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Simulation of inhomogeneous distributions of ultracold atoms in an optical lattice via a massively
parallel implementation of nonequilibrium strong-coupling perturbation theory
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We present a nonequilibrium strong-coupling approach to inhomogeneous systems of ultracold atoms in optical
lattices. We demonstrate its application to the Mott-insulating phase of a two-dimensional Fermi-Hubbard model
in the presence of a trap potential. Since the theory is formulated self-consistently, the numerical implementation
relies on a massively parallel evaluation of the self-energy and the Green’s function at each lattice site, employing
thousands of CPUs. While the computation of the self-energy is straightforward to parallelize, the evaluation of
the Green’s function requires the inversion of a large sparse 10¢ x 10 matrix, withd > 6. As a crucial ingredient,
our solution heavily relies on the smallness of the hopping as compared to the interaction strength and yields a
widely scalable realization of a rapidly converging iterative algorithm which evaluates all elements of the Green’s
function. Results are validated by comparing with the homogeneous case via the local-density approximation.
These calculations also show that the local-density approximation is valid in nonequilibrium setups without mass

transport.

DOI: 10.1103/PhysRevE.89.023306

I. INTRODUCTION

The field of ultracold atoms in optical lattices has been a
promising new opportunity for studying many-body effects
which are important for condensed-matter physics in con-
trolled environments [1,2]. In particular, fermionic atoms such
as “°K may provide a direct path towards a “quantum simu-
lation” of the Hubbard model which itself has a paradigmatic
role in condensed matter physics and is a key in understanding
phenomena such as high-temperature superconductivity and
strongly correlated magnetism. In these experiments, some
novel possibilities to study physical correlations between
constituents of the model are being explored.

In many cases, such experiments [3-5] drive the systems
substantially beyond thermal equilibrium, so they are inac-
cessible to methods of conventional equilibrium or linear-
response theory. Usually, one also encounters spatially inho-
mogeneous situations, since the atoms in the optical lattice are
being held in a trap potential which coexists with the lattice
potential. In one-dimensional systems, many opportunities
to provide computational benchmarks for such experiments
exist, such as via the density-matrix renormalization group
[6-11]. However, it is a challenging problem to describe two-
and three-dimensional systems out of thermal equilibrium,
especially when they are also inhomogeneous.

In this paper, we present a nonequilibrium strong-coupling
approach to inhomogeneous systems of ultracold atoms in
optical lattices. The paper is structured as follows. Section II
discusses the Hubbard model for an optical lattice in a trap.
In Sec. III, we outline the strong-coupling approach which
enables us to simulate inhomogeneous higher-dimensional
Hubbard systems out of equilibrium. In Sec. IV, we develop
the massively parallel algorithm which is used to solve the
resulting equations on a supercomputer. Section V presents
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results of the algorithm for the example of a modulated lattice
depth and validates them by comparing to the previously intro-
duced strong-coupling method for homogeneous systems [12]
within the local-density approximation (LDA). Conclusions
are given in Sec. VL.

II. MODEL

We consider a Fermi Hubbard model in the presence of a
trap potential, i.e.,

H(t) = Ho(t) = Y Jij(0)c] ¢ (1)

i.j.o

with

1

Ho(t) =Y HOW =Y enio+ Yy UiDniniy,  (2)

where the on-site single-particle energy levels

ui0)

gi(t):Vtrap(’_;i;t)_ )

3)
are determined by the trap potential Vtrap(ﬂ-; t) and a global
chemical potential . which characterizes the initial equilib-
rium state at time ¢+ = 0. The initial state is assumed to have a
temperature k3T = B~'. The time-dependent interaction U (¢)
and the time-dependent hopping J;;(¢) are chosen to be results
of a tight-binding calculation for maximally localized Wannier
functions computed from the translationally invariant case. In
the future, we plan to include corrections to the tight-binding
parameters which result from generalized Wannier functions
for the inhomogeneous problem.

We assume the system to be in thermal equilibrium at time
t = 0 and to be driven out of equilibrium subsequently by the
time dependence of the model parameters.
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FIG. 1. (Color online) Kadanoff-Baym-Keldysh contour C for
the simulation time. Between the dashed blue lines, the system is
driven out of equilibrium by a time-dependent Hamiltonian. These
two points in time correspond to t = 0 and 7 = #,,,,¢. The real times
between the Matsubara branch and the point at which the system
is driven out of equilibrium can be used to check for numerical
convergence, since expectation values of observables have to be
constant here. The time discretization is shown in red. The total
number of time slices is N; = 2N, rcal + Ny imag-

III. FORMALISM

We employ a second-order self-consistent expression for
the self-energy [12] around the atomic limit, which is described
by Hy. The self-consistency takes advantage of a resummation
of diagrams which yields a better approximation. It can be
extended to an inhomogeneous system in the following way:

Elm,g(l‘,l‘/) = _SlmZ/df/dt3 /dl4 /df/
Ji,01

X i (4,1) Gl (7 ta3 13,7 01, (13) G013, 1)
x Jj(ta) G, (1)
= S Ty (1.1). 4)
Here,
Gio (1,1') = =i (Tecio (D), (1) 0 5)

is the contour-ordered on-site no-hopping Green’s function at
site / with spin o (in the paramagnetic phase, the Green’s
function is independent of the spin o). Times ¢ and ¢’ are
located on the Kadanoff-Baym-Keldysh contour C depicted in
Fig. 1.
Omos (a3 1].13) = Gob. o (11,13 1], 15)
+ gm(r (tl ’t{)gma (t2vt£)8a(‘r
- gm(r (tl sté)gmﬁ(lbt{) (6)

is the second-order cumulant for the on-site no-hopping two-
particle propagator

Omos (t1,1231],15)
= (= (Teemo (0)Cms (0)Chys (ke D)y (D)

at site m. In a typical numerical implementation, one cannot
store this tensor for a reasonable grid of time slices. However,
it is easy to compute it on the fly in the particle-number basis

HESP ) EM O), I ES” @), ES™(0)} = {100y [ L)ms | P)ms
|4 1)} by inserting the time evolutions

