scenario is similar
that of Josephson’s original analytic scheme,1 since in his
case, there is no phase gradient over the superconductor
they carry no current, but there is current in the barrier, si
there is a phase difference across it.

The critical current, normal-state resistance, and cha
teristic voltage appear in Fig. 11. One can see the me
insulator transition clearly in theI c curve. Within the metal,
the critical current has an exponential dependence onUFK ,
within the insulator it has a different exponential depe
dence. In the transition region, it decreases most sharply.
believe the reduction in the rate of decrease in the crit
current asUFK is increased into the correlated insulator r
gime arises in part from the fact that the effective juncti
thickness is thinner than the true junction thickness due
the oscillations in the anomalous average that develop wi
the barrier region. The resistance shows the expected be
ior as well. One can clearly see the metal-insulator transit
as the region where the conductivity changes its functio
dependence sharply. Note, however, that the character
voltage is severely affected by the metal-insulator transiti
since the decrease in the critical current far outweighs
increase in resistance, and the characteristic voltage
creases by many orders of magnitude as one enters
strongly correlated insulator. One reason why this occur
because the resistance for the correlated insulator dep
strongly on temperature. AsT→0, the resistance become
very large, but it can be sharply reduced as the tempera

e-
e FIG. 11. ~a! Critical current,~b! normal-state resistance, and~c!
characteristic voltage of theNb520 ~triangle! junctions. Note how
the thick junction behaves much like the bulk material. The me
insulator transition can be clearly seen in the critical current and
the resistance, as the regions where the slope of the curves cha
most dramatically. In the strongly correlated insulating regime,
find the exponential decay of the current~and increase of the resis
tance! has a different slope than in the correlated metal regim
Note that the thick barrier has a sharply suppressed characte
voltage because the decrease inI c is much sharper than the increas
in Rn . We believe this occurs because the temperature depend
of the resistance is strong, even at these low temperatures.
dashed line is the Ambegaokar-Baratoff prediction.
1-8
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TUNING A JOSEPHSON JUNCTION THROUGH A . . . PHYSICAL REVIEW B64 054511
increases. Hence, even though the critical current is at
zero-temperature limit forT/Tc50.1, the resistance still ha
strong temperature dependence in this regime, which ca
the characteristic voltage to be sharply suppressed. Per
this behavior plays a role in some junctions that appea
work well at low temperatures, but then fail as the tempe
ture is increased, because on the insulating side of the m
insulator transition, the resistance has strong temperature
pendence.

E. Summary of tuning the correlation energy

We have discovered a number of interesting features
Josephson junctions for short-coherence-length super
ductors that have their barrier tuned through the quant
critical point of a metal-insulator transition. The most stri
ing feature we find is that in the insulating regime, there
oscillations with a wavelength on the order of the Fer
wavelength, that appear at the superconductor-barrier in
face and decay on the order of the coherence length on e
side of the interface. They can have very large amplitu
~on the order of the bulk value of the anomalous avera!
within the barrier. We believe that these oscillations are
curring from a ‘‘surface’’ effect intrinsic to the supercon
ductor, and depending on how close the two interfaces
~determined by the thickness of the barrier! they are either
independent of each other or can interfere. Note that th
results differ from those found in metallic junctions wi
‘‘geometrically diluted’’ barriers.10 There, oscillatory behav
ior was seen even for metallic barriersUFK50, and the de-
cay length was much longer, leading to a number of cyc
before the oscillations are damped. We also found interes
results for the current-phase relations. As expected,
junctions typically haveI c occur at a phase differenc
smaller thanp/2, but in all but the single-plane junction, a
the correlations increase, the maximalI c occurs atp/2 and
the curve becomes sinusoidal. For thick barriers, we find
maximum occurs larger than, but close top/2 for metallic
barriers and then migrates towardsp/2 as the barrier be
comes more insulating. Finally, we found a different beh
ior in the characteristic voltage of a junction. The charac
istic voltage is limited in the metallic regime by the bu
critical current of the superconductor multiplied by the jun
tion resistance for a clean barrier~the so-called ‘‘planar con-
tact’’ limit !. This value is approximately 1.31D/e, which is
about 8% smaller than the Ambegaokar-Baratoff result for
insulating barrier. As the correlations increase,I c decreases
to be much below the bulk critical current of the junctio
andRn increases. The characteristic voltage has a rich beh
ior. For the thin junction (Nb51) it is maximized in the
correlated metallic regime, and becomes constant for the
sulator. As the thickness increases toNb52, we continue to
see a small maximum in the metallic regime, but the int
esting behavior is that for a wide range of correlati
strengths, the Ambegaokar-Baratoff result does not hold,
the characteristic voltage increases with correlation stren
For barrier thicknesses on the order of the correlation len
(Nb55), the behavior is even more complex. The volta
initially decreases with correlation strength, then has a sh
rise at the metal-insulator transition, followed by a maximu
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for the correlated insulator that ultimately decreases as
correlations increase further. The Ambegaokar-Baratoff
gime does not hold here either. Finally in the thick-juncti
regime (Nb520), the resistance has a strong dependence
temperature in the insulating regime, and even at what
low temperature for the superconducting properties, the c
acteristic voltage can decrease significantly as the corr
tions increase. The conclusion that can be drawn from thi
that one requires a careful tuning of the thickness of
barrier, the proximity to the metal-insulator transition, a
the operating temperature to optimize the properties o
junction. This idea is further supported in the next sectio

