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Equilibrium properties of double-screened dipole-barrier SINIS Josephson junctions
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We report on a self-consistent microscopic study of the dc Josephson effect inSINIS junctions, where
screened dipole layers at theSN interfaces generate a double-barrier multilayeredSINstructure. Our approach
starts from a microscopic Hamiltonian defined on a simple cubic lattice, with an attractive Hubbard term
accounting for the short coherence length superconducting order in the semi-infinite leads, and a spatially
extended charge distribution~screened dipole layer! induced by the difference in Fermi energies of the super-
conductorS and the clean normal metal interlayerN. We analyze the influence of such spatially inhomoge-
neous barriers on the proximity effect, the current-phase relations, the critical supercurrent and the normal-state
junction resistance, for different normal interlayer thicknesses and barrier heights. These results are of rel-
evance for high-Tc grain boundary junctions, and also reveal one of the mechanisms that can lead to low
critical currents of apparently ballisticSNSjunctions while increasing its normal-state resistance in a much
weaker fashion. When theN region is a doped semiconductor, we find a substantial change in the dipole layer
~generated by a small Fermi-level mismatch! upon crossing the superconducting critical temperature, which is
a signature of the proximity effect and which might be related to recent Raman studies in Nb/InAs bilayers.

DOI: 10.1103/PhysRevB.65.064529 PACS number~s!: 74.80.Fp, 71.27.1a, 74.50.1r, 73.40.Jn
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I. INTRODUCTION

The Josephson effect1 is one of the most spectacular ph
nomena arising from the macroscopic phase coherenc
Cooper pairs. A dissipationless current flows at zero volt
between two superconductors weakly coupled through a
nel barrier (SIS, whereSandI denote a superconductor an
an insulating barrier, respectively! or weak links (ScS, SNS,
etc., wherec stands for a constriction andN for a normal
metal!. The study of such inhomogeneous superconduc
structures has been driven both by interest in the fundam
tals of quantum mechanics and by the potential applica
of Josephson junctions as circuit elements in electro
devices.2

Recently, considerable attention has been directed tow
the study ofSINIS junctions,3–5 where the insulating tunne
barrier is split into two pieces separated by a normal me
These types of junctions have provided a playground
study the interplay6 between the mesoscopic coherence o
single-particle wave function in the normal metal and t
macroscopic coherence of a many-body wave function
Cooper pairs.7 Furthermore, the reexamination of variou
multilayered structures of theSINIStype in applied research
has been driven by the struggle to optimize the performa
of Josephson junctions in low-temperature superconduc
~LTS! digital electronics.8–10 In mesoscopic superconductiv
ity, one frequently deals withS-Sm-S junctions3 (Smbeing a
heavily doped semiconductor with a two-dimensional el
tron gas! where the role of theI layer is played by a space
charge layer arising at theS-Sm interface~additional scatter-
ing at the interface can occur from the mismatch between
effective electron masses and Fermi momenta in theS and
Sm). The technological advances in fabricating such hyb
structures3 have given an impetus to the field of mesosco
superconductivity,6,7 where a two-dimensional electron gas
amenable to an engineering of its ‘‘metallic’’ properties; i.
0163-1829/2002/65~6!/064529~11!/$20.00 65 0645
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one can tune the Fermi wavelength, or mean free path,
confine electrons with gate electrodes. In such structures
phase coherence of the electron and Andreev-reflected h11

at theSN interface can be studied without too much norm
reflection, because the charge-accumulation layer arising
typical Nb/InAs interface, or the Schottky barrier at a Nb/
interface, are much more transparent than typical dielec
tunnel barriers.6

While an initial understanding of the Josephson eff
came from studies of tunnel junctions,1 further developments
concentrated on weak links12 which provide the nonhyster
etic ~i.e., single valued! I -V characteristic needed for appl
cations, like superconducting quantum interference devic13

or rapid single flux quantum logic.14 The return toSIS junc-
tions came after the fabrication of Nb/Al tunnel junctions15

with a reliable control of the critical current~conventional
tunnel junctions can be made nonhysteretic by extern
shunting their high capacitance with a resistor, which redu
the overall performance16!. The renewed interest9 in SINIS
multilayered junctions for LTS electronics comes from
attempt to combine the advantageous properties of b
weak links and tunnel junctions8—the SINIS junctions are
intrinsically shunted, while exhibiting large characteris
voltages with moderate critical current densities~in fact,
rapid single flux quantum devices require large critical c
rent densities, to reduce the error rate,14 which is difficult to
achieve using standard Nb/Al/AlOxNb tunnel junction tech-
nology but might be reached inSINIS junctions with care-
fully engineered properties9!. When theN interlayer is clean,
the junction resistance is mainly controlled by scattering
the interfaces ~as in conventional Nb/Al/AlOx /Al/Nb
junctions17!, and not by the interlayer material properties.

Here we undertake a study of a special class ofSINIS
junctions where the double-barrier structure arises from
inhomogeneous screened dipole layers~SDL’s! determined
by a relatively large Debye screening lengthl D of a few
©2002 The American Physical Society29-1
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lattice spacings. We start from a microscopic lattice Ham
tonian with theS andN layers described by different meta
that have the same bandwidth, but their Fermi levels
misaligned. The Fermi-level mismatch forces a charge re
tribution, with the strongest deviation from uniformity lo
cated near theSN interface, which is gradually diminishe
inside the bulk layers on a length scale set byl D . The charge
profile ensures an equilibration of the chemical poten
throughout the system when no bias voltage is applied. S
we assume a screening length of a few lattice spacings
dipole layer is spatially extended~i.e., thicker than just one
monoatomic layer!. This choice of microscopic junction pa
rameters allows us to examine the charge redistribution
pearing between conductors which are less efficient
screening than ordinary metals~such as the underdoped c
prates or InAs!. Our treatment of the double SDL barrier
fully microscopic and self-consistent, meaning that effects
the static electric potential~generated by the excess charg!
on the Josephson current and on the normal-state resis
are related to the parameters of the underlying Hamilton
rather than characterizing the barrier by an effect
transparency4,10,18D, or using a delta function potential at th
SN interface to model the normal reflection19,20 ~in addition
to the inevitable retroreflection11!. Our junctions are three
dimensional~3D! and clean, so that quasiparticle transp
through theN interlayer is ballistic.

