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Quantum Gibbs state sampling algorithms generally suffer from either scaling exponentially with system
size or requiring specific knowledge of spectral properties a priori. These algorithms also require a large
overhead of bath or scratch or ancilla qubits. We propose a method, termed the minimal effective Gibbs ansatz
(MEGA), which uses a quantum computer to determine a small effective ensemble of pure states that accurately
reproduce thermal averages of an objective dynamic correlation function. This technique employs properties of
correlation functions that can be split into lesser and greater parts; here, we primarily focus on single-particle
Green'’s functions and density-density correlators. When properly measured, these correlation functions provide
a simple test to indicate how close a given pure state or ensemble of pure states is to providing accurate thermal
expectation values. Further, we show that, when properties such as the eigenstate thermalization hypothesis
hold, this approach leads to accurate results with a sparse ensemble of pure states; sometimes only one suffices.
We illustrate the ansatz using exact diagonalization simulations on small clusters for the Fermi-Hubbard and
Hubbard-like models. Even if the MEGA becomes as computationally complex as other Gibbs state samplers, it
still gains an advantage due to its ease of implementation without any a priori information about the Hamiltonian
and in the efficient allocation of available qubits by eliminating bath qubits and using a minimal number of

ancillas.
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I. INTRODUCTION

In the mid 1990s it was shown that the time evolution of
many-body quantum systems can be simulated efficiently on
a quantum computer [1]. Since then much progress has been
made in developing quantum algorithms for simulating these
systems [2-4]. The ability to extract correlation functions,
such as single-particle Green’s functions which are important
for understanding the bulk behavior of condensed-matter sys-
tems, has also been developed for quantum computers [5-8].
One difficulty, generally overlooked in these algorithms, is
that of initial state preparation. While exploring time dynam-
ics will eventually be a straightforward process on an ideal
quantum computer, the complexity of preparing physically
relevant states can be challenging for certain systems [9].
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This is especially true when it comes to preparing Gibbs
thermal states at low temperature. Certain algorithms are able
to achieve quantum Gibbs state preparation but generally
require a large overhead of ancilla or bath qubits and a long
run time [10,11]. Other approaches can be more efficient, but
require a priori knowledge about specific spectral properties
such as correlation lengths or spectral gaps [12—14]. Recently,
more approximate approaches to Gibbs state sampling have
been explored [15-17].

Here we propose a framework termed the minimal effective
Gibbs ansatz (MEGA), which uses quantum computers to
construct a small set of pure states that effectively produces
an accurate representation of an objective, finite-temperature,
dynamic correlation function. The term “minimal,” used in the
framework, is not used in a mathematically rigorous sense, but
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rather colloquially in the context of the framework which we
present. The MEGA works with any correlation function that
can be separated into lesser and greater parts. When a system
is in thermal equilibrium, these functions can be Fourier
transformed from the time domain to the frequency domain.
Here, the fluctuation-dissipation theorem (for grand-canonical
ensembles) schematically gives

F=(w) — —e_ﬂ(w_u), (1)
F7 (o)
for correlation functions of fermionic operators, and
B=(w)
=e P 2
B ¢ 2)

for correlation functions of bosonic operators, where § is the
inverse temperature and p is the chemical potential. In this
work, we focus on two specific types of correlation functions:
single-particle Green’s functions and density-density correla-
tion functions.

The MEGA approach requires one to efficiently prepare
pure states within a certain energy window, where the ensem-
ble of pure states resembles a mixed state that is diagonal
in the energy eigenbasis. Then, using well-known quantum
circuits, we extract the lesser and greater parts of the Green’s
function with respect to each prepared pure state in the en-
semble [7,8]. Using the known relation of the ratio between
the lesser and greater components, given in Egs. (1) and (2),
one can classically extract the optimal § and p from a linear
least-squares fit, whose errors serve as an indicator of how
well the current ensemble approximates the corresponding
exact result, calculated from the full Gibbs state.

One advantage of the MEGA lies in its simple imple-
mentation and its efficient use of qubits. If one has no prior
information as to whether a minimal thermal representation
of pure states may exist, one can simply implement the
MEGA and test how quickly the results converge. If it does
not converge well, then it would be more appropriate to use
a different Gibbs state preparation or sampling algorithm.
Further, we expect the MEGA to efficiently create a minimal
representation in systems where the eigenstate thermalization
hypothesis holds, or at temperatures where the system has a
finite correlation length [13,18-21].

We aim to lay out a simple framework, in which quantum
computers can efficiently extract thermal properties of many-
body systems. The paper is structured as follows. In Sec. II,
we briefly review single-particle Green’s functions. In Sec. I11,
we discuss heuristic arguments that support the MEGA being
an efficient method, and in Sec. IV, we present numerical sim-
ulations. Finally, in Sec. V we give our concluding remarks.

