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Exact solution for Bloch oscillations of a simple charge-density-wave insulator
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Charge-density-wave systems have a static modulation of the electronic charge at low temperatures when they
enter an ordered state. While they have been studied for decades in equilibrium, it is only recently that they
have been examined in nonequilibrium with time-resolved studies in solids, or in cold-atom systems on optical
lattices. Here, we present the exact solution for the nonequilibrium response of electrons (in the simplest model
for a charge density wave) when the system is placed under a strong dc electric field. This allows us to examine
the formation of driven Bloch oscillations and how the presence of a current modifies the nonequilibrium density
of states.
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I. INTRODUCTION

Charge-density-wave (CDW) behavior occurs in a wide
variety of different materials. Peierls [1] originally showed the
instability of a one-dimensional metal to a distortion with a
unit cell twice as large as in the uniform phase, that opens an
insulating gap at the Fermi level. Since then, CDW behavior
has been seen in many different materials and in higher
dimensions as well. Still, the precise origin of CDW behavior
in real materials is controversial [2–4]: Is it arising from
electron-phonon interactions and a softening phonon or from
a purely electronic instability in the static charge susceptibility
or via an instability driven by the electron-phonon coupling?
We do not investigate that question here, but instead focus on
the behavior in the nonequilibrium state.

Recently, nonequilibrium photoelectron pump-probe ex-
periments have been carried out for a number of different
CDW systems, with both valence electron photoemission
[5–9] and core-hole photoemission [10]. In these experiments,
the charge-density-wave material is pumped with an infrared
laser pulse and displays nonequilibrium melting of the CDW
state, which is illustrated by a filling in of the gap in the
photoemission spectrum, while the system still retains its
modulation of the electronic charge in the ordered CDW phase.
This phenomenon has already been examined with an exactly
solvable model [11].

The simplest model for a CDW insulator is to start with a
system that can be divided into two sublattices, called A and B,
and having hopping only between the two sublattices. Then, we
pick an onsite energy to be equal to U on the A sublattice and
0 on the B sublattice. The equilibrium Hamiltonian becomes

H = −
∑
ij

tij c†i cj +
∑
i∈A

(U − μ)c†i ci +
∑
i∈B

(−μ)c†i ci . (1)

Here, c†i and ci are the creation and annihilation operators for
a spinless fermion at site i. The operators satisfy the canonical
anticommutation relations

{ci,c
†
j }+ = δij (2)

and

{ci,cj }+ = {c†i ,c†j }+ = 0, (3)

where the + subscript denotes the anticommutator of the two
operators. In Eq. (1), μ is the chemical potential and U is the
aforementioned site energy. The electrons are allowed to hop
between nearest neighbors with a hopping matrix −tij , which
is a real and symmetric matrix that equals −t for i and j nearest
neighbors and vanishes otherwise. When this Hamiltonian is
diagonalized (see following), it forms two bands, so filling the
electrons halfway (one electron per two lattice sites) yields an
insulating phase. Because the site energy is fixed and never
varies, the CDW order is always frozen in and remains for
all finite temperatures. While this might seem like an extreme
limit, it should describe the behavior of experimentally studied
CDW systems for short times, before the phonons are able to
relax the system and reduce or eliminate the effective site
energy (which arose from the phonon distortion in the ordered
phase); this time scale is typically on the tens of picoseconds
scale. Since the lattice potential is fixed at U , the system is
always in the CDW phase, but the order parameter, as measured
by the difference of the electron density on the A and B

sublattices will vary both with temperature, in equilibrium,
and with the driving field, as current flows through the system.
In addition, we assume the CDW is a perfect CDW, so we
examine it under the assumption that it is always translationally
invariant, even when current is flowing. This precludes the
system from transporting charge via sliding CDWs [12], but
instead charge moves coherently through the entire sample
similar to water flowing through a hose. The pinning/depinning
transition will occur on time scales even longer than those
given by the phonon dynamics, especially when the system
is in the weak pinning limit due to disorder. Nevertheless,
because this model can be solved exactly, it provides an
interesting limit for other (more accurate) model calculations
and displays interesting nonequilibrium behavior that has a
number of nontrivial results.

The organization of this paper is as follows. In Sec. II,
we develop the formalism for the exact solution of the
nonequilibrium problem. In Sec. III, we present our solutions
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for the Bloch oscillations and nonequilibrium density of states,
and we conclude in Sec. IV.

II. FORMALISM

In this section, we will first describe how to solve for
the equilibrium band structure of the CDW and then we will
show how to employ the Peierls substitution to describe the
nonequilibrium solution.