Previous theoretical work on ballisticSINISjunctions fo-
cused on resonant supercurrents in low-dimensio
structures.20–23 Mesoscopic superconductivity coherence
fects in 3D junctions~e.g., a current proportional toD of the
barrier, rather than the characteristicD2 dependence for two
uncorrelated sequential tunneling processes! were investi-
gated in Ref. 4. These junctions are mostly similar to
ones studied here, except that our ‘‘microscopic’’ charge
cumulation barriers are not atomically sharp interfaces
can be described by a phenomenological transparencyD. A
more microscopic treatment of the effect of charge inhom
geneity for normal transport through the contact of two d
ferent metals~a problem frequently appearing in the mul
layers of giant magnetoresistance devices24! was undertaken
using the Boltzmann equation,25 and in superconducting
junctions using quasiclassical methods in a non-s
consistent fashion.26 It is worth emphasizing that standar
quasiclassical Green-function techniques, which exploit
fact that macroscopic quantities vary on a length scale s
stantially exceeding the interatomic distance, cannot be
plied directly to problems containing boundaries betwe
two different metals. Since electron reflections lead to f
spatial variations of the original Green functions around
boundary, the method has to be extended properly to
this into account~see Ref. 26 for details!.

Our study is relevant for three types of recently explor
experimental systems:~i! grain boundary junctions27 in high-
Tc superconductors, our short coherence length super
ductor and the poor screening of the excess charge~i.e., De-
bye screening length comparable to the coherence len!
mimic the effect of a charge imbalance at the grain bou
aries on the depression of the order parameter, and the
the intergranular current density28,29 ~without complicating
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the problem further withd-wave symmetry!. ~ii ! Raman-
scattering studies30 of the proximity effects in Nb/InAs hy-
brid structures reveal a substantial change of the charge
cumulation layer formed at such interface above and be
the Tc of Nb—we also find that theI layer induced by a
small Fermi-level mismatch is modified by proximity effec
in our SINISjunctions when the carrier concentration in th
N is 100 times smaller than in theS. ~iii ! Recent experiments
on ballisticSNSjunctions,31 in the limit whereI c andRN do
not depend on the thickness of theN, exhibit a much smaller
characteristic voltage than predicted for short cleanScS
junctions—the scattering off a dipole charge layer is an
ample of a process which sharply reducesI c , but increases
RN only weakly.

We choose to examine a short coherence length su
conductor withjS.4a for a lattice constanta53 –6 Å .
This value for the bulk superconducting coherence lengthjS
is similar to that of cuprates in thea-b plane, and is abou
half of that in Nb3Sn and MgB2 for which jS'5 nm. We
choose a shortjS to allow for swift computations.

The paper is organized as follows. In Sec. II we introdu
the model and the main ideas of the Green-function com
tational technique~employed to solve the quantum proble
of the charge distribution and equilibrium transport; the el
trostatic problem of the potential generated by these cha
is solved classically!. Section III contains the results for th
self-consistent pair amplitude~or the order parameter! and
the local change of the phase across the junction.
current-phase relation for different strengths of the elec
static potential generated by the SDL is discussed in Sec
where we also evaluate the characteristic voltageI cRN . We
conclude in Sec. V.

II. MODELING A SINIS JUNCTION WITH
A DOUBLE-BARRIER SCREENED DIPOLE LAYER

Early studies of the Josephson effect inSINIS junctions
were based on a tunneling Hamiltonian formalism and p
turbation theory in the barrier transmissivity.32 Later on, qua-
siclassical Green-function techniques33 were applied to a
double-barrier junction with theN interlayer in the dirty
limit.18 While these results are valid only in a few limitin
cases, a recent reexamination of this problem covers a w
range of parameters.4,9 For example, when transport throug
the N interlayer is ballistic~mean free path greater than th
thickness of the junction!, one cannot use standard tools18

like the Usadel equation. Instead, a solution of the Gor’k
equations for the Green functions of a double-barrier str
ture is required.4,10 Furthermore, if theI barriers are not of
low transparency, the usual arguments for the validity
rigid boundary conditions12 ~i.e., taking the gapD to be con-
stant inside the superconducting leads! fail when theSandN
regions have the same cross section, and the thickness o
junction is not much larger than the superconducting coh
ence lengthjS . In such cases, the critical current density c
be close to the bulk critical current density, and a se
consistent evaluation of the order parameter inside theS is
needed to ensure current conservation throughout
structure.34–36 Since we choose to work with a short cohe
9-2
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EQUILIBRIUM PROPERTIES OF DOUBLE-SCREENED . . . PHYSICAL REVIEW B65 064529
ence length superconductor, quasiclassical approximat
neglecting dynamics on a length scale belowjS are not ap-
plicable ~in our casejS is not much larger than the Ferm
wavelengthlF'2a, and spatial variation of the order pa
rameterD on a length scale smaller or comparable tojS is
important!.

Our approach to quantum transport in ballisticSINISjunc-
tions starts from a microscopic Hamiltonian defined on
simple cubic lattice~of lattice constanta).34 This allows us
to describe the transport for an arbitrary junction thickne
temperature, and barrier strength. Also, the geometry is s
that theN interlayer has the same width as theS leads. For
computational purposes, the infinite lattice which models
junction is divided into a self-consistent part and a bulk pa
as shown in Fig. 1. A negative-U Hubbard term is employed
to model the real-space pairing of electrons due to a lo
instantaneous attractive interaction.34,37 The lattice Hamil-
tonian is given by

H5(
is

Vicis
† cis2 (

^ i j s&
t i j cis

† cj s1(
i

Ui S ci↑
† ci↑2

1

2D
3S ci↓

† ci↓2
1

2D , ~1!

wherecis
† (cis) creates~destroys! an electron of spins at

site i, t i j is the hopping integral between nearest-neigh
sites i and j ~energies are measured in units oft), which is
taken to be the same in theSandN, andUi,0 is the attrac-
tive Hubbard interaction for sites within the superconduct
planes. The normal interlayer is described by the nonin
acting part of Hamiltonian~1!, which is just a ~clean!