IV. TUNING THE JUNCTION THICKNESS THROUGH
THE METAL-INSULATOR TRANSITION

Here we present results on tuning the junction from
thin to thick barrier at three values ofUFK : ~i! UFK52 a
weakly correlated metal;~ii ! UFK54 a strongly correlated
~pseudogap! metal; and~iii ! UFK56 a correlated insulator
In the correlated metal case, the junction can be viewed
superconductor–normal-metal–superconductor~SNS! weak
link,2 while the correlated insulator barrier eventually lea
to a superconductor-insulator-superconductor~SIS! junction.
In the case withUFK52, the normal region is a non-Ferm
liquid metal that can be described as dirty metal~resistivity
rn.240 mV cm with the assumption that the lattice co
stant is 3 Å), for UFK54, we get a ‘‘bad metal’’ (rn
.2700 mV cm; such huge resistivities do not necessar
require electronic correlations,38 but are also seen in mode
calculations involving disordered Fermi liquids39!. The early
experimental40 and theoretical41 work on SNS junctions re-
vealed that the supercurrent in these structures arises
the proximity effect: superconducting correlations are gen
ated in the normal region with the density of pairs decreas
exponentially from the SN interface on a scale set by
normal metal coherence lengthjn5(\D/2pkBT)1/2 ~here,D
is a classical diffusion constant!. The equilibrium current
then flows at zero voltage because of the overlap of pair-fi
wave functions from the two superconductors. Recent me
scopic advances have supplemented this ‘‘crude’’ pict
with the analysis of energy-resolved quantities12,42 that be-
come important for phenomena on small length scales at
temperatures and voltages.43 The initial theoretical
studies41,44 relied on Ginzburg-Landau theory~which for-
mally requiresT to be close toTc) in the dirty limit (j0@ l ,
with l the mean free path! and for long junctions (Nb@jn).41

In the ensuing approaches, based on quasiclassical Gre
function formalism, junctions with more general paramet
were described,2,45 where the proximity effect on the supe
conducting side~i.e., a depression of the order parame
near the SN interface! was taken into account46 ~such effects
are treated from the onset in self-consistent studies like ou!.
Thus, the conventional proximity-effect theories show th
the critical current is determined primarily by the behavior
the superconducting order parameter when crossing a
boundary, while its thickness dependence, and tempera
dependence are affected by the way quantum coherenc
lost in the normal metal. However, it is only recently th
1-9
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J. K. FREERICKS, B. K. NIKOLIĆ, AND P. MILLER PHYSICAL REVIEW B 64 054511
mesoscopic studies47 have emphasized the importance of t
Thouless energyETh5\D/Nb