A. Equilibrium formalism

The lattice translational symmetry is broken when U is
nonzero, resulting in a doubling of the size of the unit
cell in real space, and a halving of the Brillouin zone in
reciprocal space. Hence, the conversion from real space to
momentum space is more complicated than in a system with
one atom per unit cell. The momentum points k and k + Q
are coupled, where Q = (π,π, . . .) due to the presence of the
CDW order. The transformation from reciprocal space to real
space becomes

c†i =
∑

k

(e−ik·Ri c†k + e−i(k+Q)·Ri c†k+Q), (4)

where the sum is over the reduced Brillouin zone, and Ri is the
position vector for the ith lattice site. Since e−iQ·R is equal to 1
for lattice sites on the A sublattice and −1 on the B sublattice,
we have explicit expressions

c†i∈A =
∑

k

e−ik·Ri (c†k + c†k+Q), (5)

c†j∈B =
∑

k

e−ik·Rj (c†k − c†k+Q). (6)

The corresponding annihilation operator identities are found
by taking the respective Hermitian conjugates.

If we write the electronic band structure at U = 0 as εk ,
then we have

εk = −
∑
ij

tij exp[−ik · (Ri − Rj )]

= −2t

d∑
l=1

cos(kla) = − lim
d→∞

t∗√
d

d∑
l=1

cos(kla), (7)

where we assumed the hopping was only between nearest
neighbors on a d-dimensional hypercubic lattice and satisfied
t = t∗/(2

√
d) in the limit of large dimensions in the second line

(we will present results in the infinite-dimensional limit here,
but the formalism gives the exact solution in any dimension).
Restricting k to the reduced Brillouin zone is equivalent to
having εk � 0. In Eq. (7), l is the index for spatial component
along an axial direction, a is the lattice constant, and d is the
number of spatial dimensions.

The Hamiltonian in Eq. (1) can now be written in a 2 × 2︷ ︷
ck,ck+Q︸ ︸ basis via

H =
∑

k

︷ ︷
c†k c†k+Q︸ ︸

(
U
2 − μ + εk

U
2

U
2

U
2 − μ − εk

)(
ck

ck+Q

)
.

(8)

This is diagonalized via the following eigenfunction basis:

ck+ = αkck + βkck+Q, (9)

ck− = βkck − αkck+Q, (10)

with αk and βk satisfying

αk =
U
2√

2
(
ε2
k + U 2

4 − εk

√
ε2
k + U 2

4

) (11)

and

βk =
−εk +

√
ε2
k + U 2

4√
2
(
ε2
k + U 2

4 − εk

√
ε2
k + U 2

4

) . (12)

The operators c
†
k+ and c

†
k− create electrons in the upper and

lower bands, respectively. The Hamiltonian matrix is then
diagonalized as follows:

H =
∑

k

(εk+c
†
k+ck+ + εk−c

†
k−ck−). (13)

Here, εk+ and εk− are given by

εk± = U

2
− μ ±

√
ε2
k + U 2

4
. (14)

While one might have thought that this describes a simple
band insulator due to the gap, it is actually a CDW because
the gap occurs from a doubling of the period of the unit cell
which creates a modulated charge density of the conduction
electrons. This result is also identical to the T = 0 limit of
the Falicov-Kimball model, which has a CDW phase at low
temperature.

We will also want to work with Green’s functions because
they allow us to generalize the formalism to include inter-
actions via nonequilibrium dynamical mean-field theory. The
local retarded Green’s function is defined by the following
formula in equilibrium:

GR
A,B(t) = −iθ (t − t ′)

∑
k

〈{ck(t) ± ck+Q(t),c†k(0)

± c
†
k+Q(0)}+〉, (15)

where Ô(t) = eiHtOe−iH t is the operator representation in the
Heisenberg picture and the angle brackets are a shorthand for
the trace over all states weighted by the density matrix, which
is equal to exp[−βH]/(Tr exp[−βH]), with β the inverse
temperature (in this work, we will start the system from
zero temperature or β → ∞). The plus sign represents the
A sublattice and the minus sign represents the B sublattice.

In order to explicitly determine the Green’s function, it is
more convenient to work in the diagonalized basis, where the
local retarded Green’s function on the A sublattice becomes

GR
A(t) = −iθ (t − t ′)

∑
k

〈{(αk + βk)ck+(t) + (βk − αk)ck−(t),

× (αk + βk)c†k+(0) + (βk − αk)c†k−(0)}+〉. (16)
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FIG. 1. (Color online) Equilibrium density of states for U = 0.5
at half-filling. The red curve is the local DOS on the A sublattice,
the blue curve on the B sublattice, and the black curve is the average
local DOS.