FIG. 1. Microscopic stacked planar geometry of a Joseph
junction defined on an infinite simple cubic lattice with a latti
constanta. The normal interlayer containsNN planes~ranging from
1 to 60! which are coupled to semi-infinite superconducting lea
~the junction thickness isL5NNa). These layers, together with th
first NS planes~30 in our calculations! in each lead, comprise th
region of the junction where the self-consistent calculation is p
formed. The junction is allowed to have spatial inhomogeneity o
within the 2NS1NN modeled planes, but the calculations are for
infinite system. The insulating barriers are formed by a charge
distribution that is localized near theSN interfaces.
06452
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nearest-neighbor tight-binding model with a diagonal on-s
potential Vi . The potentialsVi are not givena priori, but
instead are calculated self-consistently by first determin
the local electronic charge density and comparing it to
bulk charge density of the correspondingS or N layers. The
imbalanced charge on each plane generates an electric
and thereby an electric potential. Summing the contributio
from the charges on all other planes then yields the to
local potentialVi

C and the local potential energy shiftVi

5eVi
C . We now recalculate the charge density on each pl

and iterate untilVi is determined self-consistently~see below
for a detailed description of the algorithm!. The local poten-
tials Vi are largest near theSN interface, and decay as on
approaches the bulk leads.

We use the Hartree-Fock approximation~HFA! for the
interacting part of Hamiltonian~1!. This accounts for the
superconductivity in theS region in a way which is com-
pletely equivalent to a conventional BCS theory with an e
ergy cutoff determined by the electronic bandwidth rath
than by the phonon frequency. We choose half-fillingnS
51 andUi522 on the sites in the superconducting lead
The homogeneous bulk superconductor has a transition
peratureTc50.11 and a zero-temperature order parame
D50.198. This yields a standard BCS gap ratio 2D/(kBTc)
'3.6 and a short coherence lengthjS5\vF

S/(pD).4a. The
bulk critical current per unit area a2 is I c

bulk

51.09enD/\kF , which is a bit higher than the current den
sity determined by the Landau depairing velocityvd
5D/\kF . This stems from the possibility of having gaple
superconductivity in three dimensions at superfluid velocit
slightly exceeding38 vd ~note thatkF is direction dependen
for a cubic lattice at half-filling; we use the average val
over the Fermi surfacekF'2.8a, appearing in the transpor
formulas, to compare our critical bulk supercurrent density
the expressions that assume a spherical Fermi surface a
density of particlesn5kF

3/3p2). The junction properties are
studied here in the low-temperature limit atT50.01
50.09Tc ~the BCS gap is essentially temperature indep
dent below 0.6Tc). At this temperature, the coherence leng
of the clean normal metal isjN5\vF/2pkT.40a. Since we
do not consider inelastic scattering processes, the depha
lengthLf is larger thanjN . Therefore, min(jN ,Lf)5jN de-
termines the coherence properties of a single quasipar
wave function of thermal electrons inside the normal regi
which determine the equilibrium properties of the junction

The inhomogeneous superconductivity problem is solv
by employing a Nambu-Gor’kov matrix formulation for th
Green functionĜ(r i ,r j ,ivn) between two lattice sitesr i and
r j at the Matsubara frequencyivn5 ipT(2n11):

Ĝ~r i ,r j ,ivn!5S G~r i ,r j ,ivn! F~r i ,r j ,ivn!

F̄~r i ,r j ,ivn! 2G* ~r i ,r j ,ivn!
D .

~2!

We work with Green functionsĜa,b( ivn ,kx ,ky) represented
in a mixed basis, which is defined by the two-dimension
momenta (kx ,ky) and the~discrete! z coordinate of the plane
a5zi /a. This follows after the initial 3D problem is con
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BRANISLAV NIKOLIĆ , J. K. FREERICKS, AND P. MILLER PHYSICAL REVIEW B65 064529
verted to a quasi-one-dimensional one39 by performing a
Fourier transformation within each plane~where the junction
is translationally invariant! and retaining the real-space re
resentation for thez direction of the inhomogeneity. For th
local interaction treated in the HFA, the computation of t
Green function reduces to inverting an infinite block trid
agonal Hamiltonian matrix in real space. The Green fu
tions are thereby evaluated as a matrix continued frac
~technical details are given elsewhere40,41!. The final solution
is fully self-consistent in the order parameteruD(z)ueif(z)

inside the part of the junction comprised of theN region and
the first 30 planes inside the superconducting leads on e
side of theN interlayer~see Fig. 1!. The self-consistent re
gion is long enough becauseuD(z)u heals to its bulk value
over just a few coherence lengthsjS . Our Hamiltonian for-
mulation of the problem and its solution by this Gree
function technique is equivalent to solving discretiz
Bogoliubov–de Gennes42 ~BdG! equations in a fully self-
consistent manner, i.e., by determining the off-diagonal p
ing potentialD i in the BdG Hamiltonian34 after each itera-
tion until convergence is achieved. The tight-bindi
description of the electronic states also allows us to incl
an arbitrary band structure or unconventional pair
symmetry.37

In conjunction with the self-consistent solution of the s
perconducting part of the problem, we have to solve the e
trostatic problem self-consistently. Although both theS and
the N are half-filled in most of our calculations~i.e., there is
no mismatch in the Fermi wave vector!, shifting the bottom
of theN band leads to a difference in their Fermi levels. Th
generates a redistribution of electrons around theSN inter-
face when these are brought into contact. The resulting n
uniform electric field can be described by a potentialV(z)
~for simplicity, we use the labelz having in mind a discretezi
coordinate at a particular sitei ) which varies in the transition
layer around theSN boundary with a thickness of 2d. In the
regionz.udu the following condition is satisfied:

EF
S1V~z,2d!5EF

N1V~z.d!5m, ~3!

in order to ensure a constant electrochemical potentiam
throughout the system in equilibrium. The solution whi
satisfies this equation is usually simplified26 to V(z)
5V0d(z)1m2v(z), wherev(z) is a monotonic function of
z equal toEF

S for z,2d or EF
N for z.d ~this allows one to

formulate quasiclassical equations in the regionuzu.d).
Here we treat the contact between theS and theN in a fully
microscopic fashion: starting from Hamiltonian~1! and a
Fermi-level mismatchDEF5EF

N2EF
S , and assuming a

screening lengthl D of a few lattice spacings, we find th
charge redistribution around the contact, as well as the
responding classical electrostatic potential generated
them. Thus our technique can treat an arbitrary spatial va
tion of the~lattice! Green functions, the superconducting o
der parameter, and the electrostatic potential. This inclu
the regionuzu,d, where we find a sharp increase ofV(z) but
never as sharp as the~unphysical! delta function.