Lot (M) N g Lot (m) N g,
CSL);(’) — ¢ Jo Hy" ()dr cg()ye—l Jo Hy"()dr 8)
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for each possible Ty time ordering of the creation and
annihilation operators. Note that it is crucial to the applicability
of the approach that the expression in Eq. (8) does not involve
any time-ordered products, because [Hg") (t),HE)m)(t/)] = 0 for
any combination of #,/. The on-the-fly evaluation of the
action of the operators in the basis can be realized by a fast
multiplication with and division by tabulated

; 1 m ! !
£M(r) = ¢ o O ©
values. For example, when t; > £, > t{ > tﬁ,
i .
Gy (123 11,1)

_ggpm
e PEO e M) e (1) &) e (13)

= (_i)2 m m m m ’
Z™ Mg () 6" g 1)
with
3
Z(m) — Z efﬁE(vm)(o). (11)
v=0

In the calculation, one requires the expressions for all possible
time orderings. The relation in Eq. (4) is solved iteratively. At
a given step of this procedure, the self-energy at site i is given
by

Ei,a(t»t/) - / gi_(jl(t7f)ii,0(f7f/)gi_o!(f,7t/)7 (12)
i '
where

S 7, w
Gigo, (Eota313,1) T j, (13)

£.GH =3 [

oy O
1
x G5 (13, 14) T i (1y). (13)
The local Green’s function at site jj, G;l](’?l is given by the

Jji-th block-diagonal element of the lattice Green’s function
GUO .13 F,t') = —i(Tecro (el (1)
=[G~ T -] G, (14
i.e.,
GY1,1") = G, 17,1, (15)

Here, the hatted quantities Qg, J, and ﬁ)g denote the no-
hopping Green’s function, the hopping, and strong-coupling
self-energy as operators acting on both time and space
coordinates.

A. Observables

We comment now on the measurement of some important
physical observables within our method. The spin-o occu-
pancy of site i may be evaluated by

(nig)(1) = —i(—i)Blilngch(t)C,Ta(t +4))
= —iGt,t +07) (16)

from the local Green’s function.
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The kinetic energy contribution of spin o at lattice site i
can be deduced from the lattice Green’s function

ey =4 Y ToOGYVGE L sF.. (1)

jisNNof i

It is thus required to measure the equal-time hopping Green’s
functions from site i to its nearest neighbors j.

A quantity of particular interest is the double occupancy
D;(t) = (njyn;})(t) as a function of time ¢ and lattice site i. We
can derive it from some elements of the lattice Green’s function
and its equal-time derivative using the following relation (see
Appendix B):

%GE}‘;%J) = Ui()D;i(t) + &1(t)(nio)(1) + ekin(1).
t'=tt+

(18)

IV. ALGORITHM

In this section, we outline the massively parallel algorithm
required to solve Egs. (12)—(14) iteratively on a supercomputer.

A. Representation of the Green’s functions and self-energies

In order to represent the contour-ordered Green’s func-
tion on a computer, the Kadanoff-Baym-Keldysh contour is
discretized to N; time slices, as shown in Fig. 1. In the
implementation used here, we chose N; = 2N; reat + N imag>
where N; imag = N;/32. Here, Njea is the number of time
steps on each real branch of the Kadanoff-Baym-Keldysh
contour and N, jm,e the number of time steps on the imaginary
time axis. Furthermore, the system consists of a finite number
N, of lattice sites. Assuming that spatial symmetries such
as reflection and rotation symmetries are given for not only
the Hamiltonian but also the quantum-statistical states, we
can reduce the actual number of lattice sites /N, within the
algorithm by symmetry maps to the number N,, which is
the number of sites in the irreducible wedge of the lattice.
Many sites can then be represented by the equivalence class
with respect to the symmetry. Note that the full number of
lattice sites still plays a role in computational complexity when
the propagation of excitations is considered. Since Dyson’s
equation performs an infinite resummation of such processes,
it is relevant for the calculation of the Green’s function.
Appendix A describes the exploitation of symmetries in more
detail.

B. Global layout

Computationally, the self-consistency condition in Eq. (4) is
solved iteratively using an alternating sequence of self-energy
and Green’s function evaluations. The self-energy evaluations
are performed via Eqgs. (12) and (13) and will be described in
detail in Sec. IV C. The Green’s functions required for self-
consistency and measurements of observables are evaluated
via Eq. (14), which will be described in Sec. IV D.

Due to the structure of Eq. (13), the computation of
3;(t,t') at lattice site i requires only the Green’s functions
of neighboring lattice sites. However, the second step, i.e., the
Dyson’s equation evaluation in Eq. (14) of the lattice Green’s
requires self-energy information from all lattice sites. From a
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FIG. 2. The self-consistent strong-coupling algorithm as a flow
chart. The configurations Cy and Cs are introduced in Sec. IV
and correspond to evaluating Eqs. (12) and (13) (both Cyx) and
Eq. (14) (Cg).

computational perspective, these demands differ substantially
in terms of optimal memory arrangement and distribution of
tasks over a large set of compute nodes. As a consequence,
we define two different configurations of the simulation. The
Green’s function evaluation in Eq. (14) is performed in what
we call the Cg configuration of the simulation. The self-energy
computation is done in the Cyx, configuration. Figure 2 shows
a schematic flowchart for the computation.

The two different global machine states are sketched in
Fig. 3. All processors are thought to be arranged along
the direction of the abscissa in Fig. 3. Each configuration
defines groups of processors which share tasks; we call
them self-energy units uy ; and Green’s function units ug ;.
The self-energy unit uy ; evaluates self-energies for the i-th
range of representative sites. The Green’s function units
evaluate relevant information for the i-th range of symmetry-
representative site indices for blocked rows of the lattice
Green’s function. There is an optimal value for the size of
the units which usually differs for ux ; and ug ;. The factors
affecting the optimal size will be elaborated below.