II. SINGLE-PARTICLE GREEN’S FUNCTIONS

Single-particle Green’s functions are the workhorse of
many-body physics. They can be employed to determine a
number of properties directly, such as the total energy, double
occupancy, kinetic energy, electron filling, etc. In addition,
they are required in formulating more complicated response
functions like an optical conductivity or a magnetic suscepti-
bility (when supplemented by vertex functions). Here, we also
primarily focus on the lesser and greater Green’s functions,

FIG. 1. The Keldysh contour for the lesser Green’s function,
with ¢ > 0. Here, the matrix element that defines the lesser Green’s
functions shows that one first annihilates a particle at site i, then
evolves the system for a time ¢, creates a particle at site j, evolves
backwards in time again for a time ¢, and finally evolves down the
imaginary axis to the desired inverse temperature .

which can be seen as a decomposition of the retarded Green’s
function in the following manner:

Gy (1) = —i(2;.0 (1)E], (0)), 3)
G55y (1) = i(] (0020 (1)), “)
Gfo (1) = OIGF, (1) — G5, (). )

A visualization of the lesser Green’s function is displayed
by the Kelydsh contour in Fig. 1. Here the angle brackets
represent thermal averaging with respect to the equilibrium
thermal Gibbs state:

1 .
— —BH
pc(B) = zZ5)° (6)

where Z() is the partition function
Z(B) =Tr{e ). (7)

The time dependence of the operators is in the Heisenberg rep-
resentation. The ¢; » (6?5) operators represent the Fermionic
annihilation (creation) 6perators at the ith site on a lattice for
a given z component of the spin, o € {1, |}.

When periodic boundary conditions are imposed on the
real-space lattice, the creation and annihilation operators can
also be represented in momentum space as

L
A 1 A~ _ik-R;
Cto = —F ch,ae 7, (3)
\/Z j=1

where X is a reciprocal lattice vector, ﬁj is the real-space
position vector of the jth site, and L is the number of lattice
sites.

One can also express the Green’s functions in what is
known as the Lehmann representation by expanding the trace
as a sum over the energy eigenstates (which satisfy H|E,) =
E,|E,)) and inserting a resolution of the identity operator in
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between the creation and annihilation operators. This is shown
below for the lesser Green’s function:
o—BEn . "
Gio( =2~ B el e e ME,)  (9)

= —i(E,—Ep)t AT 2
B Z Z(B) ;e KEalCi 5 1Em)I".  (10)

Fourier transforming Eq. (10) from the time domain to the
frequency domain we likewise obtain

¢ PEn
Z(B)
X (Eale] , 1Em)|*. (11)

Gip(w)=2miy > 8w —E, +Ey)

An important physical property that we also focus on is the
local density of states (per spin) given by
1 R 1 -
Ay (w) = ——Im[Giia(w)] = —Im[G; ,(w)]. (12)
b4 ' 2 '
The fluctuation-dissipation theorem for Green’s functions
gives
G (@) _

G

—Blo—w)
=—e , (13)
o (w)

which can be easily derived from the grand-canonical en-
semble. The formulas for the grand-canonical formalism re-
sult from shifting the Hamiltonian operator by the chemical
potential multiplied by the electron number operator: H —
H — uN, with N being the total particle number operator.

III. ANALYSIS AND HEURISTICS

Here, we use heuristic arguments to analyze situations in
which the MEGA is well suited, and examine its limitations.
We do not give any rigorous bounds for particular Hamil-
tonians but rather justify the use of this approach by using
physical arguments. The MEGA benefits from not needing
all the resources required to prepare full Gibbs states when
calculating dynamic correlation functions of a moderately
sized system. We assume the system we describe corresponds
to a periodic lattice that is translationally invariant, so that
every site is identical.

The aim of the MEGA framework is to find a small set of
pure states, {|v;)}, in which expectation values of a specific
dynamic correlation function yield accurate approximations
compared to those determined from the corresponding Gibbs
state. Based on ensemble equivalence, if we sample states
from a restricted energy window this microcanonical ensem-
ble will be equivalent to any other thermodynamic ensemble
in the thermodynamic limit. The MEGA also takes advantage
of the inherent fluctuation theorems related to the dynamic
correlation function of interest. The fluctuation theorems are
used to measure how well the current set of states approxi-
mates the true thermal result. With these properties in mind
we propose the MEGA as a framework to approximate finite-
temperature dynamic correlation functions.

An outline of the MEGA procedure is as follows:

(1) Prepare |y;) with N electrons and within an appro-
priate energy window. (One has the option of additionally

employing projective measurements here depending on avail-
able resources to remove states that fall outside the desired
window).

(2) Repeatedly use the same state preparation procedure
to measure Gi<j,0'(t) and Gi>j,a(t) at a series of points in time.
Extend the time points far enough out that the Green’s func-
tion can have its tail fit to an exponential or power-law decay.
(Negative times can be extracted by using the relation that the
imaginary parts of the lesser and greater Green’s functions are
symmetric about t = 0 and the real parts are antisymmetric
aboutr = 0).

(3) On a classical computer, perform a Fourier transform
from time to frequency, approximating the real-time Green’s
functions by the fit tail for large enough times. Extract a least-
squares fit of  and u from Eq. (13).

(4) If the least-squares fit lies below a given threshold,
terminate the calculation. Otherwise, return to step 1, and
prepare |Y;1), possibly using least-squares fits of the current
set of states to inform the state preparation procedure for
Y1)

Note that there is no guarantee that the MEGA will produce
a sparse representation of a thermal Gibbs state, but the
advantage here is that one can implement the MEGA protocol
without any prior knowledge and observe how quickly the fit
converges.

The precise methodology needed to create states within a
given energy window will depend on the specific system as
well as the hardware and resource limitations. We do not spell
out a particular algorithm here, but one can choose from a
variety of known methods such as adiabatic (or approximate
diabatic) state preparation, the variational quantum eigen-
solver (VQE) [22,23], the quantum approximate optimiza-
tion algorithm (QAOA) [24], quantum walk algorithms, or
amplitude amplifications to construct the best approach with
the given system and resource limitations [25-27]. We also
note that isolating a narrow, low-energy window can still be
exponentially hard for certain problems, but we expect other
Gibbs state preparation algorithms to suffer here as well [9].

