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The galvanomagnetic properties of a magnetic-breakdown linked-orbit network with two-
dimensional topology are calculated for the case of a stochastic distribution of defects in the net-
work. The results show excellent agreement with experiments on magnesium and illustrate the
transition between a smoothly varying magnetoresistivity (semiclassical regime) and an oscillatory

magnetoresistivity (quantum regime).

L. INTRODUCTION

We examine the dephasing effect of dislocations (and
other defects) on electron transport in metals which ex-
hibit magnetic breakdown (MB). The phenomenon of
MB was introduced in 1961 by Cohen and Falicov' to ex-
plain the “giant orbit” observed in de Haas—van Alphen
experiments in magnesium. Since then, the concept of
MB has been applied to many experimental situations in-
volving the dynamics of electrons in magnetic fields (for a
review see Ref. 2). The effect of MB is to alter the topolo-
gy (or character) of electron (or hole) orbits by a tunnel-
ing mechanism that, probabilistically, couples orbits to-
gether. Its importance lies in the extremely sensitive
dependence of these coupling probabilities to magnetic
field strength and orientation.

The manner in which MB manifests itself in a given
sample is strongly correlated with the density of disloca-
tions.* The presence of dislocations breaks the periodici-
ty of the lattice and produces small changes in the areas
of some closed orbits. This results in a reduction of the
quantum coherence of the electronic wave functions. For
high dislocation densities the coherence is completely lost
and the transverse magnetoresistivity is a smoothly vary-
ing function of the magnetlc field strength that, at high
fields, either saturates or increases quadratically with the
field. For low dislocation densities the coherence of the
electronic wave functions over small closed orbits modu-
lates the coupling probabilities and leads to quan-
tum oscillations in the magnetoresistance (a giant
Shubnikov—de Haas effect), with phases of the oscilla-
tions proportional to the magnetic flux enclosed by the
phase-coherent closed orbits of the network. This transi-
tion from semiclassical to quantum behavior suggests the
possibility of using measurements of the magnetoresis-
tance to determine the stochastic distribution of disloca-
tions and observe their effect on the coherence of the
electronic wave functions. In this contribution we study
the dephasing effect of dislocations in a two-dimensional
hexagonal network and compare our theory with experi-
mental results? for Mg Similar studies have been made
for the linear chain® and applied to observations® in
Nb Se;.

Sowa and Falicov* solved the one-dimensional network
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model exactly (in the infinite—relaxation-time limit) by
iterating 2 X2 transfer matrices. Similar transfer-matrix
techniques, applied to the two-dimensional network, are
cumbersome to handle and fail to yield closed-form solu-
tions. We have developed here a rapidly convergent ap-
proximation scheme which models the effects of disloca-
tions and allows for numerical solutions and direct com-
parison with experiment.

The semiclassical electronic orbits in a magnetic field
are defined by the intersection of surfaces of constant en-
ergy (the Fermi surface) with planes of constant wave-
vector components in the direction parallel to the field.®
At low temperatures, only electrons at the Fermi surface
can contribute to the conductivity. Two components of
the Fermi surface are of interest in the divalent
hexagonal-close-packed metals: (1) the multiply connect-
ed region in the second Brillouin zone (BZ) that contains
holes (usually called the “monster”); (2) the singly con-
nected electron surfaces centered around the K point in
the third BZ (usually called “cigars” or “needles”). In
the absence of MB, the only possible relevant orbits in
the k,=0 plane are the holelike hexagonal orbit of the
second BZ and the two electronlike triangular orbits of
the third BZ. In the presence of MB, an electron wave
packet that approaches a junction is either Bragg
diffracted or tunnels across the gap into the next BZ. In
this manner, MB links the hexagonal and triangular ori-
bits into the hexagonal network of Fig. 1. For intermedi-
ate fields many orbits are possible—when MB is com-
plete, only the free-electron-like circle is present. It is
this transition from the dominating holelike hexagonal
orbit to the electronlike circle which destroys the
electron-hole compensation of these metals and causes
the transverse magnetoresistivity to saturate®—were it
not for MB the transverse magnetoresistance would in-
crease quadratically without any bound.