C. Self-energy evaluation for unit uy ;

By a given self-energy unit ux ;, the self-energy X, (z,¢') is
computed for a certain range of (representatives of) sites n for
all ¢,7" using Eqgs. (12) and (13). The expressions involve an
on-the-fly evaluation of the cumulant G using the tabulated
values of Eq. (9), as well as local Green’s functions which do
not require any permanent storage on uy ;. Memory-wise, the
unit is required to have access to the local Green’s functions

C2 Uso || U1 || Us2 || Us3 || Us4 uz,s}
CG UG,0 } ua,1 } UG, } UG3 }
processor
index

FIG. 3. Global configurations for the parallelization scheme.
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of neighboring sites, as well as to the value of the self-energy
from the previous iteration. The latter is necessary, because in
our implementation, Eq. (12) is regularized as follows:

i: = )"mix inew + (1 - Amix)ﬁ:olda (19)

where Apix &~ 0.7 is a linear mixing parameter which stabilizes
the convergence by averaging between the current and the
previous iteration. Convergence is reached once

N&jlnﬁnew - f;old”Z + ”f;new - 2old||c>o < 8507 (20)

where || - ||, is the Frobenius norm of the self-energy matrix
with Nypq entries on the block diagonal and || - || is element-
wise maximum norm of the matrix. A reasonable value for the
accuracy of the self-consistency condition is

8 ~ 10780, (21)

where Uy is some typical value of the interaction strength
(which often serves as the energy unit). Convergence is usually
reached after approximately 10 iterations.

In all relevant cases we have encountered so far, the self-
energy evaluation step is computationally more costly than the
Green’s function evaluation, if the latter has been optimized
appropriately. This is due to the fact, that the contraction of
cumulant indices in Eq. (13) scales with the fourth power of
N;. The evaluation of the cumulant contraction is, however,
massively parallelizable, i.e., no significant communication
even within the uy ; is required during the computation.

Thus, the size of the cumulant units can be chosen rather
freely regarding the aspect of communication between CPUs
within the unit. A small size is preferable, due to the typically
small memory consumption. For convenience, when switching
between configurations Cy and Cg, the self-energies just
remain within the compute nodes of the respective processors
of the self-energy units. However, it is better to ensure that
each self-energy unit deals with more than one lattice site,
because we encounter the situation that the time to evaluate the
self-energy varies substantially from lattice site to lattice site.
If the site indices are assigned randomly, this effect averages
out for a sufficient number of sites. As a rule of thumb, it is

J
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reasonable to assign self-energies for 16 random lattice sites
to each uy ;.

D. Green’s function evaluation for unit ug ;

Let us have a closer look at the Dyson’s equation in Eq. (14).
It contains a block-diagonal part,

gAgl — ﬁ:(, = diagielattice (g:gl - 2:i"’)’ (22)

and a sparse off-diagonal part given by the hopping matrix J.
The latter is composed of a contour § function in time and
a tight-binding structure in real space. In particular, J is a
small quantity, due to the very nature of the strong-coupling
expansion. This fact is exploited algorithmically.

It is insightful to change notation in Eq. (14). We can write
the lattice Green’s function in a Dirac type notation, as a matrix
element

(latt) ;= .=/ N _ /2 1 =/
G, (rt;r ) = (rt| <—é;1 —f—f)g> [r,t"y, (23)
where {|F,t)}; ., is an orthonormal basis associated with space
and time variables. Each ug ; computes G129 (7,¢;7,t') at the
sites 7 assigned to it for all 7',t,t' and stores the local and
hopping Green’s functions as required. Determining the lattice
Green’s function corresponds to solving N, N; linear equations
in N, N, variables. That is, the (N, N,)? matrix elements of
the Green’s function are determined by solving such linear
equations N, N, times. Typically, in our application, N, is at
least 512 or 1024 and N, is around 10000. Note that since
the simulation discretizes the points on the Kadanoff-Baym-
Keldysh contour with N, time slices, there is a finite size of
time slices At. The effect of a finite At usually affects the
accuracy of the calculations, and thus we perform a quadratic
extrapolation of the simulation results from three finite values
of At to At — 0. Cross-checks with linear extrapolations
show the quadratic extrapolation is superior in most instances.

The matrix to be inverted in Eq. (23), (G{*9)~!_is typically
around 5 x 10% x 5 x 10° dimensional. Its block structure can
be written as

By 0 0 —Ji, NNy, o - 0
0 B 0 =D NN, 0
0 By O

(é((flatl))_l — , (24)

0

—Jyv NNy 0 0 By,

where each block represents an N; x N; matrix and

B; = gf(,l — i, (25)
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as given in Eq. (22). Each row and each column in Eq. (24)
contains at most four hopping matrices J, y (), to the nearest
neighbors NN(n);, i =1,...,4 (in two dimensions). The
hopping matrices J, yn() are essentially diagonal matrices
whose diagonal elements are the time-dependent hopping
amplitudes. The matrix in Eq. (24) is extremely sparse, while
its inverse Gf,la“) is dense. However, due to the small numerical
value of the hopping in the strong-coupling expansion, matrix
elements of G2 fall off as a function of spatial distance
and eventually become irrelevant; in other words, the lattice
Green’s function is typically block diagonal dominant. This
fact can be exploited in a numerically controlled way by
utilizing an iterative procedure. We choose the generalized
minimal residue (GMRES) method as a solver [13].
The GMRES method considers an equation system

y= Ax, (26)
as well as an “almost” correct solution,
X =PO), 27

where P is the so-called preconditioner. P is an arbitrary
operator whose action on y is cheap to compute but is a good
approximation to A~'y. In our case, due to the small numerical
value of the hopping, a natural choice for the preconditioner
is the inverse block diagonal matrix

P(y) =By, (28)
where
B:=G'-%, (29)

as defined earlier in Egs. (22) and (25). Further details of the
GMRES method as applied to the Dyson’s equation in the
inhomogeneous strong-coupling expansion are discussed in
Appendix C.