The time evolution of the ck+(t) and ck−(t) operators is found
by solving their equations of motion to yield

c
†
k+(t) = exp(iεk+t)c†k+(0), (17)

c
†
k−(t) = exp(iεk−t)c†k−(0). (18)

The local equilibrium density of states (DOS) Ai(ω) =
−ImGR

i (ω)/π then becomes

AA,B(ω) = Re

[√
ω ± U

2

ω ∓ U
2

]
ρ

(√
ω2 − U 2

4

)
, (19)

with ρ(ε) the noninteracting DOS at U = 0 [and given by
ρ(ε) = exp(−ε2)/(t∗

√
π ) in the infinite-dimensional limit].

The average DOS is found by summing over the local DOS for
each sublattice with weight 1

2 . Figure 1 shows the equilibrium
DOS for U = 0.5. Note that the band gap is equal to the
onsite potential U , which shows the system is an insulator
for nonzero U . The local DOS on the A sublattice (red line)
has a divergence at ω = U/2, while the local DOS on the B

sublattice (blue line) has a divergence at ω = −U/2 (the black
curve is the average local DOS).

In equilibrium, the local lesser Green’s function, defined by

G<
i (t) = i〈c†i (0)ci(t)〉, (20)

satisfies G<
i (ω) = −2if (ω)ImGR

i (ω), with f (ω) = 1/[1 +
exp(βω)] the Fermi-Dirac distribution function. At T = 0,
f (ω) vanishes for positive frequency and is equal to one for
negative frequency, so the local equilibrium lesser function at
T = 0 is simply given by the left-hand side of Fig. 1.

The lesser Green’s function also gives us the local density
of electrons on each sublattice:

nA,B = Im[G<
A,B(t = 0)] =

∫ ∞

−∞

dω

2π
Im[G<

A,B(ω)]. (21)

The equilibrium order parameter for the conduction electrons
is just the difference between the electron number density on

FIG. 2. (Color online) Equilibrium CDW order parameter as a
function of U at zero temperature.

the A and B sublattices:

� = nB − nA

nA + nB

. (22)

Since there is a repulsive potential on the A sublattice, there
are always more electrons on the B sublattice than on the A

sublattice in equilibrium and the order parameter is maximal
for fixed U when the temperature is equal to zero. The
equilibrium order parameter at zero temperature is plotted in
Fig. 2 as a function of the onsite potential U . Formulas for
empirical fits for small and large U are also shown.

B. Nonequilibrium formalism

In the case of nonequilibrium, the Hamiltonian becomes
time dependent due to the presence of an electric field.
We include this electric field via the Peierls’ substitution
[13], which is a simplified semiclassical treatment of the
electromagnetic field that is exact and nonperturbative. With
the Peierls’ substitution, the hopping matrix gains a time-
dependent phase factor [14] due to the field

tij → tij (t) = tij exp

[
− ie

�c

∫ Rj

Ri

A(r,t) · dr
]

. (23)

This result just follows from the phase a particle picks up
when moving under the influence of a vector potential and is
sufficient to describe the electric field when we work in a gauge
where there is zero scalar potential and only a time-dependent
vector potential. The electric field E(r,t) is found from the
temporal derivative of the vector potential A(r,t):

E(r,t) = −1

c

∂A(r,t)
∂t

. (24)

We will further assume that the electric field is spatially
uniform, even when it is time dependent, neglecting the time-
dependent magnetic field required by Maxwell’s equations
since those effects are much smaller than the electric field
effects. We remark that the case considered here is one of
the few in which Peierls’ inclusion of the vector potential can
be done gauge invariantly, yet still result in photon-assisted
transitions across the band gap. As pointed out in Ref. [15],
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a Peierls’ construction often has limitations in multiband
systems. However, since the gap in this model results from
a site potential that couples electrons with the same symmetry,
interband transitions can be driven by the field via the Peierls’
substitution.

