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We report on a self-consistent microscopic study of the dc Josephson eff&Ni8 junctions, where
screened dipole layers at ti8N interfaces generate a double-barrier multilaye®&d structure. Our approach
starts from a microscopic Hamiltonian defined on a simple cubic lattice, with an attractive Hubbard term
accounting for the short coherence length superconducting order in the semi-infinite leads, and a spatially
extended charge distributidscreened dipole laygemduced by the difference in Fermi energies of the super-
conductorS and the clean normal metal interlayidr We analyze the influence of such spatially inhomoge-
neous barriers on the proximity effect, the current-phase relations, the critical supercurrent and the normal-state
junction resistance, for different normal interlayer thicknesses and barrier heights. These results are of rel-
evance for highF. grain boundary junctions, and also reveal one of the mechanisms that can lead to low
critical currents of apparently ballisti&§ N Sjunctions while increasing its normal-state resistance in a much
weaker fashion. When thd region is a doped semiconductor, we find a substantial change in the dipole layer
(generated by a small Fermi-level mismatcipon crossing the superconducting critical temperature, which is
a signature of the proximity effect and which might be related to recent Raman studies in Nb/InAs bilayers.
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I. INTRODUCTION one can tune the Fermi wavelength, or mean free path, and
confine electrons with gate electrodes. In such structures, the
The Josephson efféds one of the most spectacular phe- phase coherence of the electron and Andreev-reflectedthole
nomena arising from the macroscopic phase coherence af theSN interface can be studied without too much normal
Cooper pairs. A dissipationless current flows at zero voltageeflection, because the charge-accumulation layer arising at a
between two superconductors weakly coupled through a turtypical Nb/InAs interface, or the Schottky barrier at a Nb/Si
nel barrier §1S whereSand| denote a superconductor and interface, are much more transparent than typical dielectric
an insulating barrier, respectivélgr weak links S¢S SNS  tunnel barrierS.
etc., wherec stands for a constriction and for a normal While an initial understanding of the Josephson effect
meta). The study of such inhomogeneous superconductingame from studies of tunnel junctiohg,rther developments
structures has been driven both by interest in the fundamerconcentrated on weak linkswhich provide the nonhyster-
tals of quantum mechanics and by the potential applicatiortic (i.e., single valued!|-V characteristic needed for appli-
of Josephson junctions as circuit elements in electronications, like superconducting quantum interference detices
devices? or rapid single flux quantum logi. The return toSISjunc-
Recently, considerable attention has been directed towartibns came after the fabrication of Nb/Al tunnel junctibhs
the study ofSINISjunctions®~° where the insulating tunnel with a reliable control of the critical curreritonventional
barrier is split into two pieces separated by a normal metaftunnel junctions can be made nonhysteretic by externally
These types of junctions have provided a playground tasshunting their high capacitance with a resistor, which reduces
study the interplaybetween the mesoscopic coherence of ahe overall performanc®. The renewed interesin SINIS
single-particle wave function in the normal metal and themultilayered junctions for LTS electronics comes from an
macroscopic coherence of a many-body wave function oattempt to combine the advantageous properties of both
Cooper pairs. Furthermore, the reexamination of various weak links and tunnel junctiofs-the SINIS junctions are
multilayered structures of th®INIStype in applied research intrinsically shunted, while exhibiting large characteristic
has been driven by the struggle to optimize the performanceoltages with moderate critical current densitigs fact,
of Josephson junctions in low-temperature superconductingapid single flux quantum devices require large critical cur-
(LTS) digital electronic$~1° In mesoscopic superconductiv- rent densities, to reduce the error riteyhich is difficult to
ity, one frequently deals witB-Sm S junctions (Smbeinga  achieve using standard Nb/AI/Al®b tunnel junction tech-
heavily doped semiconductor with a two-dimensional elechology but might be reached iBINISjunctions with care-
tron gas where the role of thé layer is played by a space- fully engineered properti€s When theN interlayer is clean,
charge layer arising at tf&Sminterface(additional scatter- the junction resistance is mainly controlled by scattering at
ing at the interface can occur from the mismatch between ththe interfaces (as in conventional Nb/AI/AIQ/AI/Nb
effective electron masses and Fermi momenta inSfad  junctions’), and not by the interlayer material properties.
Sm). The technological advances in fabricating such hybrid Here we undertake a study of a special classSofllS
structured have given an impetus to the field of mesoscopicjunctions where the double-barrier structure arises from two
superconductivity;” where a two-dimensional electron gas is inhomogeneous screened dipole lay&®L's) determined
amenable to an engineering of its “metallic” properties; i.e.,by a relatively large Debye screening lendth of a few

0163-1829/2002/66)/06452911)/$20.00 65 064529-1 ©2002 The American Physical Society



