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Magnetic Phase Diagram of the Hubbard Model
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The competition between commensurate and incommensurate spin-density-wave phases in the
infinite-dimensional single-band Hubbard model is examined with quantum Monte Carlo simulation
and strong and weak coupling approximations. Quantum fluctuations modify the weak-coupling phase
diagram by factors of order unity and produce remarkable agreement with the quantum Monte Carlo
data, but strong-coupling theories (that map onto effective Falicov-Kimball models) display pathological
behavior. The single-band model can be used to describe much of the experimental data in Cr and its
dilute alloys with V and Mn.
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Spin-density-wave (SDW) order, in which the modula
tion wave vector of the SDW is incommensurate with th
underlying lattice, is one of the most fascinating ordere
states found in nature. Incommensurate magnetism occ
in both metallic and insulating phases and on both fru
trated and unfrustrated lattices. In general, incommens
rate magnetic order may be driven either by frustration
by Fermi surface nesting with a wave vector that lies awa
from commensurate wave vectors. It is important to u
derstand which process plays a more important role and
understand how many-body effects modify the stability o
incommensurate phases. Here the effect of nesting is
amined on an unfrustrated lattice with strongly correlate
electrons. The resulting phase diagram is then compa
to approximate results in the weak- and strong-couplin
limits (Figs. 1 and 2). Finally, our theoretical results ar
compared to those found in Cr and its dilute alloys.

Elemental Cr is a paradigm for an antiferromagnet
metal [1] with incommensurate SDW order driven b
Fermi-surface nesting. The lattice structure of Cr is a
unfrustrated body-centered-cubic structure which may
modeled by a Hubbard model [2] near half filling with
moderate electron-electron correlations. Adding electro
to Cr (by alloying with Mn) rapidly makes the magnetic
order commensurate with the lattice, whereas removi
electrons from the system (by alloying with V) rapidly in-
creases the incommensuration and decreases the magn
transition temperature, eventually to zero [3].

Heretofore, incommensurate magnetic order h
mainly been examined within the Hartree-Fock (HF
(weak-coupling) approximation that neglects quantu
fluctuations. Penn [4] found incommensurate order in th
three-dimensional Hubbard model, and Schulz [5] foun
evidence for incommensurate phases on a square lattic

In this contribution the magnetic phase diagram o
the single-band Hubbard model is investigated in th
limit of infinite dimensions [6]. This limit is useful,
because it has been shown to contain most of the phys
expected of three-dimensional Hubbard models, and t
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many-body effects can be treated numerically with t
quantum Monte Carlo (QMC) techniques of Hirsch an
Fye [7]. This allows us to demonstrate the existen
of incommensurate order at finite temperatures in
model that only includes Fermi-surface nesting effects a
electron-electron correlations.

The Hubbard model [2] is described by the followin
Hamiltonian:
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FIG. 1. Phase diagram of the Hubbard model in the (a) wea
coupling regime (Uytp ­ 1, 1.5, 2, 3) and (b) strong-coupling
regime (Uytp ­ 3, 4, 5, 7). The solid (open) dots denote the
transition temperature to a commensurate (incommensur
SDW phase as determined by a QMC calculation. The so
(dotted) lines denote the transition temperature to a comm
surate (incommensurate) SDW phase using the modified Sto
criterion in (a) and using Li and d’Ambrumenil’s approximatio
in (b). The dashed lines are a fit of the QMC data by the for
Tcytp ­ asr 2 rcdc. The exponentc increases with increasing
U.
© 1994 The American Physical Society
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FIG. 2. Phase diagram for the Hubbard model as a fun
tion of electron concentration andU. The thin (thick) solid
lines denote the commensurate-incommensurate phase bou
ary for the Stoner criterion (modified Stoner criterion); th
thin (thick) dashed lines are the corresponding results for t
incommensurate-paramagnetic phase boundary. The dotted
is the strong-coupling approximation for the commensurat
paramagnetic phase boundary. The solid (open) dots den
the QMC solutions that display commensurate (incommens
rate) SDW order.

where c
y
i (ci) is a creation (destruction) operator fo

an electron at sitei with spin s. The hopping matrix
elements connect nearest neighbors on a hypercu
lattice in d dimensions; its magnitude is written as
t ­ tpy2

p
d [to have a well-defined limit in infinite

dimensions (d ! `)]. All energies are expressed in units
of the rescaled hopping matrix elementtp. The Coulomb
repulsion is represented byU and the chemical potential
by m.