We distribute the task of applying GMRES to each unit
vector |e;) of the vector space CNiNr within the set of Green’s
function units {ug ;}i=1,..n,. Each Green’s function unit must
store all blocks of the block diagonal B. Memory allocated
to each CPU within a unit thus defines a lower bound to the
size of a Green’s function unit through this requirement in the
following way:

[N,. N? x 16 Bytes per complex—‘
lug,il = , (30)
memory per CPU
assuming a double precision representation of complex num-
bers. If one also decides to store the preconditioner, this value
doubles. We store the blocks of B as depicted in Fig. 4.
Practically, within each u¢;, an efficient application of
B and B~' to a given vector |x) has to be achieved. The
performance of these operations crucially relies on the small
size of ug; and on a good load-balancing within u¢ ;. The
former is due to an increased number of communication events
through relatively slow connections between CPUs and also
due to its role in the latter. In order to avoid an unnecessarily
large number of CPUs in ug;, a minimization of memory
consumption plays a key role. We construct the representation
of B within a Green’s function unit by distributing respective
self-energies to the CPUs dealing with specific parts of B. A
practical example is shown in Table L.
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FIG. 4. Distribution of the nonzero entries (lightly shaded boxes)
B, (t,t") of the block-diagonal matrix B within each unit ug ; (darkly
shaded area). If symmetries apply, only the blocks associated with
representatives of lattice sites need to be stored, and N, is then taken
as N,.

A further important optimization when applying GMRES
takes advantage of both cache optimizations in Basic Linear
Algebra Subprograms (BLAS) [14] level 3 routines and a
reduction of network latency effects—rather than letting u¢ ;
apply GMRES individually to each unit vector |e;) of its
concern serially, we choose a parallel implementation. It
applies the algorithm to blocks rather than vectors. Thus,
highly optimized BLAS level 3 rather than multiple calls
of BLAS level 2 are used. In addition, less communication
processes between CPUs occur. More specifically, we can
write this blockwise procedure as solving the blocked equation
system

(E, E» Ey)=B-NH( I '),
(€29
where
iN, N, /N,
Ei= ) leel, (32)

Jj=({—=1N,N;/N;

with appropriately defined unit vectors |e;) which belong to
a single lattice site in the notation introduced above with
Eq. (23). The blocks I'; are the respective blocks of G,
Typical block sizes are listed in Table I.

In the GMRES procedure, this definition of blocked
equations which are solved one after another has the following
advantage. The method operates iteratively, where the start
value is the preconditioner solution, which is still localized at
some lattice site: B! le;) (or B'E;). The computation of B!
is done with LAPACK calls [14] for the diagonal blocks by the
CPUs assigned to them according to Fig. 4. By means of the
spatial structure of this then iteratively refined approximation

TABLE I. Table of typical parallelization parameters on a Cray
XE6 (2GB memory per CPU) for the application presented in
Sec. V B. The number n, = N, N,/N, denotes the block size in the
parallel GMRES implementation.

N, CPUs (wall time) Size of uy ; Size of ug ; n,
256 16 (24 h) 16 2 256
512 512 (24 h) 16 4 512
1024 8192 (50 h) 256 64 256
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to the solution, only the application of B — J introduces
further lattice sites to the problem. As a consequence, if
GMRES converges quickly for a given numerical accuracy
of the GMRES method, nonzero elements only occur within
the spatial vicinity associated to the considered E; block in
the blocked representation of the converging GMRES solution
X = (x1 x2 -+ xn,n,/n,) (see Appendix C for details). In-
deed, the GMRES procedure converges very rapidly, because
the hopping J between adjacent lattice sites is required to be
small in the strong-coupling expansion.

For the block representations X of iteratively refined
GMRES solutions, we thus choose to only store nonzero
subblocks and distribute them within the u ; units using the
storage scheme for B (see above and Fig. 4). In the case that X
contains nonzero contributions for reducible lattice sites (this
happens when E; is located near the boundary of the range of
site representatives, see Appendix A), the respective block is
handled by the CPU associated to its equivalence class. This
minimizes both communication and memory consumption.
The former is because applying the preconditioner is only a
local operation and applying A requires only communications
with units storing neighbors of the respective lattice sites. The
size of the blocks in X is to be chosen as large as possible.
However, memory in u ; is usually very limited, so a trade-off
in unit size and block length has to be made.

Let us also comment on reasonable values for the GMRES
convergence parameter. The GMRES method for our matrix
inversion runs until a certain accuracy for the result is achieved,
ie.,

lle; — Ax|l2 < SGmres, (33)

where Sgmres is the desired numerical precision and || - ||, is
the Euclidian norm. For all practical purposes we encountered
so far, a value

SGMRrEs = 1072 (34)

has been sufficient. This surprisingly large value was verified
by comparing to simulations with higher accuracy, that is,
Smres = 1073, for the physical systems studied in this paper
at several parameter values. The plots of numerical results
of interest are identical to the eye. Similar tests were done
for completely homogeneous systems by comparing to a
numerically exact implementation in momentum space. It may
be that for different applications than the one presented here
a smaller value of dgmrgs 1S required. In order to understand
the meaning of Sgmres better it may be useful to compare
it to the dimension of the vector it constrains. In our case,
the dimension of e; — Ax is N,N; > 1 x 10°. Thus, if one
chooses to normalize the convergence criterion in Eqgs. (33)
and (34) by the dimension, the constraint reads 103, In this
context it may also be worthwhile to consider the fact that
the GMRES procedure only involves transformations with
B~', B, and J. That is, it applies only transformations which
comply with the causal structure of the Green’s function and
do not introduce artificial discontinuities with respect to the
time variables in the end result for the Green’s function which
are, in principle, part of the vector space which is being
searched by the algorithm. In other words, the physical choice
of the preconditioner already constrains the solution space so

PHYSICAL REVIEW E 89, 023306 (2014)

drastically that even a relatively large value of Sgymres might
be sufficient.

With all these optimizations, the Green’s function evalu-
ation typically consumes no more than 5 to 10% of the time
required for the self-energy evaluation on a Cray XE6 machine
in the application to lattice depth modulation spectroscopy
described below. The optimizations are necessary to speed
up the Green’s function evaluation appropriately, because we
encountered increases in speed by a factor of at least 10
and up to 1000, for each blockwise application of GMRES,
distributed storage of the GMRES vector blocks, and random
assignment of site indices. In other applications than lattice
depth modulation, with a large value of the hopping applied
for a longer period of time, the requirement of computer time
for the Green’s function evaluation may still exceed the time to
evaluate the self-energy. However, we find these requirements
to be within reasonable bounds.