Users are able to tailor the MEGA based on heuristics or
previously known information about the system of interest.
In the strictest sense one would want detailed analysis on
how the width of the energy window must scale with system
size and temperature in order to produce a thermodynamic
equivalent ensemble. Within the MEGA framework one may
choose to construct more complicated schemes such as energy
filters, construct postselection methods to restrict the energy
variance, or use various time-averaging techniques to ensure
stationarity.

Another property that may speed up the convergence of the
MEGA is in systems where the correlations decay exponen-
tially. In this case, we can associate a temperature-dependent
correlation length £ (8) to the Gibbs state of a specific system.
When £(B) has a finite length, then sampling from a Gibbs
state prepared on a system size proportional to the correlation
length efficiently yields the behavior of a Gibbs state prepared
on the same system in the thermodynamic limit [13,21].
One might be able to construct schemes which bound the
correlation length of a given MEGA ensemble.

The ideal setting, where the MEGA would yield a sparse
ensemble, is in systems where the eigenstate thermalization
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hypothesis (ETH) holds. The ETH ansatz states that when a
random pure state is chosen from a superposition of states
originating from a narrow energy window (lying away from
the edges of the spectrum of generic nonintegrable systems),
then the matrix elements of typical few-body observables take
the form [18]

(EnlOIEy) = Ope(E)on + €7 fo(E, )Rpy.  (14)

Here, O,,.(E) is the microcanonical average of the observable
O centered at the average energy E of the narrow energy
window and S(E) is the thermodynamic entropy defined by
exp[S(E)] = E Y 8.(E — E,), where the restricted sum is
over the number of states within a smeared § function centered
at E. fo(E, w) is a smooth function of its arguments with w =
E,—E, and R,,, is a random number with zero mean and
unit variance. Here one can see that as the number of states
within the energy window becomes exponentially large then
the fluctuations about the microcanonical ensemble become
exponentially suppressed.

An alternative way to underpin the convergence of the
MEGA is via the many-body sum rules for Green’s functions
[28-30]. It is well known that the integral of the spectral
function for fermionic systems is equal to 1. It is less known
that higher moments also satisfy sum rules, which depend
on parameters in the Hamiltonian and some simple thermo-
dynamic expectation values. In the time domain, these sum
rules represent the equal time Green’s function values and
the low-order derivatives at equal time. Hence, if the wave
functions in the MEGA ensemble share the same expectation
values as the Gibbs ensemble, then the first n derivatives
of the Green’s function will be correctly reproduced by the
MEGA. This implies that the MEGA will be accurate even
with relatively poor choices for the wave functions if they
possess the correct expectation values for reproducing the first
n moments. For example, the retarded local Green’s function
has a zeroth moment that is independent of the choice of
ensemble and a first and second moment (at half filling) that
depends only on the chemical potential and the interaction
energy. Similarly, for the lesser Green’s function, all wave
functions with the right electron density have the correct
zeroth moment. This general principle implies that we expect
deviations between the MEGA and the Gibbs distribution to
set in once the relative time is long enough. But, because
these correlation functions typically decay over a finite time
range, once the MEGA ensemble is large enough to properly
represent this time interval, it will produce the same results as
the Gibbs ensemble to a specified degree of accuracy.

One drawback of the MEGA is that we cannot dial in
specific temperatures; instead one generally has approximate
bounds in terms of what consists of low vs high energy for
a given Hamiltonian. By preparing a state in a narrow energy
window, one can then extract the effective temperature via our
postprocessing procedure employing the ratio of the lesser and
greater Green’s functions in frequency space.

The ratio of the lesser to greater Green’s functions, which
we employ to test the accuracy of the MEGA for a given
calculation, is derived in the grand-canonical ensemble. But
the calculation procedure described above worked with a
fixed filling of the electrons. This is fine for a large enough

system, because the microcanonical, canonical, and grand-
canonical ensembles all yield the same results [31,32]. But
for finite-sized lattices, one may do better by adding states
with different fermion fillings, or by weighting states in the
ensemble by Boltzmann factors to improve the convergence
of the MEGA. We expect the MEGA framework to become
more feasible when simulating large system sizes.

One additional limitation is of numerical precision in
verifying the fluctuation-dissipation theorem to extract T for
instances where there is a gap in the local density of states at
the chemical potential. Here, we run into the problem of trying
to divide two numbers that are approximately zero in the gap
region.

The main limiting factor, which restricts near-term use, is
the time evolution needed to extract the Green’s functions.
Here, we need to extract the Green’s functions for many time
steps extending out to at least a characteristic decay time t =
ts (where the Green’s function becomes vanishingly small).
Optimistically, we expect the circuit depth here to scale lin-
early with the number of Trotter steps and hence linearly with
t;. The depth of each Trotter step will scale polynomially
on the number of sites or orbitals. With these circuit depth
requirements, we expect the MEGA to be applicable once cir-
cuit depths required for modest time evolution can be reached
[33]. The MEGA approach is also limited by the complexity
of preparing states within a narrow energy window, which can
be difficult for certain systems, but this complexity will also
limit other Gibbs state preparation algorithms as well.

The advantage of using the MEGA is in the simple im-
plementation and the efficient use of the available qubits.
Fermionic systems usually require 2L qubits per lattice via
the Jordan-Wigner mapping to a corresponding spin Hamil-
tonian. There also exist parity mappings such as the Bravyi-
Kitaev map that only require L qubits [34]. Also, correlation
functions such as single-particle Green’s functions can be
extracted using a single ancilla qubit [7,8]. Given this infor-
mation the MEGA should require at most 2L + 1 qubits.