We choose the spatially uniform field to lie along the diago-
nal direction so A(t) = A(t)(1,1, . . . ,1). The time-dependent
band structure in momentum space for the U = 0 case then
becomes

εk(t) = −
∑
ij

tij exp

[
− i

(
k − e

�c
A(t)

)
· (Ri − Rj )

]
. (25)

So, the effect of the Peierls’ substitution is to add a time-
dependent shift to the momentum in the noninteracting
electronic band structure:

εk(t) = − lim
d→∞

t∗√
d

d∑
l=1

cos

[
a

(
kl − eA(t)

�c

)]
. (26)

The time-dependent Hamiltonian in the Schrödinger picture
then becomes

HS(t) =
∑

k

︷ ︷
c†k c†k+Q︸ ︸

(
U
2 − μ + εk(t) U

2
U
2

U
2 − μ − εk(t)

)

×
(

ck

ck+Q

)
(27)

in momentum space. The time-dependent band structure εk(t)
can be expanded with the difference formula of the cosine (for
the diagonal field) via

εk(t) = cos

(
eaA(t)

�c

)
εk + sin

(
eaA(t)

�c

)
ε̄k (28)

which depends on the band structure εk and the projection of
the velocity along the field

ε̄k = − lim
d→∞

t∗√
d

d∑
l=1

sin(akl). (29)

In the Heisenberg picture, we can write the equation of motion
for the operators ck(t) and ck+Q(t),

i
dck(t)

dt
= −[HH (t),ck(t)] (30)

and

i
dck+Q(t)

dt
= −[HH (t),ck+Q(t)], (31)

where HH (t) is the Heisenberg representation for the Hamil-
tonian. If we substitute in the time-dependent Hamiltonian and
evaluate the commutators, we have

i
dck(t)

dt
=

∑
k

[(
U

2
− μ + εk(t)

)
ck(t) + U

2
ck+Q(t)

]
,

(32)

i
dck+Q(t)

dt
=

∑
k

[
U

2
ck(t) +

(
U

2
− μ − εk(t)

)
ck+Q(t)

]
.

(33)
Then, we have the time evolution for the annihilation operators
which satisfies(

ck(t)
ck+Q(t)

)
= U (k,t,t0)

(
ck(t0)

ck+Q(t0)

)
. (34)

The time-evolution operator U (k,t,t ′) is a time-ordered prod-
uct for each momentum

U(k,t,t ′)

= Tt exp

[
−i

∫ t

t ′
dt̄

(
U
2 − μ + εk(t̄) U

2
U
2

U
2 − μ − εk(t̄)

)]
.

(35)

Since there are time-dependent terms inside the exponential,
we must numerically calculate the time evolution U (k,t,t ′) by
employing the Trotter formula

U (k,t,t ′) = U (k,t,t − t)U (k,t − t,t − 2t)

× . . . U (k,t ′ + t,t ′). (36)

For a small time step t at time t , we have

U (k,t,t − t) = exp

[
−it

(
U
2 − μ + εk(t − t/2) U

2
U
2

U
2 − μ − εk(t − t/2)

)]
. (37)

This exponential can be exactly found since it is a 2 × 2 matrix, and we show the result for the case of interest of half-filling,
where μ = U/2:

U (k,t,t − t) = cos

[
t

√
ε2
k

(
t − t

2

)
+ U 2

4

]
I − i

(
εk

(
t − t

2

)
U
2

U
2 −εk

(
t − t

2

)
)

sin
[
t

√
ε2
k

(
t − t

2

) + U 2

4

]
√

ε2
k

(
t − t

2

) + U 2

4

. (38)

In our calculations, we must start from a finite minimum
time instead of tmin → −∞, so we calculate the time-
evolution operator from a minimal time t0: U (k,t,t0). For
each k, we find the two time-evolution operators from the
identity

U (k,t,t ′) = U (k,t,t0)U †(k,t0,t
′). (39)

Once the time evolution at each time pair is found, we then
calculate the nonequilibrium Green’s functions to obtain the
physical properties of the system. Therefore, one can see that
the exact solution in the nonequilibrium case is much more
complex than the equilibrium solution due to the change in time
of the instantaneous eigenbasis; this then requires significant
numerical resources to properly solve the problem.
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FIG. 3. Kadanoff-Baym-Keldysh contour. The contour evolves
from a minimal time to a maximal one, then evolves backwards to the
minimal one, and finally evolves parallel to the negative imaginary-
time axis out to a distance given by β = 1/T .