BRANISLAV NIKOLIé, J. K. FREERICKS, AND P. MILLER PHYSICAL REVIEW B55 064529

lattice spacings. We start from a microscopic lattice Hamil-the problem further withd-wave symmetry. (ii) Raman-
tonian with theS andN layers described by different metals scattering studi€ of the proximity effects in Nb/InAs hy-
that have the same bandwidth, but their Fermi levels ar®rid structures reveal a substantial change of the charge ac-
misaligned. The Fermi-level mismatch forces a charge rediscumulation layer formed at such interface above and below
tribution, with the strongest deviation from uniformity lo- the T, of Nb—we also find that the layer induced by a
cated near th&N interface, which is gradually diminished Small Fermi-level mismatch is modified by proximity effects
inside the bulk layers on a length scale set py The charge N our SINISjunctions when 'the carrier concentration in the
profile ensures an equilibration of the chemical potentialN IS 100 times smaller than in tre (iii ) Recent experiments
throughout the system when no bias voltage is applied. Sinc@n ballisticSNSjunctions;™ in the limit wherel ; andRy do
we assume a screening length of a few lattice spacings, tHeot depend on the thickness of theexhibit a much smaller
dipole layer is spatially extendee., thicker than just one characteristic voltage than predicted for short clenS
monoatomic layer This choice of microscopic junction pa- Jjunctions—the scattering off a dipole charge layer is an ex-
rameters allows us to examine the charge redistribution aggmple of a process which sharply redu¢gs but increases
pearing between conductors which are less efficient iRn only weakly.
screening than ordinary metalsuch as the underdoped cu- We choose to examine a short coherence length super-
prates or InAs Our treatment of the double SDL barrier is conductor withés=4a for a lattice constana=3-6 A.
fully microscopic and self-consistent, meaning that effects ofl his value for the bulk superconducting coherence leiggth
the static electric potentidbenerated by the excess charge is similar to that of cuprates in the-b plane, and is about
on the Josephson current and on the normal-state resistan@alf of that in NSn and MgB for which {s~5 nm. We
are related to the parameters of the underlying Hamiltonianghoose a shors to allow for swift computations.
rather than characterizing the barrier by an effective The paper is organized as follows. In Sec. Il we introduce
transparency!®18D, or using a delta function potential at the the model and the main ideas of the Green-function compu-
SN interface to model the normal reflectfdri® (in addition ~ tational techniquéemployed to solve the quantum problem
to the inevitable retroreflectidh). Our junctions are three- Of the charge distribution and equilibrium transport; the elec-
dimensional(3D) and clean, so that quasiparticle transporttrostatic problem of the potential generated by these charges
through theN interlayer is ballistic. is solved classically Section Il contains the results for the
Previous theoretical work on ballist®INISjunctions fo- ~ Self-consistent pair amplitudeor the order parameteand
cused on resonant supercurrents in low-dimensionahe local change of the phase across the junction. The
structure$®-2* Mesoscopic superconductivity coherence ef-current-phase relation for different strengths of the electro-
fects in 3D junctionge.g., a current proportional  of the  static potential generated by the SDL is discussed in Sec. IV,
barrier, rather than the characterisiié dependence for two Where we also evaluate the characteristic voltag, . We
uncorrelated sequential tunneling processesre investi- conclude in Sec. V.
gated in Ref. 4. These junctions are mostly similar to the
ones stqdied he_re, except that our “microscopic” charge ac- Il. MODELING A SINIS JUNCTION WITH
cumulation bgrrlers are not atomlcally_sharp interfaces that A HoUBLE-BARRIER SCREENED DIPOLE LAYER
can be described by a phenomenological transparén&y
more microscopic treatment of the effect of charge inhomo- Early studies of the Josephson effectSiNIS junctions
geneity for normal transport through the contact of two dif-were based on a tunneling Hamiltonian formalism and per-
ferent metals(a problem frequently appearing in the multi- turbation theory in the barrier transmissivifLater on, qua-
layers of giant magnetoresistance devidewas undertaken siclassical Green-function techniqd&svere applied to a
using the Boltzmann equatidn,and in superconducting double-barrier junction with theéN interlayer in the dirty
junctions using quasiclassical methods in a non-selfiimit.'® While these results are valid only in a few limiting
consistent fashiof® It is worth emphasizing that standard cases, a recent reexamination of this problem covers a wider
quasiclassical Green-function techniques, which exploit theange of parametefs’ For example, when transport through
fact that macroscopic quantities vary on a length scale sulthe N interlayer is ballisticimean free path greater than the
stantially exceeding the interatomic distance, cannot be aghickness of the junction one cannot use standard td8ls
plied directly to problems containing boundaries betweerike the Usadel equation. Instead, a solution of the Gor’kov
two different metals. Since electron reflections lead to fasequations for the Green functions of a double-barrier struc-
spatial variations of the original Green functions around theure is required:*° Furthermore, if thd barriers are not of
boundary, the method has to be extended properly to takew transparency, the usual arguments for the validity of
this into accountsee Ref. 26 for details rigid boundary conditior’ (i.e., taking the gap to be con-
Our study is relevant for three types of recently exploredstant inside the superconducting legfisl when theSandN
experimental systemsi) grain boundary junctiof$in high-  regions have the same cross section, and the thickness of the
T. superconductors, our short coherence length supercofunction is not much larger than the superconducting coher-
ductor and the poor screening of the excess chérge De-  ence lengtlés. In such cases, the critical current density can
bye screening length comparable to the coherence Igngtlbe close to the bulk critical current density, and a self-
mimic the effect of a charge imbalance at the grain boundconsistent evaluation of the order parameter insideSte
aries on the depression of the order parameter, and therelmgeded to ensure current conservation throughout the
the intergranular current densifi?® (without complicating  structure®*~3¢ Since we choose to work with a short coher-
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nearest-neighbor tight-binding model with a diagonal on-site
potential V;. The potentialsVv; are not givena priori, but
instead are calculated self-consistently by first determining
the local electronic charge density and comparing it to the
bulk charge density of the correspondi8gr N layers. The
imbalanced charge on each plane generates an electric field
and thereby an electric potential. Summing the contributions
from the charges on all other planes then yields the total
local potentiaIViC and the local potential energy shi¥f
=e\/iC . We now recalculate the charge density on each plane
and iterate untiV; is determined self-consistentigee below
for a detailed description of the algorithnThe local poten-
tials V; are largest near th8N interface, and decay as one
approaches the bulk leads.

