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Magnetic Phase Diagram of the Hubbard Model
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The competition between commensurate and incommensurate spin-density-wave phases in the
infinite-dimensional single-band Hubbard model is examined with quantum Monte Carlo simulation
and strong and weak coupling approximations. Quantum fluctuations modify the weak-coupling phase
diagram by factors of order unity and produce remarkable agreement with the quantum Monte Carlo
data, but strong-coupling theories (that map onto effective Falicov-Kimball models) display pathological
behavior. The single-band model can be used to describe much of the experimental data in Cr and its
dilute alloys with V and Mn.

PACS numbers: 75.30.Kz, 71.27.+a, 75.10.Lp

Spin-density-wave (SDW) order, in which the modula-many-body effects can be treated numerically with the
tion wave vector of the SDW is incommensurate with thequantum Monte Carlo (QMC) technigues of Hirsch and
underlying lattice, is one of the most fascinating ordered~ye [7]. This allows us to demonstrate the existence
states found in nature. Incommensurate magnetism occuo§ incommensurate order at finite temperatures in a
in both metallic and insulating phases and on both frusmodel that only includes Fermi-surface nesting effects and
trated and unfrustrated lattices. In general, incommensielectron-electron correlations.
rate magnetic order may be driven either by frustration or The Hubbard model [2] is described by the following
by Fermi surface nesting with a wave vector that lies awayHamiltonian:

from commensurate wave vectors. It is important to un- H=— t* Z[CT e et

derstand which process plays a more important role and to 2./d o e Jom

understand how many-body effects modify the stability of

incommensurate phases. Here the effect of nesting is ex- + UZ(”iT - %)(n,-l — %) - ,uan, (1)

amined on an unfrustrated lattice with strongly correlated
electrons. The resulting phase diagram is then compared
to approximate results in the weak- and strong-coupling
limits (Figs. 1 and 2). Finally, our theoretical results are
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compared to those found in Cr and its dilute alloys. 0.10 |

Elemental Cr is a paradigm for an antiferromagnetic <, -
metal [1] with incommensurate SDW order driven by = 005 | I ¥ -t
Fermi-surface nesting. The lattice structure of Cr is an L g
unfrustrated body-centered-cubic structure which may be 0.00 ' ’

modeled by a Hubbard model [2] near half filling with
moderate electron-electron correlations. Adding electrons

to Cr (by alloying with Mn) rapidly makes the magnetic .. 010

order commensurate with the lattice, whereas removing =

electrons from the system (by alloying with V) rapidly in- 005 ¢

creases the incommensuration and decreases the magnetic

transition temperature, eventually to zero [3]. 00,5 0.8 0.9 1.0
Heretofore, incommensurate magnetic order has electron concentration p,

mainly been examined within the Hartree-Fock (HF)
(weak-coupling) approximation that neglects quanturﬂ:'G- 1. . .
. . - coupling regime /¢ = 1,1.5,2,3) and (b) strong-coupling
fluctuations. Penn [4] found incommensurate order in th‘?egime U/¢ = 3,45,7). The solid (open) dots denote the
thr_ee-dlmens_lonal Hubbard model, and Schulz [5] fOl_JnCiransition temperature to a commensurate (incommensurate)
evidence for incommensurate phases on a square latticeSDW phase as determined by a QMC calculation. The solid

In this contribution the magnetic phase diagram of(dotted) lines denote the transition temperature to a commen-

the single-band Hubbard model is investigated in thelurate (incommensurate) SDW phase using the modified Stoner
criterion in (a) and using Li and d’Ambrumenil’s approximation

limit of infinite dimensions  [6]. Th_iS limit is useful, .in (b). The dashed lines are a fit of the QMC data by the form
because it has been shown to contain most of the physigs /i — 4(» — p.)*. The exponent increases with increasing

expected of three-dimensional Hubbard models, and the.

Phase diagram of the Hubbard model in the (a) weak-
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eterX(q) = Y%, cosq;/d, which defines an equivalence

1 T
class of wave vectors in the infinite-dimensional Brillouin
0.9 | zone [8]. X(q) can be parametrized by the line that
08 L extends along the Brillouin zone diagonal from the
& zone centerX = 1) to the zone corne¢x = —1). The
0.7 F self-energy and irreducible vertex function are extracted
from the self-consistent QMC simulations as described
0.6 - previously [9].
05 , It is important to qualify the region of validity of

0 0.2 0.4 0.6 0.8 1 different approximation techniques by comparing them
. * with the numerically exact QMC results (the errors of the

Interaction strength U/(t"+U) QMC calculation are well understood and controllable).