The contour-ordered single-particle Green’s function along
the Kadanoff-Baym-Keldysh contour (see Fig. 3) is defined as

Gc
ij (t,t ′) = −i〈Tcci(t)c

†
j (t ′)〉

= −iθc(t,t ′)〈ci(t)c
†
j (t ′)〉 + iθc(t ′,t)〈c†j (t ′)ci(t)〉, (40)

where θc is the generalization of the unit step function to
the contour and vanishes if t is before t ′ on the contour and is
equal to one if t is after t ′ on the contour. The contour-ordering
operator Tc orders the two operators a(t) and b(t ′) according
to which is first along the contour (later along the contour on
the left), and we have

Tc{a(t)b(t ′)} =
{

a(t)b(t ′) t ′ before t on contour,
−b(t ′)a(t) t ′ after t on contour. (41)

The minus sign arises because a(t) and b(t ′) are fermionic
operators.

The retarded and lesser Green’s functions continue to be
defined by

GR
ij (t,t ′) = −iθ (t − t ′)〈{ci(t),c

†
j (t ′)}+〉 (42)

and

G<
ij (t,t ′) = i〈c†j (t ′)ci(t)〉, (43)

where the operators are in the Heisenberg picture with respect
to the time-dependent Hamiltonian, but they now depend on
two times instead of just on the time difference.

Assuming the system starts at a time t0 well before the
field is turned on, so the system is in equilibrium, we can
introduce the evolution operators for the time-dependent
creation and annihilation operators and evaluate the retarded
Green’s function as follows:

GR
ii(t,t

′) = −iθ (t − t ′)

×〈{ck(t0)U11(k,t,t0) + ck+Q(t0)U12(k,t,t0)

± ck(t0)U21(k,t,t0) ± ck+Q(t0)U22(k,t,t0),

× c
†
k(t0)U †

11(k,t0,t
′) + c

†
k+Q(t0)U †

21(k,t0,t
′)

± c
†
k(t0)U †

12(k,t0,t
′) ± c

†
k+Q(t0)U †

22(k,t0,t
′)}+〉.

(44)

The symbols Uab(k,t,t ′) and U
†
ab(k,t,t ′) represent the elements

at row a and column b of the evolution matrices U (k,t,t ′)
and U †(k,t,t ′). Evaluating the anticommutator, and using the
identity of the evolution matrices in Eq. (39), then shows that
the local retarded Green’s function is just a function of the
time evolution between the two times t and t ′:

GR
ii(t,t

′) = −iθ (t − t ′)
∑

k

{U11(k,t,t ′) + U22(k,t,t ′)

±U12(k,t,t ′) ± U21(k,t,t ′)}. (45)

The plus sign is for i ∈ A sublattice, while the minus sign is for
i ∈ B sublattice because of the phase shift exp(±i �Q · RA) =
1 and exp(±i �Q · RB) = −1. The retarded Green’s function
determines the character of the quantum states of the system
and does not depend on the history, which is why it depends
only on the times between t and t ′. Note that this is not the
same as saying it depends on the time difference t − t ′ since
the retarded Green’s function does change with average time
and the evolution operator is a complicated function of t and
t ′ (see following).

Now, we can introduce Wigner’s average and relative time
coordinates [16] which are defined via

trel = t − t ′, tave = t + t ′

2
. (46)

The Fourier transform of the local retarded Green’s function
with respect to the relative time for a fixed average time

GR
ii(ω,tave) =

∫
dtrele

iωtrelGR
i (trel,tave) (47)

yields the transient nonequilibrium local DOS Aii(ω,tave) =
−ImGR

ii(ω,tave)/π .
This local DOS on each sublattice satisfies a number of

exact sum-rule relations even in nonequilibrium [17] which
are proved in Appendix A. This includes the zeroth through
third moments.

In addition to the retarded Green’s function, we also need
the lesser Green’s function to calculate the current, the kinetic
and potential energy, the CDW order parameter, and the fillings
in different bands as functions of time. With the Fourier
transform of the definition of the lesser Green’s function
in Eq. (43), we can write the momentum-dependent lesser
Green’s functions as

G<
11(k,t,t ′) = i〈c†k(t ′)ck(t)〉

= iU
†
11(k,t0,t

′)U11(k,t,t0)〈c†k(t0)ck(t0)〉 + iU
†
11(k,t0,t

′)U12(k,t,t0)〈c†k(t0)ck+Q(t0)〉
+ iU

†
21(k,t0,t

′)U11(k,t,t0)〈c†k+Q(t0)ck(t0)〉 + iU
†
21(k,t0,t

′)U12(k,t,t0)〈c†k+Q(t0)ck+Q(t0)〉, (48)