In the limit of infinite dimensions the local approxima-
tion becomes exact [6]. The electronic Green’s functio
Gsivnd ; Gn is represented by an integral over the non
interacting density of statesrsyd ­ exps2y2dy

p
p:

Gn ­
Z `

2`
dy

rs yd
ivn 2 m 2 Sn 2 y

; F`sivn 1 m 2 Snd , (2)
with Sn ; Ssivnd the electronic self-energy. The mag
netic susceptibility satisfies Dyson’s equation,

xmnsqd ­ x0
msqddmn 2 T

X
r

x0
msqdGmr xrnsqd , (3)

with Gmr ; Gsivm, ivr d the local irreducible vertex func-
tion for SDW order. The bare particle-hole susceptibilit
x0

msqd is defined by

x0
msqd ; 2T

X
k

GmskdGmsk 1 qd

­ 2
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p
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1 2 X2

Z `

2`

dy
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e2y2

ivn 2 m 2 Sn 2 y
F`

3

∑
ivn 1 m 2 Sn 2 Xy

p
1 2 X2

∏
. (4)

The bare susceptibility only depends on the scalar para
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Pd

i­1 cos qiyd, which defines an equivalence
class of wave vectors in the infinite-dimensional Brilloui
zone [8]. Xsqd can be parametrized by the line tha
extends along the Brillouin zone diagonal from th
zone center (X ­ 1) to the zone cornersX ­ 21d. The
self-energy and irreducible vertex function are extract
from the self-consistent QMC simulations as describ
previously [9].

It is important to qualify the region of validity of
different approximation techniques by comparing the
with the numerically exact QMC results (the errors of th
QMC calculation are well understood and controllable).

In the weak-coupling limit a renormalized Hartree-Foc
approach [10] is employed. The Néel temperature
determined by the Stoner criterion,

1
U

­ x0
phsX, Td ; T

X
n

x0
nsXd , (5)

where the bare particle-hole susceptibilityx0
nsXd is calcu-

lated with noninteracting Green’s functionsG0
n [Sn ­ 0

in Eq. (2)]. This HF transition temperature is reduced b
factors of order 3 due to quantum fluctuations [10], ev
in the limit Uytp ! 0. Quantum fluctuations modify the
Stoner criterion (by subtracting the local particle-partic
susceptibility) to [11]

1
U

­ x0
phsX, Td 2 x0

ppsX ­ 0, Td

­ x0sX, T d 2 T
X

n
jG0

nj2, (6)

in the limit Uytp ! 0. These fluctuations initially reduce
Tc by the factor expf2x0

pps0, Tcdyrsmdg in the weak-
coupling limit [10,11].

In the strong-coupling limit the Hubbard model ca
be mapped onto a Falicov-Kimball model [12,13]. Th
mapping is exact for the self-energy, but not for th
irreducible vertex functions in the limitUytp ! `. As
a result, the strong-coupling theories display pathologic
behaviors. More explicitly, these approximations assum
that the down-spin particles form astatic background
when the up-spin particles move and vice versa; th
system is then described by Falicov-Kimball models [1
for both the spin-up and spin-down electrons that are se
consistently coupled together. Two different couplin
schemes have been proposed so far [12,13]. Janiš and
Vollhardt’s approximation [12] underestimates the SDW
susceptibility at half filling which strongly suppressesTc