252pkBTjn
2/Nb

2 for the prox-
imity effect.12 Although ETh is determined by the classica
diffusion time Nb

2/D for a particle to cross the sample,
plays a prominent role in various quantum phenomena
countered in disordered~normal! metal electron physics.48 In
the long junction limitD@ETh , the critical current is set by
ETh—according to the recent quasiclassical~non-self-
consistent! calculations47 eIcRn(T50)510.82ETh . In the
short junction limitETh@D, for T→0, the productI cRn is
expected to be given by the diffusive limit 0.66pD/e of the
Kulik-Omelyanchuk formula,33 or 1.92D/e in the case of
dirty interface with Schep-Bauer distribution o
transparencies9,36 ~as discussed in Sec. III!. The high versus
low-temperature limit is set47 by the ratio ofkBT and ETh ,
or, equivalently,Nb andjn , sinceNb5jn is defined to be the
length scale at whichkBT5ETh .

While the energy gapD is determined by the~attractive!
electron-electron interaction in the superconducting lea
ETh is a single-electron concept, and as such is not dire
applicable to our correlated metal~which has no well-defined
Landau quasiparticles!. Nevertheless, it is a common practic
in experimental studies7 to extract estimates for such ‘‘qua
siparticle’’ parameters7 using measured values ofrn , and
check if the conventional treatment can describe the junct
We extract a diffusion constantD from the Einstein relation
1/rn52e2N(EF)D @with N(EF) the ~single-spin! interacting
density of states at the Fermi energy#. This is independent o
band-structure effects~classicallyD5vFl /3, but D can also
be defined quantum-mechanically from the Kubo formula
an exact state representation,39 which then allows one to us
a diffusivity even when the semiclassical picture of t
mean-free pathl breaks down!. For the dirty-metal case
UFK52 we find DUFK52'2ta2/\ and for the bad-meta

case we findDUFK54'0.32ta2/\. The corresponding norma

metal coherence lengths arejn'5.6a and jn'2.3a ~at T
50.01) in the former and the latter case, respectively.

We calculate the critical current for ten thicknesses ra
ing from Nb51 to Nb580 ~1, 2, 5, 10, 15, 20, 30, 40, 60
and 80! and fit to the following form:

I c5ANb
xexp@2Nb /jb#, ~8!

with A a constant,jb the coherence length in the barrier~the
symboljb is used here to differentiate it from the phenom
nological jn determined from a diffusive metal analog
above!, andx an exponent. We find that the fits vary from th
analytic forms for the thick-barrier limit (x51). For ex-
ample we find that the coherence length decreases fromjb
56.66 for UFK52, to jb52.96 for UFK54, to jb50.665
for UFK56. Similarly, the exponent varies fromx520.40
for UFK52, to x520.45 for UFK54, to x520.53 for
UFK56. The value for the exponent never becomes clos
the asymptotic result ofx51 for a thick junction. But the
coherence length behaves as expected—as the scatterin
creases, the coherence length decreases, becoming
small as the barrier goes through the metal-insulator tra
tion and becomes a correlated insulator~in fact, our values
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for jb are only about 20% larger than the estimates forjn
given above!. Note that this fitting procedure is not we
defined, since we do not have data over many decade
barrier thicknesses and because we can trade off some ef
of the fitting by simultaneously changing the exponent a
the coherence length. But in all cases shown, we fit all of
data fromNb55 to Nb580 to an accuracy of better tha
10% for the critical current~the accuracy decreases to abo
25% for Nb51). This fitting scheme with nontrivial expo
nents is definitely more accurate than the best fits one
achieve withx51 or x50. We find the case withUFK54 to
be the toughest case to fit to this form~the spread in error is
about 10% here, with 25% error forNb51), while the
UFK52 case is the easiest, with a fit for all valuesNb51 to
80 being accurate to 5%.