E. Switching between the global configurations

The only time when global communication and synchro-
nization across all processors is required is when either the
self-energy or the Green’s function evaluations are finished.
Then convergence has to be checked, and the global con-
figurations Cy and Cs have to be replaced by each other.
This requires point-to-point communications of individual
processors across the machine and broadcasts within smaller
groups of processors which all require the same data. The
occurring communication events are displayed in Fig. 5.
During the switch C; — Cyx [Fig. 5(a)], the Green’s function
contents on the nearest neighbors of the sites assigned to a
given uy; have to be sent from the Green’s function unit
which computed them. Due to the possibly random assignment
of site indices m to spatial coordinates 7,,, the input to usy ;
is collected from various u¢_ ;. The storage scheme used for
the results within u g, ; determines the actual processors which
send the data.

When switching from Cx to Cg, spatial ranges tasked to
specific parts of each Green’s function unit have to be sent from
the self-energy units which contain this information [Fig. 5(b)].
The storage pattern for u ; is already the one specified for the
block diagonal matrix denominator of the Dyson’s equation
(Fig. 4). To finish the change of configurations, an in-place
substitution of the self-energies by the respective blocks By,
is performed by computing the respective atomic Green’s
functions and inserting By, = g,.—l — X;,asdefined in Eq. (29).
The process Cx — Cg is typically more time-consuming than
Cc — Cs. However, it can be optimized by using broadcasts
between groups of processors with the same data requirements:
Each j-th CPU in ug ; requires the same data set to operate.

The switching processes cost no more than 5% of the total
computation time and are thus negligible. However, the imple-
mentation involves a considerable amount of bookkeeping.

F. Summary and notes on the implementation

Let us summarize the algorithm and also provide some
implementation details on the way. As the method implements
the self-consistent solution of Eq. (4), the algorithm is split
in two steps: the self-energy evaluation [Egs. (12) and (13)]
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FIG. 5. (Color online) Global data transfers during the configu-
ration switches Cy <> Cg. (a) Transfers from the u¢ ; units to a given
uy,; unit during the configuration switch Cg — Cx. Only the local
Green’s functions G,,(¢,t") on the nearest neighbors of the assigned
self-energies X, (t,t') are required by each uyx; due to Eq. (13).
(b) Transfers of the full self-energy data X, (¢,#’) from the uyx ; units
to all ug; units. The process can be improved by sending the data
only to ug, and then broadcasting the data internally to the set of
equivalent member processors CPU;, j = const, of each ug ;, i > 1.
The memory structure of the Green’s function unit is identical to the
block-diagonal storage scheme introduced in Fig. 4.

and the Green’s function evaluation [Eq. (14)]. Since the
computation of the self-energy and the evaluation of the
Green’s function have different requirements in terms of com-
putational resources on the supercomputer, they use different
data structures and collaboration patterns among the CPUs. We
refer to the data structures of the algorithm in the self-energy
evaluation state as the configuration Cy and to the data
structures of the algorithm in the Green’s function evaluation
state as the configuration Cg. The respective configurations
are subdivided into mutually independent units ux ; and ug;
spanning several CPUs and the memory associated with them,
respectively. This approach is tailored to a cluster rather than
a shared-memory architecture.

If one chooses to employ the message passing interface
(MPI) standard in order to implement the algorithm, it is
advantageous to use the MPI_Group feature to ensure an
efficient communication within the units [15]. It turns out to
be useful to define internal communicators for the ug,; and
us ;, respectively, as well as for sets of processors with shared
requirements, such as the n-th processor of each ug ;, since
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they all require the same self-energies. Within these shared-
interest communicators, data can be broadcasted efficiently.
It may also be reasonable to use advanced MPI features to
perform an optimization with respect to the network topology
of the supercomputer, such that communication within the
ug,; units is optimal and equally fast for all i. In contrast,
the communication within uy, ; is not time critical, because the
main effort, computing the integrals in Eq. (13), is done by
each processor in uy ; independently.

Let us now comment on the implementation of Eq. (13).
Each uy, computes ¥ for a certain range of sites. Here,
the main effort is the contraction of the time indices. The
atomic-limit cumulant Green’s function G// is computed on
the fly using tabulated values of the exponentials in Eq. (9).
The computational effort of Eq. (13) scales with N;‘ and is
the computationally most costly operation. However, it may
also be implemented on GPUs, due to little memory and
bandwidth requirements. After having evaluated Eq. (13), the
units uy; compute the updated self-energy using Eqs. (12)
and (19). Then, as described in Sec. IV E, the resulting local
self-energies are sent to the ug; units which may or may
not overlap with the respective uy ;. Within each ug ;, the
self-energy for all sites has to be available and is thus equally
distributed over the CPUs according to the storage pattern
depicted in Fig. 4. It is advised to keep the self-energy
results in uy ; for the next update as described by Eq. (19),
even though the machine changes to configuration Cg in the
meantime. This is because the 34 in Eq. (19) has to be
available in the self-energy computation of the next iteration
of the self-consistency loop. In order to minimize the memory
consumption of the relevant range of f]old, it can be distributed
equally within each uy, ;.

In order to establish the configuration C; to compute
Eq. (14), the self-energies in u¢ ; are then replaced by the
blocks of the matrix B according to Eq. (29). Optionally, the
elements of the preconditioner B~ can also be computed and
stored at this point in time, also using the previous storage
pattern. However, this competes with the requirement to keep
ug,; small, because the action of the preconditioner can also
be computed on the fly from B with a smaller memory
requirement.