FIG. 2. Phase diagram for the Hubbard model as a func- Inthe weak-coupling limit a renormalized Hartree-Fock

tion of electron concentration anti. The thin (thick) solid approach [10] is employed. The Néel temperature is

lines denote the commensurate-incommensurate phase boungetermined by the Stoner criterion,

ary for the Stoner criterion (modified Stoner criterion); the 1

thin (thick) dashed lines are the corresponding results for the - = Xgh(X’T) = TZX,?(X)’ (5)

incommensurate-paramagnetic phase boundary. The dotted line U 7

is the strong-coupling approximation for the commensuratey,here the bare particle-hole susceptibilig(x) is calcu-
paramagnetic phase boundary. The solid (open) dots deno}gted with noninteracting Green’s functio® [S,, = 0

the QMC solutions that display commensurate (incommensu ) > A
rate) SDW order. in Eq. (2)]. This HF transition temperature is reduced by
factors of order 3 due to quantum fluctuations [10], even
; _ _ _ in the limit U/t* — 0. Quantum fluctuations modify the
where ¢; (c;) is a creation (destruction) operator for Stoner criterion (by subtracting the local particle-particle
an electron at sit¢ with spin o. The hopping matrix susceptibility) to [11]

elements connect nearest neighbors on a hypercubic

1
lattice in 4 dimensions; its magnitude is written as U Xgh(X, T) — Xgp(X =0,7)
t =1*/2+/d [to have a well-defined limit in infinite o o
dimensions{ — «)]. All energies are expressed in units = X’x,7) - T Y |GI>, (6)

of the rescaled hopping matrix element The Coulomb
repulsion is represented iy and the chemical potentia
by w.

In the limit of infinite dimensions the local approxima-
tion becomes exact [6]. The electronic Green’s functio
G(iw,) = G, is represented by an integral over the non-
interacting density of statgs(y) = exp(—y?)//7:

| inthe limit U/:* — 0. These fluctuations initially reduce
T. by the factorexp[—xp,(0,7.)/p(u)] in the weak-
coupling limit [10,11].
In the strong-coupling limit the Hubbard model can
e mapped onto a Falicov-Kimball model [12,13]. This
mapping is exact for the self-energy, but not for the
irreducible vertex functions in the limi//r* — «. As

G, = /m dy - p(y) a result, the strong-coupling theories display pathological
e i@, — = 2, Y behaviors. More explicitly, these approximations assume
= Folion + u — 3, (2) that the down-spin particles form static background

when the up-spin particles move and vice versa; this
system is then described by Falicov-Kimball models [14]
for both the spin-up and spin-down electrons that are self-
Xon (@ = x2@8m — T D x%@Tm xm(q), (3) consistently coupled together. Two different coupling
) r ] schemes have been proposed so far [12,13]. SJand
with I, = I'(iwn. iw,) the local irreducible vertex func- vlihardt's approximation [12] underestimates the SDW
tion for SDW order. The bare particle-hole Suscept'b'“tysusceptibility at half filling which strongly suppressgs

with %, = 3(iw,) the electronic self-energy. The mag-
netic susceptibility satisfies Dyson’s equation,

xn(q) is defined by and does not reproduce the Heisenberg limit7of~
xm(q) = —TZGm(k)Gm(k +q) t*2/2U. Li and d’Ambrumenil’s approximation [13] is
k " correct for larger at half filling, but has the pathological
= _L_ ;/ y behavior of predicting ferromagnetism away from half
VT V1T = X2 ) filing because of segregation in the effective Falicov-
e’ Kimball model. This latter pathology occurs because the
X iy — @ — Sy — yF% zero temperature occupation number of the static particles
. is 0, 0.5, or 1, and segregation occurs whenever the static
% [”"" Rl Rl i Xy} ) (4)  Pparticle concentration 8.5 and does not equal the mobile
V1 — X2 particle concentration [15]. We deal with this pathology,

The bare susceptibility only depends on the scalar paranby only considering ordered states with<t 0.
187



VOLUME 74, NUMBER 1 PHYSICAL REVIEW LETTERS 2 ANUARY 1995

30 ‘ : ; QMC results in the strong-coupling reginé/:* = 3),
o Eiéo §g‘3‘ along with Li and d’Ambrumenil’s approximation fdF.