In Fig. 12, we plot the characteristic voltage~in units of
D/e) versus the ratio of the barrier coherence length~deter-
mined from the fit of the critical current and equivalent to t
Thouless length! to the barrier thickness. This is our analo
of the recent results of a quasiclassical theory,47 which show
deviations of the Kulik-Omelyanchuk relation for long diffu
sive junctions. The results for metallic junctionsUFK52,4,
have the same shape as seen in the quasiclassical theory
they nearly scale with each other~the scaling could be im-
proved by slightly changing the barrier coherence leng!.
The correlated-insulator results,UFK56, however, show a
different functional shape, with the transition from the nea
constant characteristic voltage to the region where it
creases sharply, occurring much more rapidly than in
metallic case~and having a small ‘‘oscillation’’ at the ‘‘tran-
sition’’ !. One can be more quantitative in the comparis
with the quasiclassical predictions: in the long-junction lim
the characteristic voltage is predicted47 to behave like

FIG. 12. Characteristic voltage plotted versus the inverse of
effective thickness of the barrier on a log-log plot. Using the cor
lation length extracted from the fit, allows us to plot the charac
istic voltage against a measure of the Thouless energyETh

52pkBTjb
2/Nb

2 . Such a plot should show scaling behavior, acco
ing to the quasiclassical theory; we find this to be approximat
true for the metallic junctions (UFK52, circles; andUFK54,
squares!, but the correlated insulating barrier has a much shar
dependence on the barrier thickness~including an ‘‘oscillation’’!
and the scaling of the quasiclassical theory breaks down. Note
sharp onset of insulating behavior at a thicknessNb'7 for UFK

56. Inset is the resistance versus barrier thickness forUFK56.
Note the sharp location of the metal-insulator transition n
Nb57.
1-10
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I cRn5A8Nb
x8exp@2Nb /jb#, ~9!

with the coherence length determined from the functio
dependence of the critical current onNb in Eq. ~8!. The
quasiclassical prediction givesA8'5.49D/jb

2 and x851.
While we can fit reasonably well to this functional form
the regime wherejb /Nb,1, we typically find the constan
A8 is about three to five times larger and the exponentx8 is
about a factor of 2 smaller than the quasiclassical predict
for the correlated metal cases (UFK52 or 4!. The parameters
deviate significantly for the correlated-insulator phase~where
the fitting breaks down severely forjb /Nb.0.1).This shows
that the correlated-insulator regime cannot be described
the conventional quasiclassical approach.There appears to
be a critical length at which point the characteristic volta
changes from an essentially constant dependence on the
rier thickness to a rapidly decreasing dependence on
thickness~which is Nb'7 for UFK56). The difference in
shapes seen in Fig. 12 arises mainly from the behavior of
resistance, which assumes a linear scaling with the thickn
Nb in the metallic regime and in the thick insulating regim
~although it has an additional constant there, when extra
lated toNb50), but has a rapid crossover to the linear
gime for the thin insulator~semilogarithmic plot shown in
the inset to Fig. 12!.

One may wish to conclude from Fig. 12 that correlat
insulating barriers are superior to metallic barriers since
parameterjb /Nb can be reduced to much smaller values th
in the metallic cases before the characteristic voltage
comes reduced. But such a view is erroneous, because
significantly smaller values ofjb for the insulating barriers
means that the barrier thicknesses where the characte
voltage starts to decrease are indeed smaller for the co
lated insulator. What can be inferred from the figure, ho
ever, is that once one reaches the critical thickness where
barrier has a metal-insulator ‘‘transition,’’ the characteris
voltage is very strongly dependent on the thickness of
junction. Hence variations in the thickness of the barrier c
have a large effect on the performance of a junction wit
correlated-insulator barrier. In particular, variations in t
thickness could make junctions appear to have ‘‘pinhol
because slightly thinner areas can have greatly enhance
sephson coupling. This can possibly explain why it appe
to be more difficult to attain small spreads in junction pro
erties for high-Tc-based junctions, even if the barrier is fre
of conventional pinholes because the proximity to the thi
ness triggered metal-insulator transition generates ‘‘intrin
pinholes’’ within the correlated insulator.