IV. NUMERICAL RESULTS

To test the validity of this approach, we focus on the
repulsive one-dimensional (1D) Fermi-Hubbard model and its
variants [35]. This well-known model aims to minimally ac-
count for the electron correlations by imposing an interaction
that repels two electrons of opposite spin only when they are
on the same site. The Hamiltonian is given by

Ay = —1 Y (¢} Civ1o +He) +U D nigniy,  (15)

where ¢ is the strength of the electron hopping, and U is the
on-site repulsion term. We note the redundant use of notation
here where the parameter ¢ is used to represent both the energy
scale of the hopping term and time. Also the parameter U
is similar to the time evolution operator U(¢), but they are
differentiated by the operator symbol in the time-evolution
operator. The context in the text should clarify the intended
interpretation of these symbols.

In one dimension, the model is integrable, and can be
solved by the Bethe ansatz, so it is not expected to thermalize
to the proper Gibbs ensemble because of the macroscopic
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Average Double Occupancy vs. Eigenenergy

_ 1

0 2¢ /1L 4 6

FIG. 2. Scatter plots of the average double occupancy ({#; 17;,,))
and k = 0 momentum occupation ((fix—o,)) With respect to each
energy eigenstate. One can see that when we restrict to the spin band
(outlined in red) these observables are smooth monotonic decreasing
functions of the eigenstate energy.

number of symmetries the model exhibits. Nevertheless, we
show that adjusting certain parameters of this model allows
us to predict the effectiveness of the MEGA protocol in
larger nonintegrable systems. For concreteness, we also add
integrability-breaking terms to the Fermi-Hubbard model and
compare the performance when these terms are added. When
the new terms are added the Hamiltonian becomes

H = Hyuy + H', (16)
where

A =—1 Z(@igéi+2,g +He)+ U’ ZN,»]\ZH (17)

i,o i

and N; = (i p +14)).

To begin, we examine the half-filled 1D Hubbard model
with periodic boundary conditions with a large on-site interac-
tionof U/t = 10, = U’ = 0. This specific case is interesting
because it exemplifies the ideal behavior of a system obeying
the ETH. As one can see in Fig. 2, when restricted to the first
energy band (spin band), both the double occupancy and the
k = 0 momentum become smooth functions of the eigenstate
energy. This is indicative of the strong ETH in the extreme
sense, where every eigenstate is typical. The spectrum as a
whole does not obey the ETH, so these results do not indicate
physical behavior in the thermodynamic limit. Nevertheless,
this behavior in the lowest band should give insight into the
performance of these approximations in an ideal setting.

In general, we are more interested in simulating strongly
correlated electrons rather than weakly correlated electrons,
because weak correlation is amenable to many classical nu-
merical techniques. Choosing low-energy states is relatively
simple here, because at infinite interaction, there are no double
occupancies at and below half filling. These states are also
easy to generate on a quantum computer as product states.
So, our strategy is to initialize the system in a state with no

4-Site Ring 6-Site Ring
0.6 0.6
— 0.4 1Gibbs
Ve ‘ MEGA
S 02 v
£
- 0
-0.2
-10 0 10
8-Site Ring 10-Site Ring
0.6 0.6
Gibbs MEGA

0 10
Time (units of 1/t)

Time (units of 1/t)

FIG. 3. Imaginary parts of the local lesser Green’s function
calculated with the MEGA approximation (blue curve) and with the
exact Gibbs state (red curve). Here we see that the MEGA becomes
accurate at longer and longer times as the system size increases.

double occupancy, ramp the state adiabatically from infinite
interaction to finite interaction, and employ such a state as one
of the states in the MEGA ensemble.

For these simulations, we employ exact diagonalization
and use a MEGA consisting of the two Neél states, each time
evolved with a time-dependent Hamiltonian. We initially set
the interaction energy to U/t = 500, making ¢ our energy
scale. We also set 1 = k;, = 1. We then evolve the system
with a time-dependent interaction energy that ramps from
U/t =500 to U/t = 10 given by the time evolution operator
of

Uprep(t) = T{exp |:—i / dz’HHubb(t’)”, (18)
0

4-Site Ring 6-Site Ring
0.6 0.3
MEGA
0.4 | 0.2
3 02 0.1
<
0 0
-0.2 -0.1
-10 0 10 20 -10 0 10 20
8-Site Ring 10-Site Ring
0.3 0.3
Gibbs
0.2 0.2
_— “v
3 o1 0.1
<
0 0
-0.1 -0.1
-10 0 10 20 -10 0 10 20

Frequency w Frequency w

FIG. 4. Local density of states for L = 4, 6, 8, and 10. The gap is
still identifiable for the four-site ring but each band quickly converges
to the true result as the system size increases.