Our approach to modeling the influence of dislocations
on the galvanomagnetic tensors begins with the idealized
model of Pippard,’” where one treats the orbits as a net-
work with MB switching junctions at points of intersec-
tion. This model is justified by the fact that in a metal
the electronic wave functions are localized on a “race-
track” with a width much narrower than the radius of
the track.® Within this model, the most important ele-
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FIG. 1. Two-dimensional MB linked-orbit hexagonal net-
work in real space. The triangular, lens, hexagonal, and circu-
lar orbits are highlighted.

ment is the length scale over which the electronic wave
functions maintain their quantum-mechanical phase
coherence. When coherence is important, the MB junc-
tions are treated as quantum-mechanical switches, in
which a wave packet of unit amplitude and zero phase
splits according to the quantum packets of Fig. 2. There
H is the magnetic field and H, is the MB field (for
justification of the basic MB formulas see Ref. 2). We
work in the infinite—relaxation-time limit, neglecting all
other scattering mechanisms (phonons, impurities, etc.)

besides MB itself. In this approximation, the probability

amplitude remains constant and the phase changes by the

standard line integral of the vector potential’ as the elec-

tron traverses the circular arc between two junctions.
Small-angle scattering effects which do not affect the

probability amplitude but tend to randomize the phase

are taken into account as follows:>° we assume that the

phase is completely randomized over all orbits except for
the small triangular orbits where phase coherence may or
may not be maintained. In this limit, the hexagonal net-
work of Fig. 1 reduces to a network of “touching” circles
[see Fig. 3(a)] with three-way nodes whose coupling
probabilities—R, S, and T=1—R —S —determine the
allowed exit paths for an entering wave packet of unit
amplitude [see Fig. 3(b)]. Total loss of coherence is as-
sumed on this effective network, so that only the proba-

FIG. 2. A magnetic-breakdown junction: probability ampli-
tudes and phases. :
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FIG. 3. Effective MB linked-orbit network with triangle-
orbit -area shrunk to zero. (a) Network with three-way switch-

‘ing nodes. (b) Coupling probabilities for a node.

bility amplitude of a wave packet is important (extensions
of this approximation to allow for coherence over larger
orbits has been considered in Ref. 10).

The coupling probabilities of Fig. 3(b) are evaluated in
the quantum limit (total coherence over the triangular or-
bit) as follows: a wave packet of unit amplitude is inject-
ed into one of the three incoming channels and allowed to
circulate the infinitesimal triangular orbit. As the packet
leaks out onto the three outgoing channels, the contribu-
tions to the probability amplitude for each channel are
summed (for a complete derivation see the appendix of
Ref. 3). The absolute square of the total amplitude yields
the coupling probabilities

4
R(O)=—~L ,
1—2g3cos0+¢5 =
_ gX1—2q cosf+4?)
1—2g3cosf+q°®
4.2 ‘

T(@)=—"—L9 ,
1—2¢3cos6+¢°

with 6 the phase change of the electronic wave function
for one circuit of the triangular orbit. Since this phase
change is simply the magnetic flux through the orbit, we
find .

S(6) , (1)

6= Akf—;+const , 2)

where A4, is the k-space area of the triangular orbit. In
the semiclassical limit (no phase coherence over the tri-
angular orbit) the phase is uniformly randomized over

the interval [0,27], yielding the semiclassical result

——1— 2 :-L
R.=~—["dOR(6) >

q*(1+4*—2¢%)

So= 3)
Tc=l 4q267
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for the coupling probabilities. The low-field Timit
(H—0,g—1,S—1) yields unit probability for the hex-
agonal orbit and the high-field limit (H-— o,

- g—0, R—1) yields unit probability for the circular or-
bit, as expected. The pure lens orbit, corresponding to
T—1 (see Fig. 1), is not physically accessible with unit
probability, but it does have a finite probability for inter-
mediate magnetic fields.

In the next section we use R, S, and T to calculate the

galvanomagnetic tensors of the hexagonal network of
Fig. 3(a). We allow for dislocations (in the quantum re-
gime) by assuming a stochastic distribution of the
triangular-orbit area 4, and taking ensemble averages of
the observables over the probability distribution for these
areas. In Sec. ITI we apply our theoretical model to Mg.
Conclusions are presented in the final section.!!

‘II. GALVANOMAGNETIC TENSORS
AND THE EFFECTIVE-PATH MODEL

The effective-path model of Pippard™®? is used to calcu-
late the galvanomagnetic tensors. When an electric field
E is applied to a metal, it causes a Fermi-surface element
dS to be displaced, sweeping out a volume e¢E-dS/% in
k space per unit time. This process is interpreted as the
~ creation of quasiparticle packets, of average vector k,
that are subsequently scattered as they move through the
metal, traveling an average distance L(k) after creation.
This distance L(k) is called the effective path. The
current J set up by the electric field is then

2 . -
4;% JL(E-as), @)

J=

with the integral extending over the Fermi surface. The
solution for L(k) is simplified in the infinite—relaxation-
time limit, where the only scattering process considered
is caused by MB itself. In this limit the effective path is
completely determined as a function of the MB coupling
probabilities R, S, and T. Moreover, since we neglect
scattering on the circular arms of the effective network in
Fig. 3(a), the effective path may be written as

A _3(R+S—R?>—RS—5)—iV3[4—5R —7S +3(

]

R2+RS+5%)]
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A1 = R(o) A2 + S(oc) Ay + T(o) A,

FIG. 4. Detail of the effective hexagonal network. The ori-
gin is the center of one particular free-electron circle. A partic-
ular node is labeled by « and the adjacent branches are labeled
by integers; b denotes an arbitrary branch in the network.