We use the Hartree-Fock approximati@dFA) for the

FIG. 1. Microscopic stacked planar geometry of a Josephsmhmer"letIng p"’?”. Of. Hamlltonlgril).. This accoqnts_for the
junction defined on an infinite simple cubic lattice with a lattice supercondl_JCthlty in thes region in a way which IS com-
constanta. The normal interlayer contairiéy planes(ranging from pletely equivalent tP a conventional BCS theory V_\"th an en-
1 to 60 which are coupled to semi-infinite superconducting leads€rdy cutoff determined by the electronic bandwidth rather
(the junction thickness ik = Nya). These layers, together with the than by the phonon frequency. We choose half-filling

first Ng planes(30 in our calculationsin each lead, comprise the =1 andU;=—2 on the sites in the superconducting leads.
region of the junction where the self-consistent calculation is per-The homogeneous bulk superconductor has a transition tem-
formed. The junction is allowed to have spatial inhomogeneity onlyperatureT.=0.11 and a zero-temperature order parameter
within the 2N+ Ny modeled planes, but the calculations are for anA =0.198. This yields a standard BCS gap ratitd/2kgT,)
infinite system. The insulating barriers are formed by a charge re~ 3.6 and a short coherence lendth= ﬁvﬁ/(ﬂ-A):4a_ The
distribution that is localized near tI#N interfaces. bulk critical current per unit areaa® is |gu|k

] ] . =1.0%nA/tkg, which is a bit higher than the current den-
ence length superconductor, quasiclassical apprOX|mat|or§ty determined by the Landau depairing velocity,
neglecting dynamics on a length scale belgyvare not ap-  — A7 k. . This stems from the possibility of having gapless
plicable (in our caseés is not much larger than the Fermi gyperconductivity in three dimensions at superfluid velocities
wavelengthAg~2a, and spatial variation of the order pa- gjightly exceedindf v4 (note thatke is direction dependent
rameterA on a length scale smaller or comparabletois  for a cubic lattice at half-filling; we use the average value
importan). _ . _ over the Fermi surfack-~2.8a, appearing in the transport
~ Our approach to quantum transport in balliSidNISjunc-  formulas, to compare our critical bulk supercurrent density to
tions starts from a microscopic Hamiltonian defined on &ne expressions that assume a spherical Fermi surface and a
simple cubic latticgof lattice constant).®* This allows us density of particlem=k§/3w2). The junction properties are
to describe the transport for an arbitrary junction thicknessg,jied here in the low-temperature limit &t=0.01
temperature, and barrier strength. Also, the geometry is such 0.09T, (the BCS gap is essentially temperature indepen-

that theN_interIayer has the same Width as tﬁ_daeads. For dent below 0.8). At this temperature, the coherence length
computational purposes, the infinite lattice which models th f the clean normal metal ig,=#v /2mk T=40a. Since we

junction is_divi_ded into a sel_f-consistent part apd a bulk Partyo not consider inelastic scattering processes, the dephasing
as shown in Fig. 1. A negativid-Hubbard term is employed lengthL ,, is larger thargy, . Therefore, mingy L ;) = &y de-

to mode| the real—quce pairing .Of slectrons .due to a loc ermines the coherence properties of a single quasiparticle
mstgntgnepus attractive interactitir’ The lattice Hamil- wave function of thermal electrons inside the normal region,
tonian is given by which determine the equilibrium properties of the junction.
1 The inhomogeneous superconductivity problem is solved
H=> V¢ ci,— > tijCiTangJFE Ui<CiTTCiT_ _) by employing a Nambu-Gor’kov matrix formulation for the
o (ijo) i 2 Green functiorG(r; 1 i w,) between two lattice sites and
r; at the Matsubara frequencw,=i7T(2n+1):

1

X 2

: 1)

t
CilCil_

G(ri,r]‘,iwn) F(ri,rj,ia)n)
wherec/ (ci,) creates(destroy$ an electron of spinr at

io Gy on) (F(ri Tidog)  —GH(rryie))
site i, tj; is the hopping integral between nearest-neighbor 2)
sitesi andj (energies are measured in unitstdf which is .
taken to be the same in ti&andN, andU; <0 is the attrac- We work with Green function&,, (i w,,ky k) represented
tive Hubbard interaction for sites within the superconductingin a mixed basis, which is defined by the two-dimensional
planes. The normal interlayer is described by the nonintermomenta k,,k,) and the(discretg z coordinate of the plane

acting part of Hamiltonian(1), which is just a(clean a=z;/a. This follows after the initial 3D problem is con-
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verted to a quasi-one-dimensional dhéy performing a uniform surface charge distributiofn(z)a which generates
Fourier transformation within each plaf@here the junction a homogeneous electric fiekl(z) = dn(z)a/2¢y€., pointing

is translationally invariantand retaining the real-space rep- along thez direction (., is the relative dielectric constant of
resentation for the direction of the inhomogeneity. For the the ionic latticgé. The quantum-mechanical part of the elec-
local interaction treated in the HFA, the computation of thetrostatic problem entails determining the local electron den-
Green function reduces to inverting an infinite block tridi- sity n(z)=n(z) (filling) at each site of a given plane
agonal Hamiltonian matrix in real space. The Green func=z/a,

tions are thereby evaluated as a matrix continued fraction
(technical details are given elsewh&®&). The final solution

is fully self-consistent in the order paramefex(z)|e'*?
inside the part of the junction comprised of tReregion and ) ] o
the first 30 planes inside the superconducting leads on eachnere ex,= —2t[cosk@)+coska)] is the |n—plan<23Dk|net|c
side of theN interlayer (see Fig. 1 The self-consistent re- ©nergy for the transverse momentuky (,), andp“~(&yy)
gion is long enough becausa(z)| heals to its bulk value IS the two-_d|mer}3|o_nal tight-binding density of states on a
over just a few coherence lengthis. Our Hamiltonian for-  Square latticéwhich is used for the sum over momenta par-
mulation of the problem and its solution by this Green-2allel to.the plane)g The correspoqdlng electrlc; potentlal is
function technique is equivalent to solving discretizeddetermined classically from the “charge deviatioah(z)

n(Z)=kBTE B PzD(sxy)ImGaa(iwnvsxy)dgxyv (4)

Bogoliubov—de Genné% (BdG) equations in a fully self- =n(2)—n (n is the average filling in the bullgy or ng):
consistent manner, i.e., by determining the off-diagonal pair- easn(z')|z—7|

ing potentialA; in the BAG Hamiltoniarf after each itera- NiZ)=— ———. (5)
tion until convergence is achieved. The tight-binding 2€q€.

description of the electronic states also allows us to includerhis must be summed over all planes to give the on-site
an arbitrary band structure or unconventional pairingpotential V(z). Therefore, the small induced charge imbal-
symmetry? ancedn(z) =N(ur)esV(z) satisfies(in a corresponding con-