022622-5



COHN, YANG, NAJAFIL JONES, AND FREERICKS

PHYSICAL REVIEW A 102, 022622 (2020)

-0.15
@)

MEGA

Canonical
G=2.71

-50 -25 0 25 50
Time (units of 1/t)

(©

%)

<
i,

(w)]1-In[D;

Canonical (5= 2.71)

1
Extracted 3 = 2.69
True 5 =2.71

ii,o

>

In[ D
ro

4 . . .
-1 -0.5 0 0.5 1
Frequency w

0.1
(b)
Canonical
0.05} f=2.11
—
=
S
V.=
o o
‘2
[+
-0.05¢
-0.1 . L .
-50 -25 0 25 50
Time (units of 1/t)
5
32
S
V.=
o
£
1 or
3
[
A= !
fa) Extracted 3=2.10
-E True g =2.71
-5 1 L

-1 -0.5 0 0.5 1
Frequency w

FIG. 5. Canonical Gibbs fit using the density-density correlator instead of the single-particle Green’s functions for a ten-site system with
U/t = 10. The (a) imaginary and (b) real parts of the MEGA approximation used here, { Uprep(r)|¢¢¢ sl ), Uprep(r)|¢T¢, -+ )}, diverge from
the corresponding Gibbs state at earlier times for this correlator than with single-particle Green’s functions. (c) The effective temperature can
be properly extracted when a large enough ensemble is used. (d) We see that the current MEGA ensemble exhibits large fluctuations and
the fit for the effective temperature yields B = 2.1, where the proper Gibbs state, at the same energy of the MEGA ensemble, has an inverse
temperature of 8 = 2.7. This indicates that the current ensemble used for the MEGA has not properly converged and will need a larger set of

states.

where the time dependence of the interaction energy in
the Hubbard Hamiltonian is given by U(¢) = 490e~*/> + 10.
Here, our final set consists of

{Oprep(I1 1), Uprep (DI - ) ], (19)

where 1 is the total ramp time. We choose to start with the
simple Neél state because it is a product state in the localized
basis, which would be trivial to prepare on a quantum com-
puter. The Neél state is one of the (NA/IZ) degenerate product
states (with the number of up spins equal to the number of
down spins) in the ground state at U = oo. At large but finite
U, the Neél states will have an overlap with the ground state
and a couple other low-lying energy states. When ramping
down to a smaller U we are guaranteed to stay in the spin
band as long as we ramp slow enough. One could also ramp
up from U/t = 0, but initializing a quantum computer to the
Fermi sea is a more complicated circuit when working in real
space.

The trends in Figs. 3 and 4 show what we would naively
expect when examining this ideal system. The local Green’s
functions, when approximated by just two states, resemble

the exact results for longer and longer times as we increase
the system size. The finite size effects prevent the Green’s
function from truly decaying to zero.

Unfortunately, the large gap in the local density of states
makes extracting the effective temperature numerically un-
stable. We also examine a local density-density correlator
defined by

Dy , (1) = =i[{fi o (i o (0)) — (o) (Rio)], (20)

D (1) = =il{fii o (06 (1)) — (i) (o)) (21)

As shown in Fig. 5, while this correlator is capable of ex-
tracting the correct temperature with the canonical ensemble
it requires a large number of states in our MEGA approach
for the results to properly converge. When using our set of the
two adiabatically prepared states for the MEGA approach the
results diverge more quickly in the real time domain, which
leads to a noisy fit when extracting the temperature. Figure 5
shows that within this MEGA ensemble there is still a large
error present in the temperature extraction.
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FIG. 6. Local density of states and ratio of local lesser and greater Green’s functions for a ten-site system with U/t = 2. The systems are
probed at a temperature of 7 = 0.65 and we examine the results of the canonical Gibbs state and a microcanonical window with —7.00r <
E < —6.41r extracted from both the local Green’s function and the density-density correlator. (a, b) The local Green’s functions are not able
to properly extract the temperature, but do converge to the correct chemical potential. (c, d) The local density-density correlator gives a higher
confidence in the temperature extraction for both the canonical and microcanonical ensembles compared to the local Green’s functions.

This scenario demonstrates the difference in results for a
given MEGA ensemble when examining different response
functions, as well as the difference in the extracted effective
temperature. Here, we see that a small MEGA ensemble
accurately converges for single-particle Green’s functions, but
the gap in the local density of states prevents a proper test of
convergence due to numerical precision errors. On the other
hand, the density-density correlator is capable of accurately
testing for convergence but requires the MEGA to use a larger
set of states. This does bring up an important point. Different
response functions may require different size ensembles in the
MEGA. For response functions that can be measured with
smaller ensembles, the quantum computation will be more
efficient than for functions that require larger ensembles or
that have large correlation lengths.

To demonstrate tests for convergence and temperature
extraction with single-particle Green’s functions, we work
with a half-filled ten-site 1D Hubbard model with U/t =
2, where there is no longer a gap in the local density of
states. Here the spin band is no longer separated from the
rest of the spectrum, so ETH-like effects no longer hold,
eliminating the ability of sparse window sampling to effi-
ciently describe the thermal behavior. Figure 6 compares the
ratio G _(w)/G:;  (w) for the Gibbs state at T = 0.65 to a

ii,o ii,o

corresponding microcanonical window. The energy window
for the microcanonical ensemble is in the range —7.00f <
E < —6.41t. We can see from Figs. 6(a) and 6(b) that the local
Green’s function fits do not yield the correct temperature for
either the canonical or microcanonical ensembles that we have
used, but the chemical potential does converge properly. The
easy convergence of p is not indicative of the Hubbard model
at different fillings because this test case is performed at half
filling, whose chemical potential is uniquely determined by
the particle-hole symmetry. When turning to the local density-
density correlator, in Figs. 6(c) and 6(d), we see a much larger
confidence in the extraction of the proper temperature for each
of the ensembles.