Since ourSINISmultilayer structure is translationally in
variant in the transverse direction, each infinite plane ha
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uniform surface charge distributiondn(z)a which generates
a homogeneous electric fieldE(z)5dn(z)a/2e0e` pointing
along thez direction (e` is the relative dielectric constant o
the ionic lattice!. The quantum-mechanical part of the ele
trostatic problem entails determining the local electron d
sity n(zi)[n(z) ~filling ! at each site of a given planea
5z/a,

n~z!5kBT(
vn

E
2`

`

r2D~«xy!Im Gaa~ ivn ,«xy!d«xy , ~4!

where«xy522t@cos(kxa)1cos(kya)# is the in-plane kinetic
energy for the transverse momentum (kx ,ky), andr2D(«xy)
is the two-dimensional tight-binding density of states on
square lattice~which is used for the sum over momenta pa
allel to the planes!. The corresponding electric potential
determined classically from the ‘‘charge deviation’’dn(z)
5n(z)2n (n is the average filling in the bulk,nN or nS):

dV~z!52
eadn~z8!uz2z8u

2e0e`
. ~5!

This must be summed over all planes to give the on-
potentialV(z). Therefore, the small induced charge imba
ancedn(z)5N(m)edV(z) satisfies~in a corresponding con
tinuous system!

d

dz
dn~z!52

e2aN~m!

2e0e`
dn~z!, ~6!

where N(m) is the total density of states at the chemic
potentialm. This is integrated to give the distribution of th
screened charge

dn~z!5dn~z0!expF2
e2aN~m!

2e0e`
~z2z0!G , ~7!

which decays exponentially on a length scale set by the
bye screening length:

l D5Fe2aN~m!

2e0e`
G21

. ~8!

Thus the screening length is determined byN(m) ande` ~for
example,29 e`520–30 andl D55 –10 Å in high-Tc super-
conductors!. We choosee`

S5e`
N55.0, which leads tol D

'3a. The self-consistency in the electrostatic problem
required becauseV(z) enters into the computation of th
Green function as a diagonal potential in Hamiltonian~1!.
The solution has converged when the potential is consis
with the charge distribution in Eq.~4! determined from the
Green function. Although this seems like a cumberso
computational task, the potential around theSN boundary
barely changes when equilibrium Josephson current flo
Thus the electrostatic part of the problem converges rap
since the potential found in the solution at one phase grad
is a good initial guess for the iteration scheme at the n
superconducting phase gradient.

The density of electronsn(z) on each site in a given plan
~at zero supercurrent! is plotted in Fig. 2 as a function of the
junction thickness forDEF53.0. The charge deviation
9-4
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EQUILIBRIUM PROPERTIES OF DOUBLE-SCREENED . . . PHYSICAL REVIEW B65 064529
dn(z) from half-filling nS5nN51 and the correspondin
electrostatic potentials are~approximately! symmetric
around theSN boundary for thick enough junctions, a
shown in Fig. 3. Strictly speaking, only such symmetric d
tributions should be denoted ‘‘screened dipole layers.’’ F

FIG. 2. Scaling of the local density of electrons with the thic
nessL5NNa of SINISJosephson junctions. The filling is the sam
at each site within the planes~plane number 1 is the first plan
along thez axis inside the self-consistent region from Fig. 1!. The
difference in Fermi energies of theS and theN is DEF53.0. The
bulk equilibrium value of the charge density is set to half-filling
both the S and theN (nS5nN51). The inhomogeneous charg
redistribution is~approximately! symmetric around theSN interface
only for a thick enough junction. In the case of a thin junction, t
charge is depleted in theN interlayer to lie below half-filling, since
the screening length is a few lattice spacings.

FIG. 3. Charge deviationdn(z) ~from half-filling! in SINIS
junctions characterized by different Fermi-level mismatchesDEF

5EF
N2EF

S . The N interlayer consists of~a! 20 normal planes and
~b! two normal planes. The inset shows that distributions ofdn(z)
for differentDEF can be rescaled to a single curve after multiplyi
them by the ratio (DEF)ref /DEF , where (DEF)ref51.0 is chosen as
the reference distribution.
06452
-
r

thinner junctions, where the screening of the excess ch
does not healn(z) to its equilibrium value, charge is de
pleted from theN interlayer. The example of this behavior
theL52a junction in the lower panel of Fig. 3. This leads
a nonmonotonic resistance as a function of junction thi
nessL at fixed DEF ~see Sec. IV!. Thus the charge effect
become essential in short-coherence length supercondu
junctions with thicknessesL,2l D , which are encountered
in high-Tc grain boundaries.29

The interesting feature of thedn(z) profiles for the half-
filled SandN is that they can be approximately rescaled to
single reference distribution@set by (DEF)ref# after multiply-
ing each of them by the ratio (DEF)ref /DEF , as shown in
the insets of Fig. 3. We believe this occurs because the n
interacting cubic density of states is nearly constant clos
half-filling. Since thenS5nN51 case has a higher degree
symmetry, we also perform calculations fornN50.01~which
approximates a doped semiconductor! in the normal region
and half-filling nS51.0 in the superconductor. The result
shown in Fig. 4. Here the scaling of thedn(z) distribution
does not work as well~because the density of states h
strong variation with energy!. In addition, we find that the
charge deviation is nonsymmetric, and yields a differe
dn(z) for positive and negativeDEF @for symmetric filling
nS5nN the two distributions are simply related a
dn(z)u2DEF