In conjunction with the self-consistent solution of the su-tinyous system
perconducting part of the problem, we have to solve the elec-
trostatic problem self-consistently. Although both thand d eaN(u)
the N are half-filled in most of our calculatior(ge., there is azon@=- m&n(z), ©®)
no mismatch in the Fermi wave vectpshifting the bottom
of theN band leads to a difference in their Fermi levels. Thiswhere N(x) is the total density of states at the chemical
generates a redistribution of electrons around $iinter-  potential . This is integrated to give the distribution of the
face when these are brought into contact. The resulting norgcreened charge
uniform electric field can be described by a potentidl) 2aN
(for simplicity, we use the labe having in mind a discrete, on(z)= Bn(zo)ex;{ _ga (w) (z—2,)
coordinate at a particular sit¢ which varies in the transition 2€0€x
layer around th& N boundary with a thickness ofd In the
regionz>|d| the following condition is satisfied:

, )

which decays exponentially on a length scale set by the De-
bye screening length:

EZ+V(z<—d)=EF+V(z>d)=p, 3 e?aN(u)] ™t

2€p€,

lp=

()
in order to ensure a constant electrochemical potential
throughout the system in equilibrium. The solution which Thus the screening length is determined\tfy:) ande., (for
satisfies this equation is usually simplifédto V(z)  example?® e, =20-30 andp,=5-10 A in highT. super-
=V,8(2) + u—v(2), wherev(z) is a monotonic function of  conductors We choosee>=eY=5.0, which leads tdp
z equal toEg for z<—d or E} for z>d (this allows one to  ~3a. The self-consistency in the electrostatic problem is
formulate quasiclassical equations in the regiah>d). required becaus®(z) enters into the computation of the
Here we treat the contact between ®iand theN in a fully ~ Green function as a diagonal potential in Hamiltonid
microscopic fashion: starting from Hamiltonial) and a  The solution has converged when the potential is consistent
Fermi-level mismatchAE;=E}—EZ, and assuming a with the charge distribution in Eq4) determined from the
screening length of a few lattice spacings, we find the Green function. Although this seems like a cumbersome
charge redistribution around the contact, as well as the cocomputational task, the potential around tB& boundary
responding classical electrostatic potential generated blarely changes when equilibrium Josephson current flows.
them. Thus our technique can treat an arbitrary spatial variaFhus the electrostatic part of the problem converges rapidly
tion of the(lattice) Green functions, the superconducting or- since the potential found in the solution at one phase gradient
der parameter, and the electrostatic potential. This includeis a good initial guess for the iteration scheme at the next
the region|z|<d, where we find a sharp increase\tfz) but  superconducting phase gradient.
never as sharp as tiianphysical delta function. The density of electrons(z) on each site in a given plane
Since ourSINISmultilayer structure is translationally in- (at zero supercurrenis plotted in Fig. 2 as a function of the
variant in the transverse direction, each infinite plane has anction thickness forAEr=3.0. The charge deviation
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thinner junctions, where the screening of the excess charge

b does not heah(z) to its equilibrium value, charge is de-
< L2r pleted from theN interlayer. The example of this behavior is
E 1.0 theL = 2a junction in the lower panel of Fig. 3. This leads to
Dosk a nonmonotonic resistance as a function of junction thick-
= o6l nessL at fixed AEg (see Sec. IY. Thus the charge effects
e become essential in short-coherence length superconducting

0.4} junctions with thicknessek <2l , which are encountered

02 in high-T, grain boundarie$’

30 40 50 60 ; ; -
Plane Number (z/a) _ The mtere_stlng feature of thén(z) pr9f|les for the half-
filed SandN is that they can be approximately rescaled to a
FIG. 2. Scaling of the local density of electrons with the thick- single reference distributioset by (AEg) ] after multiply-
nessL=Nya of SINISJosephson junctions. The filling is the same ing each of them by the ratioAEg)«/AEg, as shown in
at each site within the plangplane number 1 is the first plane the insets of Fig. 3. We believe this occurs because the non-
along thez axis inside the self-consistent region from Fig. The - jnteracting cubic density of states is nearly constant close to
difference in Fermi energies of tf@and theN is AEz=3.0. The ¢ djling Since theng=ny=1 case has a higher degree of
bulk equilibrium value of the charge density is set to half-filling in . _ .
symmetry, we also perform calculations fgg=0.01 (which

both the S and theN (ng=ny=1). The inhomogeneous charge . d d - duttior th | .
redistribution is(approximately symmetric around th& Ninterface apprOXIm(_:lt_es a dope ,Semlcon ugtor the norma reglon.
and half-filling ng=1.0 in the superconductor. The result is

only for a thick enough junction. In the case of a thin junction, the A . Lo
charge is depleted in tHe interlayer to lie below half-filling, since Shown in Fig. 4. Here the scaling of thin(z) distribution
the screening length is a few lattice spacings. does not work as wellbecause the density of states has

strong variation with energy In addition, we find that the
charge deviation is nonsymmetric, and yields a different
én(z) for positive and negativA Ex [for symmetric filling

[\~
=]