The errors that are present in these fits stem from two
factors. The first is the finite energy density of the eigenvalues.
Here, in the frequency domain, each of these correlators is
represented by a sum over § functions. When using small
clusters there can be large fluctuations in small frequency
windows due to sudden changes in spectral weight as eigen-
states enter or leave a window. This can generally be alleviated
by moving to larger temperature for calculations on smaller
clusters. For low temperature, one would need to move to
larger system sizes to extract correct results or one may be
able to employ spectral broadening techniques. Once again,
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3 10-Site Ring, 0.3 filling, t'/t = 0.75, U/t =3,U'/t= 1.5

FIG. 7. Scatter plots for expectation values of double occupancy
and k£ = 0 momentum occupation with respect to each energy eigen-
state. Here we use a ten-site ring at 0.3 filling, with Hamiltonian
parameters of '/t = 0.75, U/t = 3.0, and U’/t = 1.5. As expected
by the ETH ansatz, typical eigenstates in the bulk of the spectrum
have small fluctuations within a narrow energy range.

in situations where the correlation function is decaying in
the time domain, enforcing the decay for all future times
is another method that produces a continuous spectra and
removes the artifacts of the § functions.

The second driver of the error stems from situations where
both lesser and greater response functions are close to zero.
Here, we run into numerical precision problems from trying to
divide two small numbers. In these instances, the best option is
to employ a different correlator that does not suffer from both
lesser and greater values being small. Convergence will also
be related to the form in which the underlying operators of
each correlation function spread in space and time. These are
nontrivial results that normally cannot be determined before
computing the results.

These results show an example of where the MEGA is able
to eventually converge on a representative set of states, but
the size of this set is large and would scale exponentially in
system size. There is a possible fix here, as we expect this
system to have a finite correlation length at finite temperature.
In theory, if this finite correlation length exists, then one
should be able to bound the number of representative states
in the MEGA by the size of the Hilbert space on a region
proportional to the given correlation length. It is still an open
question as to whether an efficient state preparation scheme
is feasible for the situations where the system exhibits a finite
correlation length. We leave further analysis of this situation
to future work.

Finally, we examine how well the MEGA would ide-
ally work with more generic nonintegrable systems. This is
achieved by working in a regime with U/t =3, U'/t = 1.5,
and ¢/t = 0.75, where U’ and ¢’ are the strengths of the
integrability-breaking terms defined in Eq. (21). We examine
the behavior of this system again on a ten-site ring, with a
filling now of n = 0.6.

10-Site Ring, 0.3 filling, t'/t = 0.75, U/t =3, U/t = 1.5

583 T Gibbs (T=1) |
‘2‘2:: 0.1 ey _mi@riono st MmN oS omemo]
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E 0 - L ~—o= [Epgs - Eagdl "h.
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FIG. 8. Imaginary part of the local greater Green’s function
calculated with the microcanonical ramp state (blue curve), with the
exact canonical Gibbs state (red curve), and with a single eigenstate
(dotted purple curve). As one would expect from a system obeying
the ETH, moving to larger temperatures allows the canonical Gibbs
states to be approximated by an ensemble of a few or even a single
energy eigenstate.

From Fig. 7, we see that the scatter plots of the expectation
values of relevant observables do not pinch down to a smooth
single-valued function, as they did in the spin band above.
When we are away from the edges of the spectrum, we see
that most of the points clump together within a small energy
range, and we see a decrease in the density if we move
vertically away from this point. The ETH conjectures that
these fluctuations scale inversely with the density of states, so
as we move to large system sizes, we would expect the cloud
to become narrower, approaching a single-valued function
of the eigenstate energy. One can also see that there are
nontypical states in Fig. 7 such as the states that have zero
double occupancy in the middle of the spectrum. We do not
know if they persist in the thermodynamic limit in the strong
vs weak ETH sense [36].

For this model, we examine three areas of the energy
spectrum corresponding to temperatures of 7 = 1.0, 2.0, and
4.0. For each temperature, Fig. 8 shows plots of Im[G;’ T(t)]
calculated with respect to the canonical Gibbs state, a micro-
canonical window, and a single eigenstate, where each gives
the same average energy. At T = 1 we can see from Fig. 7 that
the energy eigenstates are sparsely populated in this regime.
As a result both the microcanonical and single eigenstate
Green’s functions have trouble converging for times past ¢ ~
1. As we move to a temperature of 7 = 2.0 the spectrum
has now become a little bit more dense. As a result the
microcanonical ensemble with a large enough energy window
converges rather well, and the single eigenstate holds for
a slightly longer period of time before deviating from the
canonical Gibbs state result. When we reach a temperature
of T =4 the spectrum has become rather dense. Here, a
smaller microcanonical ensemble converges even better than
at T =2, even with a smaller number of eigenstates in its
energy window, and even a single eigenstate has converged
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FIG. 9. Least-squares temperature fits, using the local density-density correlator, of a ten-site ring at 3/10 filling with ¢'/t = 0.75, U’ /t =
1.5, and U/t = 3. The least-squares temperature fits are extracted using canonical, microcanonical, and single eigenstate ensembles which
correspond to 7 = 1.0, 2.0, and 3.0. (a) For T = 1.0, the canonical ensemble fit is able to extract the proper temperature, but the fit is slightly
noisy. (b), (¢) When using a microcanonical or single eigenstate ensemble, we see that the fit becomes noisy and less accurate as we reduce
the number of states used in an ideal MEGA ensemble. (d)—(f) Examining the same ensembles at 7 = 2.0 shows that the spectral weight for
the canonical ensemble is large enough for the fit to be ideal, and the microcanonical and single eigenstate ensembles start to become more
viable options for a sparse MEGA approximation. (g)—-(i) At T = 4.0, we see that both a small microcanonical energy window and a single

eigenstate generate relatively accurate results.

rather well for late times. The better convergence at larger
temperature is what is expected from the ETH ansatz, as
the entropy and density of states is much larger at higher
temperatures.