52dn(z)uDEF
#. We also investigate the tem

perature dependence of the distributions of uncompens
charge forT50.2 ~the chemical potential in the bulkN is
m525.566 fornN50.01) and atT50.09 ~which is close to
Tc50.11). In both casesnS5nN51.0 andnSÞnN50.01 we
find dn(z) to be practically temperature independent~e.g.,
the change is at most 5% around theSN boundary! for the
DEF shown in the previous figure. This feature is exploit
in Sec. IV to calculate the normal-state resistance of
junctions from an imaginary axis computation of the char
and potential profile in the superconducting state. Howe
for nSÞnN50.01 and smalluDEFu.0.2 a large change in
the magnitude ofdn(z) is observed when going fromT
50.2.Tc to T50.01,Tc , as shown in Fig. 5. Similar phe
nomenon has been found in the recent Raman studi30

which could be accounted for by a substantial change in
thickness of the charge accumulation layer at the interf
between Nb and InAs, as Nb undergoes a superconduc
transition and proximity effects develop in the InAs lay
~note that our model does not capture the change from
three-dimensional electron system to a two-dimensio
electron gas at the Nb/InAs interface,21 but, nevertheless
allows us to study the general features of proximity effe
signatures on the charge accumulation layer!. This would
point to a proximity effect influenced screening lengt
which cannot be seen in our local~Thomas-Fermi! screening
theory containing only two parameters which determinel D :
e` , which is fixed in our calculations; and the density
statesN(m), which can be modified by the proximity effec
Our observation of the change in the charge concentra
above (T;DEF) and belowTc , without a palpable change
in the screening properties, suggest that effects beyond
simple screening theory~e.g., nonlocal screening which be
9-5
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comes important in low filling cases29! probably have to be
taken into account to understand this experiment comple

III. SELF-CONSISTENT EQUILIBRIUM PROPERTIES
OF SINIS JUNCTIONS

We first provide insight into the microscopic properties
these junctions which are determined by the proximity eff
that affects the critical current~in non-self-consistent calcu
lations such effects are taken into account only through so
effective phenomenological suppression parameter9!. They
are encoded in the self-consistently computed variation
the amplitude and phase of the order parameterD(z)
5uD(z)ueif(z) in the S or pair amplitude F(z)
5uF(z)ueif(z) in theN. These are related to each other insi
the S by

FIG. 4. Electron fillingn(z) ~dashed line! and charge deviation
dn(z) ~solid line! of a SINISJosephson junction with a thicknes
L520a, and theN interlayer chosen to approximate a highly dop
semiconductor. The charge deviation is measured with respe
the equilibrium filling in the bulk,nS51 in the superconductor an
nN50.01 in the normal region. The Fermi energy mismatchDEF

5EF
N2EF

S between theN and theS is ~a! DEF51.0, ~b! DEF

521.0, ~c! DEF523.0, and~d! DEF5210.0. The charge profile
is virtually independent of the temperature, both above and be
Tc .
06452
ly.
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D~z!52U~z!F~z!, ~9!

whereF(z) is obtained as the equal-time limit of the loc
anomalous Green function introduced in Sec. II:

F~z!5F~zi ,zi ,t501!. ~10!

Although f(z) and F(z) are not directly measurable, the
are important for understanding superconductivity in inh
mogeneous structures. Examples include the proximity ef
in the N side and the depression ofuD(z)u ~compared to its
bulk value! on theS side of aSN boundary~‘‘inverse prox-
imity effect’’ !. Since the critical current of the junction i
determined byD(z) at theSN boundary, the study ofF(z)
throughout the junction gives direct insight into how se
consistency affects the transport properties@analytical ap-
proaches usually assume a step function foruD(z)u, which is
applicable only for a limited range of junction parameters12#.
The nonzero value ofF(z) inside the superconductor resul
from the attractive pairing interactionU(z)Þ0 @which also
gives rise to the non-zero order parameterD(z)#. In the nor-
mal metal,U(z)50 and the gap vanishes, butF(z) can be
nonzero due to the proximity effect. Therefore, it is mo
meaningful to plotF(z), which is a continuous function
throughout the junction. Inside theS, F(z) should be under-
stood as justD(z)/@2U(z)#. The superconducting correla
tions are imparted to theN region which is in contact with
the S region. They are described quantitatively by the p
amplitude43 F(z) @Eq. ~10!#. Because of the translationa
symmetry of the junction in the transverse direction,F(z) is
constant within the plane, and changes from plane to pl
along z axis. The scale over whichF(z) changes exponen
tially from theSN interface to zero in the bulk of theN is set
by the normal metal coherence lengthjN . However, asT
→0 the lengthjN diverges, and the exponential decay
F(z) crosses over to a slower power-law decay~like 1/z at
T50, inside aN described by a Fermi liquid44!.

We first show two examples ofF(z) computed self-
consistently for vanishing supercurrent throughout theSINIS
junction with nS5nN51. Figure 6 plots the scaling ofF(z)

to

w

FIG. 5. Evolution of the charge accumulation region in aSINIS
junction, with a highly doped semiconductor as theN interlayer
(nN50.01,nS51.0,DEF50.2), upon crossingTc of theSby going
from T50.251.8Tc ~dashed! to T50.0150.09Tc ~solid!. The inset
shows the relative change of the charge deviation@dn(z)T50.2

2dn(z)T50.01#/dn(z)T50.2 for two different charge redistributions
DEF50.2 and20.2.
9-6
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with the junction thickness for theI layers at theSN bound-
ary being SDL’s whose height is determined byDEF51.0 or
DEF53.0. The shape ofF(z) evolves with the thickness, a
well as with the height, of the double barrier. This seco
point is demonstrated in Fig. 7, where we fixL and vary the
strength of the SDL barrier. Here one would expect the e
lution of F(z) toward a step function, which then justifies th
use of rigid boundary conditions for strong enough scatter
at theI barriers.12 However, we find a nonmonotonic chang
in the shape ofF(z): the influence of a SDL on the orde
parameterD(z) is first reduced with increasingDEF , but
then leads to a depressedD(z) near the boundary for a stron

FIG. 6. Pair amplitudeF(z) at zero supercurrent flow inSINIS
junctions of different thicknessesL5NNa. The double-barrier
structure arises from the charge inhomogeneity~see Fig. 2! induced
by the difference between the Fermi energies of the normal m
and superconductor:~a! DEF5EF

N2EF
S51.0, and ~b! DEF5EF

N

2EF
S53.0.