It is also interesting to examine how the anomalous av
age behaves as a function of the thickness of the barrie
well. We find the following result shown forUFK54 in Fig.
13: once the thickness is larger than the bulk cohere
length ~i.e., for all barriers simulated withNb>5), we find
that the shape of the anomalous average is identical fo
thicknesses for the planes that lie within the superconduc
region and that penetrate two to three planes into the bar
What this tells us is that the thickness of the barrier is
influencing the shape of the anomalous average ex
within the barrier itself, so the oscillations are a property
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the bulk superconductor coming in contact with the barr
These results are also true for theUFK52 and UFK56
cases, but we do not show those results here, becaus
agreement is essentially the same as seen in theUFK54
figure below.

V. CONCLUSIONS

In this work we have examined what happens as the b
rier of a junction is tuned from a metal to an insulator f
short coherence-lengths-wave superconductors. We studie
the transition both as a function of the correlation stren
and of the barrier thickness. We found a number of intere
ing results. First, in regimes where the critical current dens
approaches that of the bulk superconductor, self-consiste
is important in determining the current-phase relation, an
is modified dramatically from simple sinusoidal behavior. A
the correlations increase, and the current density decrea
the sinusoidal behavior is restored, but in some cases,
maximum of the current-phase curve overshootsp/2 and
then becomes sinusoidal only at an even larger correla
strength. Second, we found that as the barrier becomes m
insulating, the anomalous pair-field average develops os
lations on the order of the Fermi wavelength, which can
quite substantial in amplitude~up to about twice the bulk
anomalous average!. These oscillations are tied to th
superconductor-insulator interface, and depend little on
thickness of the barrier once the thickness is larger t
about twice the bulk coherence length. Third, we found t
the critical current has a nontrivial dependence on the th
ness of the barrier—while it decays exponentially with thic
ness, it also has a power-law prefactor that varies with c
relation strength, and deviates sharply from t
quasiclassical prediction. The barrier coherence length

FIG. 13. Anomalous average versus plane number for (UFK

54) and thicknesses ranging fromNb51, 2, 5, 10, 15, 20, 30, and
40 ~the thickness of each barrier is obvious from the range of
plots!. Note how the shapes of these curves are identical for
regions close to the superconductor-barrier interface at pla
25–34 ~and within the superconducting region to the right or t
left for the right or left interface, respectively!. Since this shape
stops changing afterNb52, we conclude that the oscillations ar
an intrinsic property of the bulk superconductor terminated on
barrier.
1-11
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creases, of course, as the correlation strength increases
the insulating regime. Fourth, we found that the characte
tic voltage has rich behavior. It is maximized for weak
correlated metallic barriers for thin junctions and t
Ambegaokar-Baratoff result is recovered at strong corre
tions. As the barrier thickness increases, the maximum in
metallic region is reduced, but the Ambegaokar-Baratoff
sult fails as the correlations increase, with the character
voltage increasing linearly withUFK over a wide range of
correlation strengths. The intermediate thickness juncti
have the most interesting behavior—the voltage initially d
creases, has a sharp increase at the metal-insulator trans
and then decreases in the large correlation limit. Thick in
lating barriers have very low characteristic voltages a
strong temperature dependence, as expected at finite
peratures, since the junction resistance decreases rapid
the temperature is increased in the insulating regime. We
saw that self-consistency can renormalize the Ambegao
Baratoff limit, reducing it by about 10% for the single-plan
barrier. Fifth, we saw a dramatic deviation from the qua
classical predictions as the barrier becomes insulating du
strong electron correlations. The characteristic voltage
mains high for a larger range of Thouless energy than
metallic junctions, and then decreases very rapidly as
barrier passes through a critical thickness where the me
insulator transition occurs. This behavior leads to the po
bility of ‘‘intrinsic pinholes.’’

This work shows that correlation effects, and the interp
icr
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between superconductivity and oscillations brought on by
underlying Fermi surface, play increasingly important ro
in short-coherence-length superconductors. In particular,
timizing the characteristic voltage of a junction near t
metal-insulator transition is possible, but requires a care
tuning of the thickness of the barrier, the proximity to th
metal-insulator transition, and the operating temperature
the device. Correlated insulating barriers can mimic effe
due to pinholes because the Josephson coupling dep
very strongly on the thickness leading to an ‘‘intrinsic’’ pin
hole effect. In the future, we plan on extending this work
d-wave superconductors for direct applications to high-Tc
superconductors.