L,(k)=A,—X,(k), 5)

where b refers to a specific branch of the network, A, is
the center of mass of the probability distribution as.
t— oo of an electron packet originating on the b branch,
and X, (k) is the initial (real-space) position of the elec-
tron packet at creation.

_____ Probability conservation at a node relates to each other

the centers of mass of packets at different branches. For
example, we find

Ay=R(a)A,+8(a)As+T(a)A, 6)

for the node labeled « in Fig. 4. If the crystal is periodic,

. then R, S, and T are independent of the node index « and
the A, are related to one another by simple rotations
and/or translations.>®> The algebraic equation (6) is then
easily solved relative to the origin of Fig. 4, yielding the
perfect-crystal result

r 8—12(R+S)+6(R2+RS +52)

where r is the free-electron-circle radius and where we
bave used the complex-number notation A=A,
+id, for the two-dimensional vector A.

ensemble-averaged centers of mass. A Markovian pro-
cess is assumed so that the stochastic distribution of
probabilities at each node is independent' of all other

The presence of dislocations in a metal introduces a
small variation in the area of the triangular orbit from
one node to another. This, in turn, generates fluctuations
in the coupling probabilities (1), which break the periodi-
city and symmetry of the network and destroy the simple
symmetry between the various A,.

Our approach to solving this problem is to introduce
an ensemble of networks in which the k-space area
of a dislocated orbit obeys a stochastic distribution, and
to develop an approximation scheme to solve for the

nodes. The approximation scheme begins by generalizing
the N =1 probability conservation equation (6) to N > 1
and relating the center of mass of a packet at branch 1 in
Fig. 4 to the centers of mass of packets at every branch b
linked to branch 1 by an orbit scattering through N (not
necessarily distinct) nodes. The result is an equation of
the form

A=3 PMb)A, , 7 ®)
; “

where the branch probability PY(b) is the sum over all



paths—connecting branch 1 to branch b that pass
through N nodes—of the product of the relevant cou-
pling probability from each node along the path. The N-

node probability conservation equation (8) is ensemble

averaged :

(AD=S(PNb)){A,) ‘ ©)
b

to restore periodicity, since the ensemble-averaged
centers of mass (A,) are related to each other by the
symmetry operations of the network. This method
reduces the solution for the ensemble-averaged effective
path, by means of (5), to the solution of a simple algebraic
equation.

The approximation scheme outlined.above is exact in
two limits: (1) when there are no dislocations (the sto-
chastic distribution is a single delta function), then
periodicity is never lost, the ensemble averaging is trivial
(R'S™T")=R!S™T" and the center of mass reduces to

the perfect crystal result (7) for all N; (2) as N— o all.

possible paths which link a branch b to branch 1 are tak-
en into account, thus yielding also an exact result. We
have found, however, that the approximation converges
rapidly in N for any reasonable distribution, and have
used the N=8 approximation in the work that follows.
The results for {A;/r) in the N=1 and N =2 approxi-
mations are the perfect-crystal result (7), with the re-
placement R™— (R )™ and §™— (S )™ for any m. The
calculations for higher N are straightforward but tedious,
since the number of paths considered at each level of the
approximation increases exponentially with N.

In actual experimental samples the small triangular or-
bits of Fig. 1 lose phase coherence in low magnetic fields.
This loss of coherence requires an interpolation between
the semiclassical regime [where the center of mass Af is
expressed by (7) with R —»R_ and §—S, of Eq. (3)] and
the quantum regime (where the center of mass Af is
determined by the ensemble averaging described above)
in our effective-network model. Following Ref. 10 a
coherence field H g, is introduced; it depends on the den-
sity of dislocations. The coherence field is treated as an
experimental fit parameter that increases with increasing
dislocation density. It determines the weighting factor
for the quantum regime by

- H)?
wy(H)y=¢ oo™ (10
The weighting factor for the semiclassical regime is
w(H)=1—w,(H). The result is an effective center of

mass

ASTCH) =w, (H)AS+w, (H)A{ 1n

which, when replaced in (5), yields the desired effective
path.

The conductivity tensor o; is determined from (4) by
an integration over the Fermi surface. However, the final
result is modified to incorporate electron-hole compensa-
tion at H =0, which is characteristic of the divalent
hexagonal-close-packed metals. The magnetoconductivi-

ty is then’
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T =0y = %Re(A?‘f) , - (12a)
Oy = =0 = Tm(ATT) (12b)

where n is the density of electrons in the metal. The
magnetoresistivity tensor is found by -inversion.