FIG. 7. Pair amplitudeF(z) at zero supercurrent flow inSINIS
junctions of thicknessL520a characterized by different heights o
the SDL barriers. The double-barrier structure~charge inhomogene
ity from Fig. 3! arises from the difference in Fermi energies of t
normal metal and superconductor,DEF5EF

N2EF
S .
06452
d

-

g

charge imbalance generated byDEF510.0. Since our previ-
ous results for aSINISjunction having a strong on-site Cou
lomb potential, confined within a single plane, exhibit a st
function like40 D(z), the effects observed here can be attr
uted to the finite spatial extent of the SDL. Moreover, w
find that the step function~up to tiny oscillations near the
boundary! for D(z) does develop in the special case of lo
filling in the N region, likenN50.01, and a small mismatc
uDEFu&1. A specific example of this behavior~compared to
the case with the same parameters, but with a negativeDEF)
is shown in Fig. 8.

In the short junction case, the oscillations ofD on the
scale oflF are observed for large enoughDEF . In this case,
as discussed in Sec. II, the junction is too thin for the dis
bution of charge to heal to its equilibrium value. The char
depletion inside theN brings it close to an insulating state
While oscillations on the scale oflF were observed34 in
similar self-consistent calculations atT50 ~and are attrib-
uted to the mesoscopic coherence of a single particle w
function!, here it appears that they are a property of the
perconducting interface which terminates at an ‘‘insulato
~this is also exhibited by a thick junction with smallnN in
Fig. 8!. We have recently found such behavior, in its mo
pronounced form, in the case ofSIS junctions, withI being
a correlated insulator.41

IV. CRITICAL CURRENTS AND CHARACTERISTIC
VOLTAGES

In the self-consistent treatment, equilibrium supercurr
flows through the junction when a phase gradie
(df/dz)bulk exists in the bulk of the superconductor, and
total phase changef is established across the normal regio
Therefore, we first find the solution for the bulk superco
ductor in both the absence of a supercurrent and in the p
ence of a supercurrent generated by a uniform variation
the order-parameter phase. The uniform bulk solution is t
employed to provide the ‘‘boundary conditions’’ for the jun
tion beyond the region where we determine properties s
consistently. Thus our method does not require any assu
tions about the boundary conditions at the interface betw
the barrier and the superconductor, which follow from t

al

FIG. 8. Pair amplitudeF(z) at zero supercurrent flow inSINIS
junctions with thicknessL520a. The double-barrier structure arise
from the inhomogeneous charge redistributions, plotted in Fig
induced byDEF5EF

N2EF
S between the normal region withnN

50.01 and the superconductor at half-fillingnS51.
9-7
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requirements of self-consistency.40 We use current conserva
tion as a stringent test of the achieved self-consistency in
solution for the Green function. That is, the self-consisten
determinedD(z) ensures that Andreev reflection at eachSN
boundary generates supercurrent flow in theS leads~besides
being responsible for the proximity effect in theN discussed
in Sec. II!. Thus the fulfillment of the self-consistency co
dition @Eq. ~9!# means that the ‘‘source term’’~on the right-
hand side! vanishes in the equation of motion for the char
density operatorn̂i ,

]n̂i

]t
1(

j
I i j 5

2ie

\
~D i^ci↑ci↓&2D i* ^ci↓

† ci↑
† &!, ~11!

thereby recovering current continuity at every site (I i j is the
current between two neighboring sites!. When the current
inside the superconductors is small, e.g., due to the geom
cal dilution of a weak link with a junction area much small
than jS

2 , or when the junction resistance is dominated b
large interlayer resistance,6,12 one usually neglects the supe
current flow and corresponding phase gradient in the b
superconductor necessary to support it. Strictly speak
such approaches violate current conservation.35,36 Inasmuch
as ourS and N layers have the same area,I c /I c

bulk can be
close to one for thin junctions with weak SDL’s at sma
DEF . In such cases, current flow affects appreciably the
perconducting order parameter@i.e., F(z) both inside and
outside of theN; cf. Sec. III# and a self-consistent treatme
becomes necessary~as is the case for the critical current
the bulk superconductor38!. Because of the presence of
phase gradient inside theS, the simple picture1 of an equi-
librium current being related to the phase differencefL
2fR between the left and rightS leads~wherefL and fR
are constant within the leads! is not applicable. Nevertheles
the solution for the current turns out to be uniquely para
etrized by a single quantity which can be taken as the ph
change across theN region45 ~the other option is the phas
offset,35 which is related to the phase change by a nontriv
scale transformation!. In a discrete model like ours, a con
vention has to be introduced for how this change is extrac
from f(z). The thickness of the junction is defined to be t
distance measured from the pointzL , in the middle of the
last S plane on the left~at zL

S! and the first adjacentN plane
~at zL

N5zL
S11), to the middle pointzR between the lastN

and first S plane on the right~cf. Fig. 1!. Since f(z) is
defined within the planes, we setf(zL)5@f(zL

S)
1f(zL

N)#/2 to be the phase atzL , and equivalently for
f(zR). The phase change across the barrier is then give

f5f~zR!2f~zL!5LS df

dzD
bulk

1df~zR!2df~zL!

~12!

for a junction of thicknessL. The current-phase relationI (f)
is obtained by computing the current for a fixed bulk pha
gradient, and associating this value with the phase cha
across theN region, which is extracted from the sel
consistent pair amplitudeF(z)5uF(z)ueif(z). On the lattice,
transport is described by the current across a link betw
06452
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two adjacent planesa and a11. This current~per a2) is
obtained from the Green function connecting two neighb
ing planes as40

I a,a115
2eat

\
kBT(

vn

E
2`

`

r2D~«xy!

3Im@Ga,a11~ ivn ,«xy!#d«xy . ~13!