én(z) from half-filling ng=ny=1 and the corresponding

electrostatic potentials are(approximately symmetric - o .
' . . Ns=n he tw istribution r imply rel

around theSN boundary for thick enough junctions, as >, N the two distributions are simply related as

shown in Fig. 3. Strictly speaking, only such symmetric dis-gn(Z)LAEF: ~On(2)|ag ] We .als-,o nvestigate the tem-
tributions should be denoted “screened dipole layers.” ForPerature dependence of the distributions of uncompensated
charge forT=0.2 (the chemical potential in the bulk is

u=—"5.566 forny=0.01) and aff=0.09 (which is close to

§ 06l T.=0.11). In both casess=ny=1.0 andng# ny=0.01 we
® 04 find on(z) to be practically temperature independéety.,
g 0'2 the change is at most 5% around tB& boundary for the
= AEg shown in the previous figure. This feature is exploited
5 0.0 in Sec. IV to calculate the normal-state resistance of our
3-0.2 junctions from an imaginary axis computation of the charge
%0-0.4 and potential profile in the superconducting state. However,
£ 06 for ng#ny=0.01 and smallAEg|=0.2 a large change in
© a . the magnitude ofén(z) is observed when going frori
Z%Iane ﬁgmber [‘éﬂms = §8|20|30]60 =0.2>T, to T=0.01<T,, as shown in Fig. 5. Similar phe-
nomenon has been found in the recent Raman stifdies
No2k®) ) A ) ] which could be accounted for by a substantial change in the
& é § thickness of the charge accumulation layer at the interface
g 00 - between Nb and InAs, as Nb undergoes a superconducting
b= U\AE " transition and proximity effects develop in the InAs layer
'5-02 ” F 1 (note that our model does not capture the change from a
8 & 0 \AEF=1~0 three-dimensional electron system to a two-dimensional
%0'0-42%—0.' 1 electron gas at the Nb/InAs interfaeput, nevertheless,
6-0«6 > " R U AE 230 ] allows us to study the general features of proximity effect
) 5 signatures on the charge accumulation layd@his would

20 25 30 35 40 point to a proximity effect influenced screening length,

Plane Number [SINIS = 3012(30] which cannot be seen in our lod@lhomas-Fernjiscreening
FIG. 3. Charge deviatiorsn(z) (from half-filing) in SINIS ~ th€ory containing only two parameters which deterniine

junctions characterized by different Fermi-level mismatchés. €= Which is fixed in our calculations; and the density of
=EN—EZ. The N interlayer consists ofa) 20 normal planes and StatesN(x), which can be modified by the proximity effect.
(b) two normal planes. The inset shows that distributionsiofz) ~ Our observation of the change in the charge concentration
for different AER can be rescaled to a single curve after multiplying above T~AEg) and belowT., without a palpable change
them by the ratio A Eg) o/ AEg, where AEg),=1.0 is chosen as in the screening properties, suggest that effects beyond the
the reference distribution. simple screening theorfe.g., nonlocal screening which be-
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1.0 0.06 0.04}
0.3
40.04 0.03}F
0.6 A
04 0028 N 0.02}
R o3 =
o2 0.00¢, w0 0.01}
o <
500 g 0.00}
=10 0.04%"
08 0,02; <001} n=1.0n =0.01
06 0.002 25 30 35 40 45 50 55
04 -0.02 Plane Number [SINIS = 30120130]
0.04 . . o
02 [AE=-108 ' 1oo6 FIG. 5. Evolution of the charge accumulation region iSIAIS

o g em

0.0 junction, with a highly doped semiconductor as tNeinterlayer
(ny=0.01ng=1.0,AE-=0.2), upon crossing . of the Sby going

from T=0.2=1.8T (dasheg@ito T=0.01=0.09T. (solid). The inset

0 20 40 6.0 80
Plane Number [SINIS = 30120130]

Lo 0.2 shows the relative change of the charge deviafién(z)t-g»
’ 0.1 —6N(2)1=0.01l/ 6N(2)7=0 for two different charge redistributions:
08f AEg=0.2 and—0.2.
o6k 0.0 .
o4t 1 A(2)=-U(2)F(2), 9
Jo2k 022
S"oo _0320" whereF(z) is obtained as the equal-time limit of the local
g 1:0 1.(') % anomalous Green function introduced in Sec. Il
= =
gi 05§ F(2)=F(z,2,7=0"). (10
04} 00 Although ¢(z) andF(z) are not directly measurable, they
o2k 05 are important for understanding superconductivity in inho-
0.0 . . . 10 mogeneous structures. Examples include the proximity effect
0 20 40 60 30 in the N side and the depression pf(z)| (compared to its
Plane Number [SINIS = 30120130] bulk value on theS side of aSN boundary(“inverse prox-

FIG. 4. Electron fillingn(z) (dashed lingand charge deviation imity effect”). Since the critical current of the junction is
én(z) (solid line) of a SIEIJ\II(S‘)Jo(sephson jugénction witﬁ a thickness determined byA(z) a,t theSN bogndary, t_he SFudy aF (2)
L=20a, and theN interlayer chosen to approximate a highly doped throu'ghout the junction gives direct insight mto. how self-
semiconductor. The charge deviation is measured with respect gonsistency affects the transport propertiesalytical ap-
the equilibrium filling in the bulkng=1 in the superconductor and Proaches usually assume a step function &qz)|, which is
ny=0.01 in the normal region. The Fermi energy mismatdh: applicable only for a limited range of junction parametgjrs
=EN-E; between theN and theS is (@) AEF=1.0, (b) AE¢ The nonzero value df(z) inside the superconductor results
=-1.0,(c) AEg=—3.0, and(d) AE;=—10.0. The charge profile from the attractive pairing interactiod(z)+# 0 [which also
is virtually independent of the temperature, both above and belovgives rise to the non-zero order parametée) |. In the nor-
T.. mal metal,U(z)=0 and the gap vanishes, bk{z) can be

nonzero due to the proximity effect. Therefore, it is more

comes important in low filling cas®3 probably have to be meaningful to plotF(z), which is a continuous function

taken into account to understand this experiment completelyiroughout the junction. Inside tf% F(z) should be under-
stood as justA(z)/[ —U(z)]. The superconducting correla-

tions are imparted to thil region which is in contact with
the Sregion. They are described quantitatively by the pair
amplitudé® F(z) [Eq. (10)]. Because of the translational
symmetry of the junction in the transverse directibiiz) is

We first provide insight into the microscopic properties of constant within the plane, and changes from plane to plane
these junctions which are determined by the proximity effecialong z axis. The scale over which(z) changes exponen-
that affects the critical currerfin non-self-consistent calcu- tially from the SNinterface to zero in the bulk of the is set
lations such effects are taken into account only through somky the normal metal coherence lengf. However, asT
effective phenomenological suppression parametdihey —O0 the lengthéy diverges, and the exponential decay of
are encoded in the self-consistently computed variation oF (z) crosses over to a slower power-law decbie 1/z at
the amplitude and phase of the order parameidr) T=0, inside aN described by a Fermi liqufd).