and does not reproduce the Heisenberg limit ofTc ø
tp2y2U. Li and d’Ambrumenil’s approximation [13] is
correct for largeU at half filling, but has the pathologica
behavior of predicting ferromagnetism away from ha
filling because of segregation in the effective Falico
Kimball model. This latter pathology occurs because t
zero temperature occupation number of the static partic
is 0, 0.5, or 1, and segregation occurs whenever the sta
particle concentration is0.5 and does not equal the mobile
particle concentration [15]. We deal with this patholog
by only considering ordered states withX , 0.
187
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FIG. 3. The magnetic susceptibility for allXsqd at various
temperatures whenU ­ 4 and re ­ 0.825. The susceptibility
displays a peak atX ø 20.90. As shown in the inset,
the transition temperature (Tc ­ 0.0148tp) was inferred from
extrapolation of the peak inverse susceptibility.

To determine the magnetic transition temperatures, w
calculated the magnetic susceptibility for allXsqd in the
Brillouin zone. As shown in Fig. 3, the susceptibility al
ways displayed a maximum at a distinct value ofX. The
transition temperature was then inferred from interpol
tion (or extrapolation) of the peak inverse susceptibility
as shown in the inset to Fig. 3. At half filling [9] the
Hubbard model in infinite dimensions has a transition
a commensurate antiferromagnetic state (X ­ 21) at the
Néel temperatureTN . As the system is doped away from
half filling, the Néel temperature drops until a critical fill-
ing is reached where the commensurate SDW becom
incommensurate. This is shown in Figs. 1(a) and 1(
for the weak-coupling and strong-coupling results, respe
tively. As the system is doped further away from ha
filling, the wave vector of the ordered phase changes co
tinuously with the electron concentration untilTc drops to
zero at the incommensurate-paramagnetic phase bou
ary. The shape of the magnetic phase boundary chan
continuously from a square-root-like dependence (as
function of doping) at weak coupling to an almost linea
dependence at strong coupling, with the same crosso
regionsU ø 3tpd as found forTN at half filling.

Phase diagrams in the weak-coupling regime (Uytp #

3d have been obtained from both QMC simulations an
from the theory of Eq. (6). They are plotted in Fig. 1(a
for four values ofUytp (Uytp ­ 1, 1.5, 2, 3). Let Xmax

denote the largest value of the scalar parameterX with
which incommensurate order is found for each value
U. In the QMC simulations, we find that bothXmax

increases, and that the ratio of the transition temperatu
at the commensurate-incommensurate phase boundaryTI

to the Néel temperature at half fillingTN decreases, as the
coupling strength increases. However, when the modifi
Stoner criterion is used, we find that the transitio
temperature curves scale with the coupling strength a
maintain the same approximate shape. This implies th
Xmax will increase, while the ratioTIyTN remains constant,
TIyTN ø 0.57.
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QMC results in the strong-coupling regimesUytp $ 3d,
along with Li and d’Ambrumenil’s approximation forTc

are plotted in Fig. 1(b) forUytp ­ 3, 4, 5, 7. The approxi-
mate results are generated with the restriction that only o
dered states withX , 0 are considered (which suppresse
the ferromagnetism due to phase separation). Und
this assumption, the strong-coupling theory predicts n
incommensurate order (nearX ­ 21), and the transition
temperature curves also maintain the same shape as
coupling strength changes. Accurate simulations at ve
large values ofU are not possible with the QMC. Thus,
we are unable to determine whetherXmax continues to in-
crease in the strong-coupling regime, nor are we able
determine what happens toTIyTN .

Both weak- and strong-coupling approximations ar
unable to reproduce the qualitative change in shape of
finite-temperature phase diagrams as a function ofU.