The first iteration in our self-consistent algorithm usua
gives a current which is smaller inside theN region than the
Sregion. The iteration cycle is completed when the curren
constant throughout the junction. The only approximati
invoked here is the presence of a~typically small! disconti-
nuity in the supercurrent at the bulk-superconductor/s
consistent-superconductor interface. We find that the su
conducting order always heals to its bulk value at this po
However, sometimes there can be a jump inf(z) at this
boundary when one nears the critical current. This disco
nuity in the phase corresponds to a breakdown of curr
conservation at this interface~it can become large for large
DEF and a thick junction, especially when one lies on t
decreasing current side of the current-phase diagram!. The
critical currentI c of the junction is reached when the plan
with the lowest pair amplitudeuF(z)u ~which are located in
the center of theN) can no longer support the necessa
phase gradient to maintain current continuity.

The scaling of the shape of the current-phase relation w
the junction thickness is plotted in Fig. 9 for differentDEF .
We find large deviations from the usual sinusoidalI (f) de-
pendence for thin junctions and moderate heights of the S
barriers. While in such cases~and at low temperatures!, ana-
lytical predictions4,9,18 also give nonsinusoidalI (f), our
‘‘critical’’ phase changefc @ I (fc)5I c# is always below the
analytical predictionfc'1.86, which can be attributed to th
effects of self-consistency35 ~the other important distinction
is that SDL’s are spatially extended barriers!. For thicker
junctions, with high SDL barriers~and at high enough tem
peratures! the recovery of the usualSIS junction I (f)
5I c sinf current-phase relation is predicted.9 Here we find a
current-phase relationI (f), which is close to sinusoidal in
the thick junction limit@Fig. 9~a!#, or in thin junctions with
high SDL barriers@Fig. 9~b!#. For largeDEF , I c(L) is non-
monotonic because of the special role played by the barr
formed in the junctions withL,2l D . When SDL’s are com-
pletely screened inside the thickN interlayers, the decay o
current is determined just by the exponential decay of
proximity coupling between theS leads through the clean
normal interlayer~the resistance of these junctions is al
practically independent ofL; see Fig. 10!. For example, the
characteristic decay length, extracted from fitting12,46

ALp exp@2L/jN8 # to I c(L) for DEF51.0 case, isjN8 '35a
.jN ~with p50.3). For largerDEF , and long enough junc-
tions to ensure a monotonic decay ofI c(L), jN8 appears to be
shorter.

We use a Kubo linear-response formalism to determ
the normal-state resistanceRN51/GN . The conductanceGN
~per unit areaa2) of the lattice system is given by
9-8
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FIG. 9. Scaling of the current-phase relationI (f)/I c with the
thickness of theSINISjunctions where the SDL’s are determined b
~a! DEF51.0, and~b! DEF53.0. Note that the phase changefc at
the critical currentI c5I (fc) varies nonmonotonically with the
junction thickness. The standardI (f)/I c5sinf dependence in the
SIS tunnel junction~Ref. 1! is plotted as a reference only@which is
analytically predicted forSINIS junctions with small barrier trans
parency at high enough temperatures~Ref. 9!#.

FIG. 10. Semilogarithmic plot of the normal state resistan
~multiplied by the unit areaa2), as a function of theSINISjunction
thickness, for different SDL’s determined byDEF5EF

N2EF
S . Both

the S and theN are at half-filling in the bulk. Note that junction
with thickness smaller than 2l D have charge depleted for larg
enoughDEF , causing the resistance to change nonmonotonicall
a function ofL. The Sharvin point contact resistance of the cle
SNS junction ~corresponding toDEF50 in our structure! is
RSha

251.58ha2/2e2.
06452
GN

a2
5~RNa2!215(

a,b
szz~a,b!. ~14!

Even though one can find an inhomogeneous field40 Eb,b11
~across all links connecting planesb andb11) by inverting
the discretized versionI a,a115a(bszz(a,b)Eb,b11 for the
linear current across a linkI a,a11, which is a constant
throughout the system, the expression for the conducta
@Eq. ~14!# does not contain this field.47 The sum of the com-
ponents of the nonlocal Kubo conductivity tensor is obtain
from the real-axis analytical continuation of the Green fun
tions

szz~a,b!5
21

kBT

~eat!2

\ E
2`

`

r2D~«xy!d«xyE
2`

` dv

2p

3@ Im Ga,b11~v,«xy!Im Gb,a11~v,«xy!

2Im Ga,b~v,«xy!Im Gb11,a11~v,«xy!#

3@cosh2~v/2kBT!#21. ~15!

We first find the self-consistent solutions for the system
the normal state, with no current flowing, by setting the ord
parameter to zero on all planes. These solutions are
employed to calculate the Kubo tensor. The self-energy
the planes outside the interlayer contains only a constant
part, as the calculation is carried out within the HFA. Giv
the set of local self-energies, the Green functions wh
couple any two planes are readily found, for any moment
parallel to the planes. Although an external electric field
duces charges~and corresponding potentials!, szz(a,b) is
found as the response to an external field only. This is
cause the current response to this inhomogeneous field~ex-
ternal1 induced! is already beyond a linear response.48 Thus
only equilibrium screening has to be included49 in the Hamil-
tonian used to compute the Green function enter
szz(a,b) in Eq. ~15!. This makes it possible to use the p
tential generated by the charge distributionsdn(z) ~dis-
cussed in Sec. II!, which is computed from the imaginar
axis calculations, as an on-site fixed potential in the equi
rium Hamiltonian@Eq. ~1!#.

The normal-state resistances calculated in this framew
are plotted in Fig. 10. In thin junctions and for large enou
DEF , a charge depletion layer arises inside theN which
leads to a nonmonotonic behavior ofRN ~e.g.,RN increases
sharply for L52a and DEF53.0, or L53a and DEF
55.0). On the other hand, for small enoughDEF&1.0 the
conductance is only slightly changed from the Sharvin po
contact conductance50 of a ballistic SNS junction per unit
area a2, RNa25@(2e2/h)(kF

2/4p)#21'1.58ha2/2e2. Thus
the SDL depresses the current substantially, while o
weakly increasing the resistance. This reduces theI cRN
product, plotted in Fig. 11, thus showing that charge ac
mulation layers are detrimental to junction performance
electronics circuits. This is further confirmed by the fact th
I cRN in most of these junction is below the product of th
bulk critical current and the Sharvin point contact resistan
I c

bulkRSh51.45D/e, which is the upper limit of the characte
istic voltage in a cleanSNSweak link ~the SNS junction

e

s
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made of the sameS leads as studied here, but with a dirtyN
interlayer, exhibits I cRN.I c

bulkRSh, for some range of
parameters41!. Therefore, the SDL induced scattering on
SN boundary is one of the mechanisms which can acco
for the low I cRN products observed in experiments31 on
nominally ballistic shortSNS junctions ~where RN , being
determined by the thin charge layer only, does not scale w
L just like what happens in ballistic conductors!. One way to
test this conjecture is to use electron holography to map
the charge profile near the SN interface of these balli
junctions.