Ill. SELF-CONSISTENT EQUILIBRIUM PROPERTIES
OF SINIS JUNCTIONS

=|A(2)|€'*? in the S or pair amplitude F(z) We first show two examples oF(z) computed self-
=|F(2)|€'*? in theN. These are related to each other insideconsistently for vanishing supercurrent throughout$iis|S
the Shy junction withng=ny=1. Figure 6 plots the scaling &(z2)
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0.10k N =1 0.10k n=l0In=001 Ny
0.08} 0.08} A
]
=006} @ - ~0.06} ——AE=10 f
g E=1.0 et e AE =30 |
= 0.04} AE=10] T 0.04} SN
N2t A 7 At e AE=-100 f |
0.02F y _ N=20 ] 0.02} i
s
0.00 ; - . . . reem—
20 30 40 50 60 0 0020 40 60
Plane Number (z/a) Plane Number [SINIS = 30120130]
0.10 FIG. 8. Pair amplitudd=(z) at zero supercurrent flow i8INIS
’ junctions with thicknest = 20a. The double-barrier structure arises
0.08 from the inhomogeneous charge redistributions, plotted in Fig. 4,
induced by AEL=E}—EZ between the normal region withy
<006 =0.01 and the superconductor at half-filling=1.
E0 04
' charge imbalance generated d¥-=10.0. Since our previ-
0.02 ous results for &INISjunction having a strong on-site Cou-
lomb potential, confined within a single plane, exhibit a step
0.00, function like®® A(z), the effects observed here can be attrib-

20 30 40 50 60
Plane Number (z/a) uted to the finite spatial extent of the SDL. Moreover, we
find that the step functiorfup to tiny oscillations near the

FIG. 6. Pair amplitudd=(z) at zero supercurrent flow iSINIS boundary for A(z) does develop in the special case of low
junctions of different thicknesset =Nya. The double-barrier filling in the N region, likeny=0.01, and a small mismatch
structure arises from the charge inhomogengige Fig. 2induced Er|=1. A specific Zaxample of thi’s behaviczompared to
by the difference between the Fermi energies of the normal metﬁ{ e gase With the same parameters, but with a negAte
and superconductorta) AEg=EN—E$=1.0, and(b) AEF=E} is shown in Fig. 8 P ' 9
—EF=3.0. n O _—

F In the short junction case, the oscillations &fon the

: . : : scale of\ are observed for large enoudEr . In this case,
W'thbth.e Jugg“L(,)n t?cknehssf fﬁtr _thglatyers_ at é?bé Nﬁb(l)%nd- as discussed in Sec. ll, the junction is too thin for the distri-
Zré _6':';'% Th svr\]/ osedaFe|g ISI € em:;]nfh t%'FE DO pution of charge to heal to its equilibrium value. The charge

F=o.0. 1N€ shape (2) evolves wi € INicKNess, as depletion inside théN brings it close to an insulating state.
well as with the height, of the double barrier. This secondWhiIe oscillations on the scale of- were observed in
gt?:anr: '?hdngﬁgSStgtLeg;ﬁzgHZ’r;Vgﬁ;ev\\’l\;e l[gaer:(d ;’gtr¥htgivo§imilar self-consistent calculations @at=0 (and are attrib-

eng ' i ou pectt uted to the mesoscopic coherence of a single particle wave
lution Of F.(Z) toward a step_f_uncnon, which then justifies the function), here it appears that they are a property of the su-
use of rigid boundary conditions for strong enough Scatte”n%erconducting interface which terminates at an “insulator”
at thel barriers!? However, we find a nonmonotonic change (this is also exhibited by a thick junction with smadl, in
in the shape of_:(z)_: the mfluence_ of_a SDL_ on the order Fig. 8. We have recently found such behavior, in its most
parametera(z) is first reduced with increasingEr, but pronounced form, in the case 8fiSjunctions, withl being
then leads to a depressadz) near the boundary for a strong a correlated insulyatd‘ll '

IV. CRITICAL CURRENTS AND CHARACTERISTIC
VOLTAGES

In the self-consistent treatment, equilibrium supercurrent
flows through the junction when a phase gradient
(dp/d2) i eXists in the bulk of the superconductor, and a
total phase change is established across the normal region.
Therefore, we first find the solution for the bulk supercon-

. 3 L ductor in both the absence of a supercurrent and in the pres-
2(1)>1ane Number [‘é(ile _ 30|20|30?0 ence of a supercurrent generated by a uniform variation in
the order-parameter phase. The uniform bulk solution is then

FIG. 7. Pair amplitude=(z) at zero supercurrent flow i8INIS ~ €mployed to provide the “boundary conditions™ for the junc-
junctions of thickness = 20a characterized by different heights of tion k_)eyond the region where we determine _propertles self-
the SDL barriers. The double-barrier structgzharge inhomogene- consistently. Thus our method does not require any assump-

ity from Fig. 3 arises from the difference in Fermi energies of the tions about the boundary conditions at the interface between
the barrier and the superconductor, which follow from the

normal metal and superconductdrE,=E}N—EZ.
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requirements of self-consistentyWe use current conserva- two adjacent planes and a+ 1. This current(per a?) is
tion as a stringent test of the achieved self-consistency in thebtained from the Green function connecting two neighbor-
solution for the Green function. That is, the self-consistentlying planes &%

determinedA (z) ensures that Andreev reflection at e&®N

boundary generates supercurrent flow in $leads(besides seat .

being responsible for the proximity effect in thediscussed lygs1=——Ks T2, 0% (g,.)