2 = B=200 § o2} | are plotted in Fig. 1(b) fot//r* = 3,4,5,7. The approxi-
- E:igﬁg =01 | mate results are generated with the restriction that only or-

A

000 005 010 015 dered states witlh < 0 are considered (which suppresses

10 - the ferromagnetism due to phase separation). Under
- S this assumption, the strong-coupling theory predicts no
::_;:_-_-___T____‘TZT:T—_~_:~—-— = incommensurate order (nedr= —1), and the transition
0_1.0 05 0.0 05 1.0 temperature curves also maintain the same shape as the

X coupling strength changes. Accurate simulations at very

FIG. 3. The magnetic susceptibility for alt(q) at various large values oU are not _pOSS'ble with the QMC' Thus,
temperatures whet = 4 and p, = 0.825. The susceptibility ~We are unable to determine whethir.. continues to in-
displays a peak aty = —0.90. As shown in the inset, crease in the strong-coupling regime, nor are we able to
the transition temperatureT (= 0.0148:*) was inferred from determine what happens 19/Ty.
extrapolation of the peak inverse susceptibility. Both weak- and strong-coupling approximations are
unable to reproduce the qualitative change in shape of the
finite-temperature phase diagrams as a functiot .of
The “phase diagram” which indicates the
To determine the magnetic transition temperatures, weommensurate-incommensurate phase boundary (oc-
calculated the magnetic susceptibility for &llq) in the  curring atT = T;) and the incommensurate-paramagnetic
Brillouin zone. As shown in Fig. 3, the susceptibility al- phase boundary (occurring ar = 0) is presented
ways displayed a maximum at a distinct valuexof The in Fig. 2. The thin (thick) solid lines denote the
transition temperature was then inferred from interpolacommensurate-incommensurate boundary for the Stoner
tion (or extrapolation) of the peak inverse susceptibility,(modified Stoner) criterion; the thin (thick) dashed lines
as shown in the inset to Fig. 3. At half filling [9] the plot the corresponding paramagnetic phase boundary.
Hubbard model in infinite dimensions has a transition toThe dotted line is the commensurate-paramagnetic phase
a commensurate antiferromagnetic state<{ —1) at the  boundary in the strong-coupling theory, and the dots are
Néel temperatur@y. As the system is doped away from the QMC results. The quantum fluctuations strongly
half filling, the Néel temperature drops until a critical fill- renormalize the HF phase boundary to produce good
ing is reached where the commensurate SDW becomexreement with the QMC [the critical value a@f is
incommensurate. This is shown in Figs. 1(a) and 1(bkhifted by 1/U = 1/Uyxr — )(gp(o, T.)]. The value of
for the weak-coupling and strong-coupling results, respecX,,.x = —0.7 occurs atU = o« when the modified Stoner
tively. As the system is doped further away from half criterion is used, whereas,., increases to the ferromag-
filling, the wave vector of the ordered phase changes cometic point (X = 1) in the Stoner theory, i.equantum
tinuously with the electron concentration uritjl drops to  fluctuations completely suppress ferromagnetism in this
zero at the incommensurate-paramagnetic phase bounadpproximation
ary. The shape of the magnetic phase boundary changesFinally, we comment on the possibility of phase sepa-
continuously from a square-root-like dependence (as eation. Recent analysis of theé — 0 limit at 7 = 0 has
function of doping) at weak coupling to an almost linearshown that phase separation between the commensurate
dependence at strong coupling, with the same crossov&DW and the paramagnetic phase precludes the appear-
region(U = 3¢*) as found forTy at half filling. ance of incommensurate order [16]. This phase separa-
Phase diagrams in the weak-coupling regirg: =  tion disappears whety is larger than0.8:*. We cannot
3) have been obtained from both QMC simulations anddirectly rule out the possibility of phase separation modi-
from the theory of Eq. (6). They are plotted in Fig. 1(a) fying the results found here, but we have checked that
for four values ofU/t* (U/t* = 1,1.5,2,3). Let Xn.  the uniform compressibility is positive for all of the QMC
denote the largest value of the scalar param&tevith  results (a necessary buabt sufficient condition against
which incommensurate order is found for each value ophase separation).
U. In the QMC simulations, we find that botl,,,, Finally, it is of interest to compare our results with
increases, and that the ratio of the transition temperaturehat is known about magnetism in elemental Cr. Elec-
at the commensurate-incommensurate phase bourgary tronic band structure calculations [1] show that the
to the Néel temperature at half filling, decreases, as the d-electron concentration for Cr is 4#&tom which is
coupling strength increases. However, when the modifiedlose to a half-filed band. Doping with Mn adds an
Stoner criterion is used, we find that the transitionelectron to thed bands, and doping with V removes
temperature curves scale with the coupling strength andn electron. The commensurate-incommensurate phase
maintain the same approximate shape. This implies thdioundary lies at a doping of 0.3% Mn and the para-
Xmax Will increase, while the rati@; /Ty remains constant, magnetic phase boundary at a doping of 3.5% V [1,3].
T;/Ty = 0.57. Since the density of states for Cr is peaked near the

188



VOLUME 74, NUMBER 1 PHYSICAL REVIEW LETTERS 2 ANUARY 1995

band edges, rather than the band center, it is difficult tioy an effective single-band Hubbard model that does
map directly onto the Gaussian density of states (of the@ot include any of the microscopic details of the band
single-band model in infinite dimensions). Instead, westructure.
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