Further, we continue with using the density-density corre-
lator to examine temperature convergence as shown in Fig. 9.
For the canonical ensemble we see in Fig. 9(a) that at low
temperature the fit is slightly noisy, due to the low spectral
density in this small cluster. We would expect the curve to
smooth out as the system size increases. This sets a lower
bound on the confidence level of temperature extraction in this
energy range. We see that in Figs. 9(b) and 9(c), temperature
extraction becomes less reliable as we reduce the number of
energy eigenstates used in each ensemble. As we move to
a larger temperature regime the fits become more accurate.
Figures 9(d) and 9(g) show that temperature extraction for

the canonical ensemble becomes accurate at temperatures of
T =2.0 and T = 4.0. We also see that the energy window
for the microcanonical ensemble can be narrowed as the
temperature increases, where Fig. 9(e) uses 105 eigenstates at
T = 2.0 and Fig. 9(h) uses 43 eigenstates and has a more ac-
curate temperature fit. The same trend continues when trying
to extract an effective temperature with a single eigenstate.
Figure 9(i) shows that a single eigenstate corresponding to
T = 4.0 begins to yield a close approximation to the actual
temperature. Again, as the system size is increased, we expect
that the minimum extractable temperature for each of these
ensembles should reduce as well.

These results demonstrate the potential effectiveness of
the MEGA in nonintegrable systems. Here, the number of
states needed in a MEGA ensemble is inversely propor-
tional to both the size of the system and the temperature.
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We see that at large enough temperature or system size a
MEGA ensemble of even a single eigenstate can reproduce
proper thermal properties, as one would expect from the ETH
framework.

There is an ultimate lower bound on the temperature ex-
traction the MEGA is able to achieve for generic noninte-
grable systems, as ETH is restricted to eigenstates that have a
finite energy density. Most physical systems have either finite
energy gaps or algebraically decaying energy gaps as a func-
tion of system size. This leads to a zero energy density in the
large-system limit, effectively allowing large fluctuations in
the matrix elements of physical observables of relevant energy
eigenstates in this temperature regime. The low-temperature
bound here may again potentially be alleviated if this system
exhibits a finite correlation length as previously discussed. It is
also possible that efficient state preparation, in this low-energy
state space, can be achieved through the use of various tensor
network states.

V. CONCLUSIONS

We have outlined the MEGA protocol as a technique to
examine the thermal properties of typical observables on
quantum computers, and demonstrated its viability using ex-
act diagonalization on small clusters. The advantages of the
MEGA are in its simplicity to implement and the efficient use
of available qubits. While the MEGA does not allow one to

initially dial in a specific temperature, with an initial guess
of a single of set of pure states, one can extract the effective
temperature of the system that is represented by those states.
Usually one has a rough idea as to within what energy range
a typical state lies for what qualifies as low energy. When it
is not known a priori whether the MEGA can be employed
with a small finite set of states one can simply implement the
MEGA protocol and examine how quickly g and u converge.
We also showed numerically how systems that obey the ETH
are well suited for the MEGA, in the appropriate temperature
regimes and system sizes.

The efficiency of MEGA is still limited by system size
here as the state preparation procedures and time evolution
will scale polynomially with system size. Future work may
include examining different types of correlators and possibly
identifying specific properties in the feedback process to
inform what the next ideal state should be to ensure faster
convergence. While the MEGA is not well suited for current
quantum hardware, it may be implemented on next generation
or “near-term” machines once they are capable of handling the
circuit depths required for modest time evolution.

ACKNOWLEDGMENTS

This work was supported by the National Science Founda-
tion under Grant No. PHY-1620555. J.K.F. was also supported
by the McDevitt bequest at Georgetown University.

[1] D. S. Abrams and S. Lloyd, Phys. Rev. Lett. 79, 2586
(1997).

[2] D. Aharonov and A. Ta-Shma, in Proceedings of the 35th
Annual ACM Symposium on the Theory of Computing (ACM,
New York, 2003), pp. 20-29.

[3] D. W. Berry, G. Ahokas, R. Cleve, and B. C. Sanders, Commun.
Math. Phys. 270, 359 (2007).

[4] D. W. Berry, A. M. Childs, R. Cleve, R. Kothari, and R. D.
Somma, Phys. Rev. Lett. 114, 090502 (2015).

[5] G. Ortiz, J. E. Gubernatis, E. Knill, and R. Laflamme, Phys.
Rev. A 64, 022319 (2001).

[6] D. Wecker, M. B. Hastings, N. Wiebe, B. K. Clark, C. Nayak,
and M. Troyer, Phys. Rev. A 92, 062318 (2015).

[7] J. M. Kreula, L. Garcia-Alvarez, L. Lamata, S. R. Clark, E.
Solano, and D. Jaksch, EPJ Quantum Technol. 3, 11 (2016).

[8] B. Bauer, D. Wecker, A. J. Millis, M. B. Hastings, and M.
Troyer, Phys. Rev. X 6, 031045 (2016).

[9] J. Kempe, A. Kitaev, and O. Regev, SIAM J. Comput. 35, 1070
(20006).

[10] A. Riera, C. Gogolin, and J. Eisert, Phys. Rev. Lett. 108, 080402
(2012).

[11] D. Poulin and P. Wocjan, Phys. Rev. Lett. 103, 220502 (2009).