Having fully set up the C configuration, Eq. (14) is written
as the vectorized linear Eq. (31) as described in Sec. IV D. The
key variable is the bundle of GMRES vectors X whose initial
value X is the preconditioner P = B~ applied to a bundle
of unit vectors, as in Eq. (32). )A(O has only nonzero entries at
a single site index. X is also stored according to the scheme
in Fig. 4. A good optimization here is to store only nonzero
components of X emerging from X, due to the application
of the hopping matrix. For this purpose, each processor in
ug.; can keep track of the sites with nonzero elements in X
based on the site index of Xy and the number of hopping
events applied to X during the GMRES procedure elaborated
in Appendix C. Once a hopping occurs due to the application of
B — J, a given processor may have contributions to be stored
and/or added to a value assigned to another processor within
the storage scheme [compare to the block structure of B — J
in Eq. (31)]. Such transmissions are the major communication
events within u¢ ;. The required communication bandwidth
within ug; can only be minimized by assigning connected
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spatial domains with a minimal surface to single processors
within u ¢ ;. However, doing so is strongly disadvantageous in
the case that the GMRES is converging very rapidly, i.e., if
the hopping is small and #,,x is small. In this case, all but one
of the CPUs in ug,; will remain idle, because the nonzero
elements in X do not leave the CPU storing the nonzero
elements of X,. Thus, for a rapidly converging GMRES, a
random assignment of the site leading to largely scattered
domains is more appropriate.

Once each u¢ ; has computed the Green’s functions on the
spatial range assigned to it, the different spatial components
of G are distributed to the ux ; units which require them for
evaluating the Green’s function sum in Eq. (13) in order to
start the next iteration.

1. Extrapolation of the finite time-step At

Finally, we would like to elaborate on a further technical,
yet essential, aspect of the method, namely the extrapolation of
gathered simulation data for finite time steps At to the physical
limit At — 0. It turns out that a polynomial fit of any type of
observable data yields surprisingly good results. In order to
show this for one particular example, we have picked one
special parameter set for a different number of time slices and
show the results for the double occupancy D(¢) as a function
of time. Until time ¢ = 2, the Hamiltonian is kept in the
equilibrium configuration, so D(¢) is not supposed to change.
However, the finite-time step simulations do show a significant
unphysical time dependence in the equilibrium. This is shown
in Fig. 6. A linear extrapolation At — 0 of the results displays
the constant behavior of the equilibrium expectation value
remarkably well, while the quadratic extrapolation improves

T .. T T T T
equilibrium

quad. extrapolation
lin. extrapolation

0.03

D(t)

0.02

001} .

t [arb. units]

FIG. 6. (Color online) Extrapolation procedure for simulation
data at given time discretizations. The displayed simulation results for
fixed At (N, = 248 and N, = 496) are extrapolated to the physical
limit At = 0 using a linear and quadratic polynomial in Az. The
quadratic fit also uses a simulation with N, = 124, the results of which
are not shown. The quadratic extrapolation precisely reproduces
the correct constant behavior of the equilibrium expectation value.
The given data represent the double occupancy for a homogeneous
systemwith V = 10Eg, U /6t =7.77,kgT = 0.15U,,8V/V, =0.2
(see chapter on lattice modulation).
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the data quality even more. Note that also an unphysical
discontinuity is removed by the extrapolation procedure. By
cross-checking the results of linear and quadratic extrapola-
tions, the effect of the finite time step are eliminated in practice
before physical results are discussed.

V. RESULTS

In this section, we present results of the algorithm for
trapped atoms in a two-dimensional optical lattice which
is subject to a periodic modulation of the lattice depth.
We compare this method to a homogeneous version of the
algorithm which was previously successfully applied to a
lattice depth modulation experiment within the LDA [16].

The LDA is generally expected to yield good results for
systems without mass transport. This is a well-established
observation in equilibrium [17]. We show that also in a
nonequilibrium scenario without mass transport, the high
accuracy of the LDA can be explicitly demonstrated. At the
same time we validate our direct computational approach.

A. Lattice depth modulation

Let us first provide a brief introduction to lattice modulation
spectroscopy. In experiments by Stoferle et al. [3], cold atom
systems were first probed with this method. The optical lattice
depth Viuice(F,2) is periodically modulated as a function of
time by changing the intensity of the laser light with an
acousto-optic coupler. The method can, for example, be used
to measure the Hubbard gap directly in a Mott insulator,
since modulation with a frequency hw = U, where U is
the Hubbard interaction, yields a measurable increase of the
double occupancy.

In lattice-depth modulation spectroscopy, the atoms are
subject to a time-dependent optical lattice potential

V(77t) = ‘/trap(’_;) + Vlattice(?vt)- (35)

The trap potential does not depend on time and has the
parabolic shape

Vieap(F) o< |FI. (36)

The lattice potential satisfies

2
Viaice (F-1) = V (£) Y sin(kx;), (37)
i=1

which contains the time-dependent lattice depth
V([) = VO —+ X[()Jmod](t)AV sin wt. (38)

We assume that the lattice is modulated over a finite time
interval [0,7,0q] and that the system is in an initial thermal state
attime ¢t = 0. Numerically, we start the simulation at an earlier
point in time, in order to be able to check for convergence, as
discussed in Fig. 1. The lattice constant k = 27 /A is defined
by the laser wavelength A. The single-particle Hamiltonian

(- R
Hyingle (1) = —ﬁvz + V(#,1) (39)

yields the recoil energy Eg = h*k*/2m as a natural choice
for an energy unit. In order to compute the coefficients of the
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FIG. 7. (Color online) Direct numerical results for the double occupancy distribution D(X,?) as a function of time for a uniformly modulated
lattice depth in a trap. The insets of each panel show the hopping in units of the interaction J(t)/U(t). The trap curvature is specified by
Prrap = 4 sites.

many-body Hamiltonian in Eq. (1) from the single-particle Due to the time dependence of the lattice depth V (¢), we also
Hamiltonian, we insert the constant hoppings J and interac- obtain a time-dependent interaction U (¢) and hopping J(¢). We
tions U of a translationally invariant lattice. These can be com- write the initial values of the interaction and the hopping as Uy
puted easily with maximally localized Wannier functions [18]. and Jy, respectively. In these units, the trap potential can be
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written as
Vieap(F) = JoIF/ Preap |- (40)

Hence, pyqp can be interpreted as the length scale on which
the trap potential reaches the strength of the initial hopping
amplitude. It is important to keep pup larger than a couple
of lattice spacings, since otherwise the trap potential interferes
drastically with the hopping between neighboring sites and the
density changes too fast for the LDA to be accurate.