in Sec. I). Thus the fulfillment of the self-consistency con- o h o J o Y

dition [Eq. (9)] means that the “source tern{bn the right-
hand sidg vanishes in the equation of motion for the charge

density operaton; ,

le[Ga,a+1(iwnrsxy)]dexy- (13

The first iteration in our self-consistent algorithm usually
an Jie gives a current which is smaller inside tNeregion than the
= + 2 Lij =T(Ai<cwcu>—Af‘(cﬂciﬂ}), (1)  Sregion. The iteration cycle is completed when the current is

! constant throughout the junction. The only approximation
thereby recovering current continuity at every sitg {s the ~ invoked here is the presence oftgpically smal) disconti-
current between two neighboring site§Vhen the current nuity in the supercurrent at the bulk-superconductor/self-
inside the superconductors is small, e.g., due to the geometgonsistent-superconductor interface. We find that the super-
cal dilution of a weak link with a junction area much smaller conducting order always heals to its bulk value at this point.
than 2, or when the junction resistance is dominated by aHowever, sometimes there can be a jumpdi(z) at this
large interlayer resistanéé? one usually neglects the super- Poundary when one nears the critical current. This disconti-
current flow and corresponding phase gradient in the bullduity in the phase corresponds to a breakdown of current
superconductor necessary to support it. Strictly speakingonservation at this interfadé can become large for large
such approaches violate current conservattofilnasmuch AEg and a thick junction, especially when one lies on the
as ourS and N layers have the same arda/I?" can be ~decreasing current side of the current-phase diagrdime
close to one for thin junctions with weak SDL's at small cr_itical currentl . of_the junction is reach_ed when the plqnes
AEg . In such cases, current flow affects appreciably the suWith the lowest pair amplitudgF(z)| (which are located in
perconducting order parametfire., F(z) both inside and the center of theN) can no longer support the necessary
outside of theN; cf. Sec. Il and a self-consistent treatment Phase gradient to maintain current continuity. o
becomes necessafgs is the case for the critical current of  1he scaling of the shape of the current-phase relation with
the bulk superconduct®). Because of the presence of a the junction thickness is plotted in Fig. 9 for differehie. .
phase gradient inside t® the simple pictureof an equi- e find large deviations from the usual sinusoitiah) de-
librium current being related to the phase differengg penc_Jence fo_r th_lnjunctlons and moderate heights of the SDL
— ¢ between the left and rigi leads(where ¢, and ¢g bamers. Wh|l§ in %ul%h caséand at Iow.temperaturhsana-
are constant within the learlis not applicable. Nevertheless, lytical predictions® also give nonsinusoidal(¢), our
the solution for the current turns out to be uniquely param- critical” phase changes [1(¢c) =] is always below the
etrized by a single quantity which can be taken as the phas@halytical predictionp.~ 1.86, which can be attributed to the
change across thi regiorf® (the other option is the phase effects of self-con5|ster_1§§/(the other important distinction
offset®® which is related to the phase change by a nontrivialS that SDL's are spatially extended barriersor thicker
scale transformation In a discrete model like ours, a con- junctions, with high SDL barriergand at high enough tem-
vention has to be introduced for how this change is extracte@eratures the recovery of the usua$IS junction 1(¢)
from ¢(2). The thickness of the junction is defined to be the= ¢ Sin¢ current-phase relation is predictétere we find a
distance measured from the point, in the middle of the current-phase relatioh(¢), which is close to sinusoidal in
lastS plane on the leftat z¥) and the first adjaceri plane  the thick junction limit[Fig. (@)}, or in thin junctions with
(at zf:zf+ 1), to the middle pointzg between the lashN high SDL_ barrierdFig. Ab)]. ForllargeAEF, I¢(L) is non- .
and firstS plane on the rightcf. Fig. 1). Since ¢(2) is monotonic be<_:aus¢_e of th(_a special role played by the barriers
defined within the planes, we set¢(zL)=[¢(zf) formed in the junctions with <2l . When SDL's are com-

+¢(Z’C')]/2 to be the phase a,, and equivalently for pletely screened inside the thi¢kinterlayers, the decay of

current is determined just by the exponential decay of the

¢(zr). The phase change across the barrier is then given hﬁfroximity coupling between th& leads through the clean

do norm_al inte_rlayer(the resistance _of these junctions is also
d=d(zr)— Pp(z7))= L(E +8p(zr) — 6p(z)) practlcally lr_wdependent df; see Fig. 10 For exampl_e3 the
bulk characteristic decay length, extracted from fitti
(120 ALPexg—L/g] to I(L) for AEf=1.0 case, isé|,~35a
for a junction of thicknes&. The current-phase relatiofp) =&y (with p=0.3). For largeAEg, and long enough junc-

is obtained by computing the current for a fixed bulk phaseions to ensure a monotonic decaylgfL), &\ appears to be
gradient, and associating this value with the phase changghorter.

across theN region, which is extracted from the self- We use a Kubo linear-response formalism to determine
consistent pair amplitude(z) =|F(z)|e'#®. On the lattice, the normal-state resistanB =1/Gy . The conductanc&y
transport is described by the current across a link betweetper unit areaa?) of the lattice system is given by
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G
—=(Rya) =3 oyda.p). (14
a a,p

Even though one can find an inhomogeneous ﬁ‘?dﬁ;;,wl
(across all links connecting plangsand 8+ 1) by inverting

the discretized versioh, ,1=aXgo,[(a,B)Eg 541 for the
linear current across a link, ,.;, which is a constant
throughout the system, the expression for the conductance
[Eq. (14)] does not contain this fielf. The sum of the com-
ponents of the nonlocal Kubo conductivity tensor is obtained
from the real-axis analytical continuation of the Green func-
tions

—1 (eah? (= > dw
O.ZZ(a,'B):kB_TTJLOOP (Sxy)dsxyf wz

X[Im Ga,ﬁ+l(w!8xy)|m Gﬂ,a+1(w18xy)
—Im Ga,ﬁ(waexy)lm Gﬁ+l,a+l(w18xy)]
X [cost(w/2kgT)] 2. (15)