ACKNOWLEDGMENTS

We are grateful to the Office of Naval Research for fun
ing under Grant No. N00014-99-1-0328. Real-axis analy
continuation calculations were partially supported by the N
tional Computational Science Alliance under Grant N
DMR990007N ~utilizing the NCSA SGI/CRAY ORIGIN
2000! and were partially supported by a grant of HPC tim
from the Arctic Region Supercomputer Center. We wish
acknowledge useful discussions with T. Van Duzer, J. Ket
son, T. Klapwijk, J. Luine, J. Mannhart, I. Nevirkovets, N
Newman, J. Rowell, and S. Tolpygo. J.K.F. thanks the h
pitality of the IBM, Almaden Research Center, where th
work was completed.
B

s

at-

s

1B. D. Josephson, Phys. Lett.1, 251 ~1962!.
2K. K. Likharev, Rev. Mod. Phys.51, 101 ~1979!.
3For a recent review see the special issue of Superlattices M

struct.25, No. 5/6 ~1999!.
4A. Kastalskii, A. W. Kleinsasser, L. H. Greene, R. Bhat, F.

Milliken, and J. P. Harvison, Phys. Rev. Lett.67, 3026~1991!; V.
T. Petrashov and V. N. Antonov, Pis’ma Zh. E´ksp. Teor. Fiz.54,
245 ~1991! @JETP Lett.54, 241 ~1991!#.

5C. W. J. Beenakker, Rev. Mod. Phys.69, 731 ~1997!.
6C. J. Lambert and R. Raimondi, J. Phys.: Condens. Matter10,

901 ~1998!.
7K. A. Delin and A. W. Kleinsasser, Supercond. Sci. Technol.9,

227 ~1996!; R. S. Decca, H. D. Drew, E. Osquiguil, B. Maioro
and J. Guimpel, Phys. Rev. Lett.85, 3708~2000!.

8A. S. Barrera and M. R. Beasley, IEEE Trans. Magn.MAG-23,
866 ~1987!.

9A. Bardas and D. V. Averin, Phys. Rev. B56, R8518~1997!.
10A. Levy Yeyati, A. Martı́n-Rodero, and F. J. Garcı´a-Vidal, Phys.

Rev. B51, 3743~1995!.
11J. C. Cuevas, A. Martı´n-Rodero, and A. Levy-Yeyati, Phys. Re

B 54, 7366~1996!.
12W. Belzig, F. K. Wilhelm, C. Bruder, G. Scho¨n, and A. D. Zaikin,

Superlattices Microstruct.25, 1251~1999!.
13J. Rammer and H. Smith, Rev. Mod. Phys.58, 323 ~1986!.
14S.-K. Yip, Superlattices Microstruct.25, 1213~1999!.
15W. Metzner and D. Vollhardt, Phys. Rev. Lett.62, 324 ~1989!.
16M. Potthoff and W. Nolting, Phys. Rev. B59, 2549~1999!.
o-

.

17P. Miller and J. K. Freericks, J. Phys.: Condens. Matter13, 3187
~2001!.

18L. M. Falicov and J. C. Kimball, Phys. Rev. Lett.22, 997~1969!.
19J. Hubbard, Proc. R. Soc. London, Ser. A276, 238 ~1963!.
20F. Sols and J. Ferrer, Phys. Rev. B49, 15 913~1994!.
21Li-Fu Chang, S. Chaudhuri, and P. F. Bagwell, Phys. Rev. B54,

9399 ~1996!.
22N. Agrait, J. G. Rodrgio, C. Sirvent, and S. Vieira, Phys. Rev.

46, R5814~1992!.
23J. Bardeen, L. Cooper, and J. Schrieffer, Phys. Rev.108, 1175

~1957!.
24P. G. de Gennes,Superconductivity of Metals and Alloy

~Addison-Wesley, Redwood City, CA, 1966!.
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