V. CONCLUSIONS

We have studied the influence of a charge imbalance
arises at the boundary between a short coherence lengt
perconductor and a normal metal~due to Fermi energy mis
match! on the equilibrium properties of aSINISJosephson
junction ~where theS and N layers are of the same width!.
The screening length is large enough to generate a spa

FIG. 11. Product of the critical currentI c and the normal-state
resistanceRN as a function of theSINIS junction thickness, for
different SDL’s determined byDEF5EF

N2EF
S . Both theS and the

N are at half-filling in the bulk.I cRN is always below the product o
the bulk critical current and the Sharvin point-contact resista
I c

bulkRSh51.45D/e ~dashed line!, except in the caseL53a(' l D),
with DEF55.0.
P

l-

,
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extended charge redistribution that allows us to examine
interplay between the charge layer formation and superc
ductivity ~characterized by the coherence length compara
to the screening length! near theSN boundary and in theN
interlayer. This resembles the charge redistribution on
grain boundaries of a high-Tc superconductor. At half-filling
in both theS and theN, the charge distribution and its po
tential are symmetric~screened dipole layer!, and can be
rescaled to a single one determined by some reference F
level mismatchDEF . When the charge concentration in th
N is 100 times smaller than in theS, we find a proximity
effect induced change in the charge redistribution genera
by a small Fermi level mismatch upon moving fromT.Tc
~whereT is of the order ofDEF) to T,Tc .

The step-function-like order parameter~which is used in
non-self-consistent approaches! is recovered only in the cas
of a low charge density in theN ~compared to the filling in
the S! and a small mismatchuEF

N2EF
Su&1. TheSINISjunc-

tion exhibits unusual properties when its thickness is com
rable to the screening length. While the charge layer lead
a depression of the order parameter near theSN boundary,
and thereby the junction critical current, it influences t
normal state resistance in a much weaker fashion. There
the I cRN product, relevant for digital electronics applicatio
is reduced. This points out that such space-charge la
should be avoided to optimize junction performance and
crease the critical current in high-Tc superconductors.51
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26A. V. Zaitsev, Zh. Éksp. Teor. Fiz.86, 1742 ~1985! @Sov. Phys.

JETP59, 1015~1985!#.
27K. A. Delin and A. W. Kleinsasser, Supercond. Sci. Technol.9,

227 ~1996!.
28J. Mannhart and H. Hilgenkamp, Appl. Phys. Lett.73, 265

~1998!.
29A. Gurevich and E. A. Pashitskii, Phys. Rev. B57, 13 878~1998!.
30I. V. Roshchin, A. C. Abeyta, L. H. Greene, T. A. Tanzer, J.

Dorsten, P. W. Bohn, S.-W. Han, P. F. Miceli, and J. F. Kle
~unpublished!; I. V. Roshchin, Ph.D. thesis, University of Illinoi
at Urbana—Champaign, 2000; L. H. Greene, J. F. Dorsten,
Roschchin, A. C. Abeyta, T. A. Tanzer, G. Kuchler, W. L. Fel
mann, and P. W. Bohn, Czech. J. Phys.46, 3115~1996!.

31J. P. Heida, B. J. van Wees, T. M. Klapwijk, and G. Borghs, Ph
Rev. B60, 13 135~1999!.

32L. G. Aslamasov, A. I. Larkin, and Yu. N. Ovchinnikov, Zh. E´ksp.
Teor. Fiz.55, 323 ~1968! @Sov. Phys. JETP28, 171 ~1969!#.

33W. Belzig, F. K. Wilhelm, C. Bruder, G. Scho¨n, and A. D. Zaikin,
Superlattices Microstruct.25, 1251~1999!.
06452
,

.

.

.

34A. Levy Yeyati, A. Martı́n-Rodero, and F. J. Garcı´a-Vidal, Phys.
Rev. B51, 3743~1995!; J. C. Cuevas, A. Martı´n-Rodero, and A.
Levy Yeyati, ibid. 54, 7366~1996!.

35F. Sols and J. Ferrer, Phys. Rev. B49, 15 913~1994!.
36R. A. Riedel, L.-F. Chang, and P. F. Bagwell, Phys. Rev. B54,

16 082~1996!.
37A. M. Martin and J. F. Annett, in Ref. 7.
38J. Bardeen, Rev. Mod. Phys.34, 667 ~1962!.
39M. Potthoff and W. Nolting, Phys. Rev. B59, 2549~1999!.
40P. Miller and J. K. Freericks, J. Phys.: Condens. Matter.13, 3187

~2001!.
41J. K. Freericks, B. K. Nikolic´, and P. Miller, Phys. Rev. B64,

054511~2001!.
42P. G. de Gennes,Superconductivity of Metals and Alloy

~Addison-Wesley, Reading, MA, 1966!.
43G. Deutscher and P. G. De Gennes, inSuperconductivity, edited

by R. D. Parks~Dekker, New York, 1969!, Vol. II, p. 1005.
44D. S. Falk, Phys. Rev.132, 1576~1963!.
45M. Yu. Kupriyanov, Pis’ma Zh. E´ksp. Teor. Fiz.56, 414 ~1992!

@JETP Lett.56, 399 ~1992!#.
46A. W. Kleinsasser and T. N. Jackson, Phys. Rev. B42, R8716

~1990!.
47C. L. Kane, R. A. Serota, and P. A. Lee, Phys. Rev. B37, 6701

~1988!.
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