[12] M.-H. Yung and A. Aspuru-Guzik, Proc. Natl. Acad. Sci. USA
109, 754 (2012).

[13] E. G. Branddo and M. J. Kastoryano, Commun. Math. Phys.
365, 1 (2019).

[14] J. Van Apeldoorn, A. Gilyén, S. Gribling, and R. de Wolf, in
Proceedings of the IEEE 58th Annual Symposium on Founda-
tions of Computer Science (FOCS) (IEEE, New York, 2017),
pp- 403-414.

[15] S. Endo, T. Jones, S. McArdle, X. Yuan, and S. Benjamin, Phys.
Rev. A 99, 062304 (2019).

[16] J. Martyn and B. Swingle, Phys. Rev. A 100, 032107 (2019).

[17] M. Motta, C. Sun, A. T. K. Tan, M. J. Rourke, E. Ye, A. J.
Minnich, F. G. Brandao, and G. K. Chan, Nat. Phys. 16, 205
(2020).

[18] M. Srednicki, Phys. Rev. E 50, 888 (1994).

[19] L. D’Alessio, Y. Kafri, A. Polkovnikov, and M. Rigol, Adv.
Phys. 65, 239 (2016).

[20] J. M. Deutsch, Rep. Prog. Phys. 81, 082001 (2018).

[21] M. Kliesch, C. Gogolin, M. J. Kastoryano, A. Riera, and J.
Eisert, Phys. Rev. X 4, 031019 (2014).

[22] A. Peruzzo, J. McClean, P. Shadbolt, M.-H. Yung, X.-Q. Zhou,
P.J. Love, A. Aspuru-Guzik, and J. L. O’brien, Nat. Commun.
5,4213 (2014).

[23] J. R. McClean, J. Romero, R. Babbush, and A. Aspuru-Guazik,
New J. Phys. 18, 023023 (2016).

[24] E. Farhi, J. Goldstone, and S. Gutmann, arXiv:1411.4028.

[25] N. Shenvi, J. Kempe, and K. Birgitta Whaley, Phys. Rev. A 67,
052307 (2003).

[26] G. Brassard, P. Hoyer, M. Mosca, and A. Tapp, Contemp. Math.
305, 53 (2002).

[27] D. Poulin, A. Kitaev, D. S. Steiger, M. B. Hastings, and M.
Troyer, Phys. Rev. Lett. 121, 010501 (2018).

[28] V. M. Turkowski and J. K. Freericks, Phys. Rev. B 73, 075108
(2006).

[29] V. Turkowski and J. K. Freericks, Phys. Rev. B 77, 205102
(2008).

[30] J. K. Freericks and V. Turkowski, Phys. Rev. B 80, 115119
(2009).

022622-10


https://doi.org/10.1103/PhysRevLett.79.2586
https://doi.org/10.1007/s00220-006-0150-x
https://doi.org/10.1103/PhysRevLett.114.090502
https://doi.org/10.1103/PhysRevA.64.022319
https://doi.org/10.1103/PhysRevA.92.062318
https://doi.org/10.1140/epjqt/s40507-016-0049-1
https://doi.org/10.1103/PhysRevX.6.031045
https://doi.org/10.1137/S0097539704445226
https://doi.org/10.1103/PhysRevLett.108.080402
https://doi.org/10.1103/PhysRevLett.103.220502
https://doi.org/10.1073/pnas.1111758109
https://doi.org/10.1007/s00220-018-3150-8
https://doi.org/10.1103/PhysRevA.99.062304
https://doi.org/10.1103/PhysRevA.100.032107
https://doi.org/10.1038/s41567-019-0704-4
https://doi.org/10.1103/PhysRevE.50.888
https://doi.org/10.1080/00018732.2016.1198134
https://doi.org/10.1088/1361-6633/aac9f1
https://doi.org/10.1103/PhysRevX.4.031019
https://doi.org/10.1038/ncomms5213
https://doi.org/10.1088/1367-2630/18/2/023023
http://arxiv.org/abs/arXiv:1411.4028
https://doi.org/10.1103/PhysRevA.67.052307
https://doi.org/10.1090/conm/305/05215
https://doi.org/10.1103/PhysRevLett.121.010501
https://doi.org/10.1103/PhysRevB.73.075108
https://doi.org/10.1103/PhysRevB.77.205102
https://doi.org/10.1103/PhysRevB.80.115119

MINIMAL EFFECTIVE GIBBS ANSATZ: A SIMPLE ... PHYSICAL REVIEW A 102, 022622 (2020)

[31] F. G. Brandao and M. Cramer, arXiv:1502.03263. [34] S. B. Bravyi and A. Y. Kitaev, Ann. Phys. (New York) 298, 210
[32] H. Tasaki, J. Stat. Phys. 163, 937 (2016). (2002).

[33] J. Haah, M. B. Hastings, R. Kothari, and G. H. Low, in Proceed- [35] J. Hubbard, Proc. R. Soc. London A 276, 238 (1963).

ings of the 2018 IEEE 59th Annual Symposium on Foundations [36] H. Kim, T. N. Ikeda, and D. A. Huse, Phys. Rev. E 90, 052105
of Computer Science (FOCS) (IEEE, 2018), pp. 350-360. (2014).

022622-11


http://arxiv.org/abs/arXiv:1502.03263
https://doi.org/10.1007/s10955-016-1511-2
https://doi.org/10.1006/aphy.2002.6254
https://doi.org/10.1098/rspa.1963.0204
https://doi.org/10.1103/PhysRevE.90.052105