We first find the self-consistent solutions for the system in
the normal state, with no current flowing, by setting the order
FIG. 9. Scaling of the current-phase relatibf)/1, with the ~ Parameter to zero on all planes. These solutions are then
thickness of thesINISjunctions where the SDL's are determined by €mployed to calculate the Kubo tensor. The self-energy of
(@) AER=1.0, and(b) AE-=3.0. Note that the phase changgat  the planes outside the interlayer contains only a constant real
the critical currentl,=1(¢.) varies nonmonotonically with the part, as the calculation is carried out within the HFA. Given
junction thickness. The standak(ip)/1 .= sin ¢ dependence in the the set of local self-energies, the Green functions which
S1Stunnel junction(Ref. 1) is plotted as a reference orflwhich is ~ couple any two planes are readily found, for any momentum
analytically predicted foSINISjunctions with small barrier trans- parallel to the planes. Although an external electric field in-
parency at high enough temperatu(gef. 9]. duces chargegand corresponding potentiglso, «,B) is
found as the response to an external field only. This is be-
cause the current response to this inhomogeneous (&id
ternal+ induced is already beyond a linear resporfé&@hus
only equilibrium screening has to be includ&ih the Hamil-
tonian used to compute the Green function entering

1000f % 1 o,{a,B) in Eq. (15). This makes it possible to use the po-
100 0‘. ¢ ¢ (a) tential g_enerated by_ the_ charge distributioﬁs(;) (d_is-
AEF=5,01 cussed in Sec. )J which is computed from the imaginary
— 10 4 axis calculations, as an on-site fixed potential in the equilib-
s rium Hamiltonian[Eq. (1)].
2 1% o & (b) The normal-state resistances calculated in this framework
N%IO F AB.=30)] are plotted in Fig. 10. In thin junctions and for large enough
=3

AEg, a charge depletion layer arises inside tkewhich

leads to a nonmonotonic behavior Bf; (e.g.,Ry increases

ope O o o ® sharply for L=2a and AEL=3.0, or L=3a and AEf
© =5.0). On the other hand, for small enoudlE-<1.0 the

N N .AEF,=1'O, conductance is only slightly changed from the Sharvin point
0 10 20 30 40 50 60 contact conductanc®of a ballistic SNSjunction per unit
Interlayer Thickness L. [a] area a?, Rya?=[(2e?/h)(k2/4m)] t~1.58a2/2e?. Thus

FIG. 10. Semilogarithmic plot of the normal state resistancethe SDL depresses the current substantially, while only

(multiplied by the unit are@?), as a function of th&INISjunction weakly mcreasm.g the resistance. Thls reduces ity
thickness, for different SDL's determined iyE-=EN—ES . Both produ.ct, plotted in Fig. 11, thus shpwmg that charge accu-
the S and theN are at half-filling in the bulk. Note that junctions mulatlon Iay,ers 'are d(?‘m_memal to Jun,Ct'On performance in
with thickness smaller than|g have charge depleted for large electronics circuits. This is further confirmed by the fact that
enoughA Er, causing the resistance to change nonmonotonically adcRn N most of these junction is below the product of the
a function ofL. The Sharvin point contact resistance of the C|eanbu|k Cl‘ltlca| current and the Shal’VIn pOInt contact resistance

SNS junction (corresponding toAE;=0 in our structure is | Rsy="1.4%A/e, which is the upper limit of the character-
Rg?=1.56a%/2¢?. istic voltage in a cleartSNSweak link (the SNSjunction
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extended charge redistribution that allows us to examine the

16bg

14 :-’---------------dﬁ-135'-‘/é -] interplay between the charge layer formation and supercon-

12}% ® AE=10 ] ductivity (characterized by the coherence length comparable
<10 g:‘. O AE<30 1 to the screening lengtinear theSN boundary and in th&
24,08} 0 ® AE<50 ] interlayer. This resembles the charge redistribution on the
5 osf & @ : 1 grain boundaries of a highz superconductor. At half-filling

04f D e o ] in both theS and theN, the charge distribution and its po-

0.2} g. 2oz L ol tential are symmetrigscreened dipole laygrand can be

0002030 16 50 0 rescaled to a single one determined by some reference Fermi

Interlayer Thickness L [a] level mismatchAEE . When the charge concentration in the

N N is 100 times smaller than in th§ we find a proximity
FIG. 11. Product of the critical Curremg and the normal-state eﬁ:ect |nduced Change |n the Charge redlst“butlon generated
resistanceRy as a function of theSINIS junction thickness, for by a small Fermi level mismatch upon moving fréfe T
different SDL's determined bAE=E}—E? . Both theS and the (whereT is of the order ofAE,) to T<T ¢
N are at half-filling in the bulkl ;Ry, is always below the product of The step-function-like ord(:r parame?(avhich is used in
the bulk critical current and the Sharvin point-contact reSiStanC%on-seIf-consistent approachés recovered only in the case
1PRg=1.45/e (dashed ling except in the case=3a(~Ip), o e
with AE-—5.0. of a low charge density in thE (compared to the filling in
F the S) and a small mismatctEN— EZ|<1. The SINISjunc-
tion exhibits unusual properties when its thickness is compa-

interlayer, exhibitsICRN>I'§”'kRSh, for some range of rable to the screening length. While the charge layer leads to

parameter¥). Therefore, the SDL induced scattering on a? depression of the order parameter nearSiheboundary,

. . . nd thereby the junction critical current, it influences the
SN boundary is one of the mechanisms which can accoun . . .
) ) normal state resistance in a much weaker fashion. Therefore,
for the low I;Ry products observed in experimettton

. N . . . thel Ry product, relevant for digital electronics application,
nomma_lly hallistic shortSNSJunctlons (where Ry, being S recduNcgd. This points out thgt such space—cr?erl)rge layers
determined by the thin charge layer only, does not scale WItI;lhould be avoided to optimize junction performance and in-

L just I'|ke what happens in ballistic conductpréne way to grease the critical current in highs superconductory:
test this conjecture is to use electron holography to map ou

the charge profile near the SN interface of these ballistic
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