B. Numerical results

As a test system, we set the lattice depth to Vy = 10ER
and modulate it with an amplitude % = 20% at the resonant
frequency hw = Uy. The interaction strength is chosen to be
Uy/6Jy = 7.77, and we assume an initial temperature kg7 =
0.15U). The temperature dependence mostly does not change
the results of LDA computations qualitatively, except for that
the chemical potential for a fixed number of particles depends
on the temperature and thus gives rise to different weights at
different chemical potentials. At very low temperatures k7 ~
J, the strong-coupling method does not converge. A more
detailed discussion of the temperature dependence of LDA
computations is provided in Ref. [16]. We choose to study
two cycles of the modulation, that is, fnoqa = 2/ Uy. For the
simulations, we use up to 1024 time slices and a lattice with up
to 1024 symmetry-irreducible lattice sites, that is, up to 7844
actual lattice sites. The computational effort for a system with
512 symmetry-irreducible sites and a maximum of 1024 time
slices is approximately 5 x 10° CPU hours on a Cray XE6. For
instance, this involves 32768 CPUs for approximately 12 h
by the main simulation and some further CPU time for the
cheaper simulations at larger At which are required for the
extrapolation At — 0.

Figure 7 shows simulation results for distribution of the
double occupancy in a trapped system with py,, = 4 sites and
the global chemical potential u© = 0. Each subfigure displays
the distribution at a different point in time. Due to the lattice
depth modulation, the hopping in units of the interaction
J(@)/U(t) drives the system. The increases in the double
occupancy occur as J(¢)/U(t) is decreasing.

To provide a better picture of the time dependence, Fig. 8
shows the fraction of atoms on doubly occupied sites,

2% nign ) )(@)

- N
where N = ), (n;)(t) = const as a function of time for several
values of the trap curvature. In the cases pyap = 4 sites and
Puap = 5.5 sites, the results lie on top of each other, whereas for
Puap = 2 sites a slight deviation occurs. The LDA simulation
for any trap curvature within the considered range agrees
exactly with the results for py,p = 4 sites and py.p = 5.5 sites.
This agrees with the results found in our previous publication
Ref. [16] for homogeneous systems. The deviation between
the LDA curve and the py,p, = 2 sites curve is initially small
at t = 0 but is clearly visible at t = 14 Uyt /h. This property
might indicate that the LDA becomes increasingly inaccurate
with time in lattice modulation spectroscopy. The feature may
be connected to recent predictions of mass transport for a
modulated lattice within a Gutzwiller approach [19].

D(r) = (41)
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FIG. 8. (Color online) Fraction of atoms on doubly occupied
sites as a function of time for different trap curvatures.

1. Comparison to LDA

In order to perform the comparison to the LDA, we solve
numerous mutually independent homogeneous versions of
the problem at several chemical potentials u = —Vtrap(7) and
compare to local observables obtained from the full trap
simulation at a position 7.

We consider a set of test systems with three different trap
curvatures, that is, different values of the characteristic length
Puap Of the trap potential, namely pyp = 2 sites, Ogap = 4
sites, and pyap = 5.5 sites. In the simulations, the real part of
the Kadanoff-Baym-Keldysh contour extends over an interval
[to,tmax] = [—2h/ Uy,14h/ Uy], whereas the modulation acts
over the interval [0, ?104].

Figure 9 shows a comparison of the double occupancy
D(u,t) as a function of the initial chemical potential p at
times before (¢ = ty) and after (f = t,,a¢) it has been driven out
of equilibrium by the lattice depth modulation. As we see for
both, the equilibrium (¢ = ty) and nonequilibrium (t = #ax)

— ptmp=2 sites

p trap=4 sites

_ pthZS.S sites
— LDA

107F

D1

t=t,

(equilibrium)

(nonequilibrium)

10°F

I N T R T U [ I
0 02 04 06 08 10 0.2
-p.l(r)/U0

[ B B
04 06 038 1
-u(r)/U0

FIG. 9. (Color online) Comparison of the double occupancies
computed for the full trap simulation of traps with different curvatures
as compared to the LDA result.
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situations, the numerical results for the inhomogeneous system
agree well with the LDA, even for the rather steep trap potential
with py,p = 2 sites. The slight deviation of the solution for
2 sites from the other nonequilibrium curves may still be
due to numerical imperfections. The agreement with the LDA
indicates that the creation of doubly occupied sites in a Mott
insulator subject to a modulated lattice depth is caused by
strongly local excitation processes.

VI. CONCLUSION

We presented a computational approach to an inhomoge-
neous Mott-insulating system of ultracold atoms. A major
challenge is to compute a large matrix inverse in the Dyson
equation. We show that a GMRES-based inversion approach
exploiting the small numerical value of the hopping as
compared to the many-body interaction yields a feasible
implementation on supercomputers. A comparison to the
LDA shows that both methods are well suited for the
problem of lattice-depth modulation spectroscopy. This hints
towards mainly local processes being involved in the coherent
excitations between lower and upper Hubbard bands in this
particular setting, as might have been anticipated. In the future,
we will apply the inhomogeneous method to problems with
mass transport where the LDA is expected to fail.

At present, the computational complexity of the algorithm
is proportional to N;. It may be worthwhile to investigate the
possibility to extend the time range by truncating certain parts
of the self-energy at a given threshold for r — #’. This measure
could increase the applicability of the algorithm greatly but
requires further efforts.

ACKNOWLEDGMENTS

This work was supported by a MURI grant from the Air
Force Office of Scientific Research numbered FA9559-09-1-
0617. Supercomputing resources came from a challenge grant
of the DoD at the Engineering Research and Development
Center and the Air Force Research and Development Center.
The collaboration was supported by the Indo-US Science
and Technology Forum under the joint center numbered
JC-18-2009 (Ultracold atoms). J.K.F. also acknowledges
the McDevitt bequest at Georgetown. H.R.K. acknowledges
support of the Department of Science and Technology in India.