III. DEPHASING EFFECTS IN MAGNESIUM

In this section, the theory developed above is applied
to electron transport in magnesium by comparing model
calculations for the transverse magnetoresistivity with
the experimental results.”> The MB field and the k-space
area of the triangular orbit,

H,=5.85 kG, 4,=6.49%X1073 a.u. , (13)
have been determined® for Mg, while the number density,
n=6.9%10?' cm™?, ' (14)

is determined from the scale of the experimental data.
The presence of dislocations introduces a stochastic
distribution for the k-space area of the triangular orbit.
Since a dislocated orbit has an area smaller than the true
triangular orbit, we expect the distribution to be asym-
metric with a peak about 4, and a tail extending toward
smaller values 4 < 4;. This distribution is approximat-
ed by a delta function of weight u at 4 = 4, and a rec-
tangular distribution of weight (1—pu) extending from
Ad, to A, (A<1)so that the average value of any quan-
tity O
(0Y=pO( Ay)+—]

A
R S Y
Tema, dra 0 a4, a9

is a function of the two parameters y and A.
The approximation scheme of the preceding section

.converges rapidly with N. To illustrate this, we have

plotted in Fig. 5 the N=1 and N=8 approximations for a
pure rectangular distribution (z=0) between 0.95 4, and
A, (the dashed line is an interpolation between the high-
field region, where MB is the only important scattering
mechanism, and the low-field region, where large-angle
scattering effects corresponding to a finite-relaxation time
are important). Comparison of these two graphs shows
that the convergence is indeed very rapid. The N =8 ap-
proximation is used exclusively in the rest of this contri-
bution.

The high dislocation density limit (u=0, A <0.5) com-
pletely randomizes the quantum-mechanical phase (2),
reproducing the semiclassical result (see Fig. 6) with no
quantum oscillations. The magnetoresistivity depends
only weakly on the parameter A in this case.

The intermediate regime (u=~0.1, A=0.9) is strongly
dependent on the parameters of the distribution. This
case is illustrated in Fig. 7 and is in excellent agreement
with the experimental results.?

The low dislocation density limit (4=0.9, A=0.9) is
the extreme quantum regime and once again it depends
weakly on the distribution parameters. A typical case is
shown in Fig. 8. This regime does not agree as well with

experiment because the samples are so pure that phase
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FIG. 5. Calculated transverse magnetoresistivity for Mg.
The distribution of triangle-orbit areas is a rectangular distribu-
tion stretching from 0.954; to 4, (u=0.0, A=0.95, H,;, =10
kG). (a) The N=1 approximation. (b) The N=8 approxima-

tion.
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coherence over orbits larger than the triangle are impor-
tant.1° :

There are several important features apparent in Figs.
5-8. The presence of dislocations reduces the amplitude
of the magnetoresistance oscillations because of a partial
randomization of the quantum-coupling probabilities. As
the density of dislocations increases, the randomization
becomes complete; the semiclassical curve results. The
envelope of the oscillations is modulated by a small am-
plitude oscillatory function at low dislocation density
which resembles a beat structure. Beats do develop as
the density of dislocations is increased due to the interfer-
ence of oscillations at nearly equal frequencies. Both the
oscillatory envelope and beat structure tend to be washed
out in the experimental data. This is probably due to the
fact that the real stochastic distribution is smoother than
the rectangular one assumed here.
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the extreme quantum regime, with parameters p=0.95,
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IV. CONCLUSION

The problem of modeling the effect of dislocations (and
other defects) on the transport properties of metals that
exhibit MB has been an open problem for over a quarter
of a century. We have presented a model calculation of
the dephasing effect of dislocations on electron transport
in a two-dimensional hexagonal network. An ensemble
of equivalent networks is introduced and stochastic aver-
ages of observables over this ensemble are taken to re-
store periodicity to the system and allow for an accurate,
but approximate, calculation of the galvanomagnetic ten-
sors by the effective-path approach. In this way, we are
able to show the transition from the semiclassical to the
extreme quantum regimes as a function of the stochastic
distribution of the triangular-orbit area which is a func-
tion of the density of dislocations. )

The important result to emphasize is that the loss of
oscillatory behavior of the galvanomagnetic properties is
lost not by the quantum-to-semiclassical transition of
each individual (triangular) orbit, but by destructive in-
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terference between various junctions caused by the ran-
dom distribution of dislocations.

Our theoretical model has been compared with the ex-
perimental results for Mg and shows excellent agreement.
In particular, the transverse magnetoresistivity is found
to be very sensitive to the distribution of dislocations in
the region intermediate between the semiclassical and ex-
treme quantum regimes. The results can be used to
determine accurately the dislocation distribution of given
samples. '
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