The “phase diagram” which indicates the
commensurate-incommensurate phase boundary (
curring atT ­ TI) and the incommensurate-paramagnet
phase boundary (occurring atT ­ 0) is presented
in Fig. 2. The thin (thick) solid lines denote the
commensurate-incommensurate boundary for the Sto
(modified Stoner) criterion; the thin (thick) dashed line
plot the corresponding paramagnetic phase bounda
The dotted line is the commensurate-paramagnetic ph
boundary in the strong-coupling theory, and the dots a
the QMC results. The quantum fluctuations strong
renormalize the HF phase boundary to produce go
agreement with the QMC [the critical value ofU is
shifted by 1yU ­ 1yUHF 2 x0

pps0, Tcd]. The value of
Xmax ­ 20.7 occurs atU ­ ` when the modified Stoner
criterion is used, whereasXmax increases to the ferromag-
netic point sX ­ 1d in the Stoner theory, i.e.,quantum
fluctuations completely suppress ferromagnetism in th
approximation.

Finally, we comment on the possibility of phase sep
ration. Recent analysis of theU ! 0 limit at T ­ 0 has
shown that phase separation between the commensu
SDW and the paramagnetic phase precludes the appe
ance of incommensurate order [16]. This phase sepa
tion disappears whenU is larger than0.8tp. We cannot
directly rule out the possibility of phase separation mod
fying the results found here, but we have checked th
the uniform compressibility is positive for all of the QMC
results (a necessary butnot sufficient condition against
phase separation).

Finally, it is of interest to compare our results with
what is known about magnetism in elemental Cr. Ele
tronic band structure calculations [1] show that th
d-electron concentration for Cr is 4.6yatom which is
close to a half-filled band. Doping with Mn adds an
electron to thed bands, and doping with V removes
an electron. The commensurate-incommensurate ph
boundary lies at a doping of 0.3% Mn and the para
magnetic phase boundary at a doping of 3.5% V [1,3
Since the density of states for Cr is peaked near t
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band edges, rather than the band center, it is difficult
map directly onto the Gaussian density of states (of t
single-band model in infinite dimensions). Instead, w
compare the ratio of the incommensurate ordering wa
vector to the commensurate wave vector in order to e
timate the magnitude of the Coulomb interaction. Th
smallest value for the ratio of the incommensurate wa
vector to the commensurate wave vector is 0.92 f
Cr [1,3], implying Xmax ­ coss0.92pd ­ 20.97 for the
single-band model. The approximate value ofU is then
estimated to beU ø 1.9tp (U ø 1.5tp) for the weak-
coupling theory (QMC). (We also found that the in
commensurate wave vector changes very rapidly wi
doping near the commensurate-incommensurate ph
boundary which is reminiscent of the first-order jum
in the wave vector that is seen in Cr.) The ratio ofTI

(325 K) to TN (700 K) is 0.46 which is smaller than the
weak-coupling value of 0.57 and is consistent with the a
signment of a small value toUytp. The Néel tempera-
ture at half filling is approximately 0.096tp (0.086tp) in
the weak-coupling theory (QMC) which yields an effec
tive bandwidthW ; 4tp ­ 2.4 eV (2.7 eV) for the single-
band model. This is a reasonable number since Cr h
a bandwidth of 6.8 eV, and the pileup of the density o
states at the band edges [1] implies that the bandwid
for an effective single-band model must be larger than t
naive approximation of one-fifth of the total bandwidth.

In conclusion, we have shown that incommensura
SDW order exists in the infinite-dimensional Hubbar
model as one dopes away from half filling. A simple
modification (due to quantum fluctuations) of the usu
Stoner criterion produces good agreement with the wea
coupling QMC results and is easy to implement in arb
trary dimensions (theq-dependent spin susceptibility is
reduced by thelocal particle-particle susceptibility be-
fore applying the Stoner criterion). Since these quantu
fluctuations produce large renormalizations of the ma
netic phase boundaries, it is worthwhile to repeat previo
Hartree-Fock calculations [4,5], and employ the modifie
Stoner criterion. We have also found that strong-couplin
theories (which map onto effective Falicov-Kimball mod
els) display pathological behavior in the magnetic tran
sition temperature, because the (approximate) irreduci
vertex functions do not reproduce the atomic limit whe
Uytp ! `. Finally, we have shown that much of the be
havior found in Cr and dilute Cr alloys can be describe
to
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by an effective single-band Hubbard model that do
not include any of the microscopic details of the ban
structure.
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