APPENDIX A: UTILIZATION OF SYMMETRIES

We illustrate the exploitation of symmetries for the example
of spherical symmetry on a two-dimensional square lattice
with an s-orbital basis. In this case, a C4, point group
symmetry [20] is imposed on the lattice. Figure 10 displays
the lattice sites of a lattice. For the Cy4, symmetry, all sites
can be represented by the sites in the irreducible wedge
0 < y < x. These representatives of the equivalence classes
are denoted by solid black circles. If the Green’s function
and self-energy transform as the identity representation of the
point group, the computations only need to be performed for
those representatives. The representative of a given site can be
retrieved by reflections with respect to the coordinate axes and
the diagonals which are shown as dashed lines in Fig. 10.
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FIG. 10. (Color online) Cy4, point-group symmetry imposed by
the circular trap potential on the 2D lattice. The circles denote lattice
sites. Solid circles are representatives of an equivalence class of lattice
sites with respect to the symmetry. The symmetry partners of the red
(gray) solid circle are displayed in red (gray).

APPENDIX B: FORMULA FOR
THE DOUBLE OCCUPANCY

We provide a brief derivation of Eq. (18). Let us start
by assuming an equidistant discretization {¢, ...,tx} (At =
ti+1 — t;) of the forward part of the Kadanoff-Baym-Keldysh
contour. We obtain

0G,(t,1) 1
—_— = —(Gio(ti,t;) — G5 (ti—1,1)) + O(AL)
ot vt AL
— __i<eiH(zU)At . 'eiH(t,,l)Az X Al
At 7
x e THU-DAL | =iH(@0)Ar)
+ O(At) (BD
with
Ala‘ — _eiH(f,')Al‘C;'{T [Cla-,e_iH(li)At]. (Bz)
The operator A, simplifies as follows:
Al = —iAte] [H(1;),c10] + O(AL?)
= —iAt ZJljcngcja _Ela(t)nlcr - Ul(t)annll
J
+ O(Ar?). (B3)

Taking the limit At — O results in Eq. (18). Numerically,
this limit must be performed via linear and/or quadratic
extrapolation of multiple simulations for different Ar values.

APPENDIX C: GMRES

The generalized minimal residue method was introduced
by Saad and Schultz [13] to solve a linear equation,

Ax = b. (C1)
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A good introduction to the method can be found in Ref. [21],
and a useful C4++ implementation is provided by the
NIST IML++ template library [22]. In order to solve the
equation (C1), GMRES operates in d-dimensional Krylov
subspaces

ICd(A,r(O)) = span(r(o),Ar(O), e ,Ad_lr(o)) (C2)
which are successively built up, starting withd = 1.7©@ = b —
Au'? is the residue of the initial guess u©) for the solution. The
GMRES method forms a refined approximate solution ud e
u® + ICy(A,r®) defined by the minimization requirement

uD e u® £ I AP, b — Au @), = min, (C3)

where the expression “x ='min” demands x to be minimal.
The Krylov space dimension d is increased until the conver-
gence criterion (33) is reached or d approaches the threshold
dmax at which the minimization is considered too expensive.
If d = dimax, GMRES is restarted with a Krylov space size
d = 1, where the initial guess u® is taken to be u(@m)
from the previous GMRES iteration before restarting. With
a preconditioner P, one applies GMRES to the system

PAx = Pb, (C4)

rather than Eq. (C1).

If PA ~ [ this system is better conditioned than Eq. (C1).
In the case that A is a sparse matrix with large entries on the
diagonal and some randomly occurring off-diagonal entries,
the diagonal matrix B defined by the diagonal entries of
A vyields a good preconditioner B!, because the condition
number

Gmax(A)
K =

= C5
Umin(A) ( )
is not as close to 1 as the regularized
. _ omx(B7'A)
R = —F—= (Co)

Omin(B~1A)

Here, om.x and o, represent the respective maximal and
minimal singular values. Also, the application of the diagonal
matrix B to a vector is a cheap operation. The same argument
can be made in the case that A has large entries on the
block diagonal B, as it is the case in the nonequilibrium
inhomogeneous strong-coupling expansion, where A = B —
J . The block diagonal B is defined in Eq. (29), and the hopping
matrix J is a sparse matrix with small numerical values [see
also Eq. (24)]. Due to the latter, in fact B A~ T , so the
equation system is well conditioned.

PHYSICAL REVIEW E 89, 023306 (2014)

The actual GMRES algorithm with preconditioner in
pseudo code reads [21,22]

(1) For the initial guess u® = B~'b compute the precon-
ditioned residue z@ = B~'(b — Au®), as well as gV = 7@/
12|, Initialize the Hessenberg matrix

H =i <i<dp+1 =0 (C7N
1< j < dmax
(2) Ford =1, ...,dy. do
w= B~ Ag@
Fori=1,...,ddo
hia = (¢ |w) .
w— w— higq®
havr.a = llwll2
If hy41.4 = O then proceed with step 3 to compute
the result.
Otherwise, use step 3 to check for convergence, Eq. (33).
Continue if not converged.
gV =w/has1a
(3) Solve the d-dimensional linear minimization problem

z92e1 — H@yll, — min, (C8)

where H@ is the upper left d-dimensional square of H, to
obtain the result y@. Then set u® = u©® 4 Q@ y@  with
0D = (g ...q,

Practically, the GMRES with preconditioner scans for
solutions in the modified affine Krylov spaces

u® + Ky(B'A,z9) = B~'b + span (vy, ... ,vq).  (C9)
Here, the basis vectors are

v, = (B7TAY'B7Y (b — AB7'b)). (C10)

In the case of the inhomogeneous nonequilibrium strong-
coupling expansion, b is a unit vector localized at a given
lattice site. The n-th basis vector v, of the Krylov space
K4(B~'A,z®) corresponds to n hopping processes, because
A=B—J, and in v,, A is applied n times to b. That
is, the GMRES method includes exactly d iterated hopping
processes in iteration d until convergence is reached. If
GMRES is restarted, the d-th iteration includes mdy.x + d
iterated hopping processes, where m is the number of restarts.
This is crucial for the computational optimizations used in the
implementation. The procedure can be seen as a numerically
controlled analog to a partial summation of the Dyson series

1
B-1J

o0
b= (B~'J)'B~'b. (C11)
v=0
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