G<
12(k,t,t ′) = i〈c†k+Q(t ′)ck(t)〉

= iU
†
11(k,t0,t

′)U21(k,t,t0)〈c†k(t0)ck(t0)〉 + iU
†
11(k,t0,t

′)U22(k,t,t0)〈c†k(t0)ck+Q(t0)〉
+ iU

†
21(k,t0,t

′)U21(k,t,t0)〈c†k+Q(t0)ck(t0)〉 + iU
†
21(k,t0,t

′)U22(k,t,t0)〈c†k+Q(t0)ck+Q(t0)〉, (49)
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G<
21(k,t,t ′) = i〈c†k(t ′)ck+Q(t)〉

= iU
†
12(k,t0,t

′)U11(k,t,t0)〈c†k(t0)ck(t0)〉 + iU
†
22(k,t0,t

′)U12(k,t,t0)〈c†k(t0)ck+Q(t0)〉
+ iU

†
12(k,t0,t

′)U11(k,t,t0)〈c†k+Q(t0)ck(t0)〉 + iU
†
22(k,t0,t

′)U12(k,t,t0)〈c†k+Q(t0)ck+Q(t0)〉, (50)

and

G<
22(k,t,t ′) = i〈c†k+Q(t ′)ck+Q(t)〉

= iU
†
12(k,t0,t

′)U21(k,t,t0)〈c†k(t0)ck(t0)〉 + iU
†
22(k,t0,t

′)U22(k,t,t0)〈c†k(t0)ck+Q(t0)〉
+ iU

†
12(k,t0,t

′)U21(k,t,t0)〈c†k+Q(t0)ck(t0)〉 + iU
†
22(k,t0,t

′)U22(k,t,t0)〈c†k+Q(t0)ck+Q(t0)〉. (51)

Note how these results do not simplify to depend only
on the times between t and t ′, but instead depend on all
times. In addition, these results depend upon the initial
occupancies of the different momentum states, which are
determined by the initial conditions at t = t0 and follow from
the equilibrium analysis described above. In particular, we
start the system in equilibrium at T = 0 which corresponds
to a filled lower band 〈c†k−ck−〉 = 1 and an empty upper band

〈c†k+ck+〉 = 0. Converting from the eigenfunction basis to the

k and k + Q basis then shows that we must take 〈c†kck〉 = β2
k ,

〈c†k+Qck+Q〉 = α2
k , and 〈c†kck+Q〉 = 〈c†k+Qck〉 = −αkβk as the

initial expectation values for the occupancies. Here, the αk and
βk are the equilibrium values in Eqs. (11) and (12) since the
system starts in equilibrium before the field is turned on.

The time-dependent CDW order parameter then follows in
a simple fashion:

�(t) = nB(t) − nA(t)

nB(t) + nA(t)

= −
∑

k:εk�0[G<
12(k,t,t) + G<

21(k,t,t)]∑
k:εk�0[G<

11(k,t,t) + G<
22(k,t,t)]

. (52)

There are alternative numerical techniques that can be used
to solve these problems like direct integration of equations of
motion on a two-dimensional time grid. In this case, one would
typically use a high-order integration routine to reduce error
and keep the calculation efficient. Our approach is similar in
spirit, as we use an exact evolution operator over the time step
t , assuming the Hamiltonian is piecewise constant over each
time interval. Hence, our approach is also similar to high-order
integration routines, where the error arises primarily from the
discretization of the Hamiltonian and not from the integration
scheme itself.

Our approach to this problem has been from the solid-state
physics viewpoint employing Green’s functions. This problem
can also be viewed as a collection of generalized Landau-
Zener problems, one for each k and k + Q pair which can be
solved independently, and then averaged over the joint density
density of states for the energy and the velocity projected
onto the direction of the electric field. In the cold-atom field,
these types of problems are often described by the generalized
Landau-Zener approach. For example, these types of problems
in double-well lattices have been widely studied in bosonic
systems [18–20] or with fermions [21]. The latter is most
appropriate for this work, but the experiments in cold atoms

can not easily determine the current or the DOS, so there is no
simple direct connection at this time.

C. Gauge invariance

Physically measurable properties are gauge invariant, and
depend only upon the fields, not the scalar and vector
potentials. While local quantities are always gauge invariant,
quantities that depend upon momentum do depend on the
gauge, and we need to make a transformation from the Green’s
functions in a particular gauge to the gauge-invariant Green’s
functions in order to determine those quantities [14,22]. We
let G(k,trel,tave) denote the 2 × 2 matrix for the Green’s
function in the gauge with momentum k, relative time trel,
and average time tave. A superscript of R or < will denote
the retarded or lesser Green’s function. In the gauge, the
reduced Brillouin zone is defined by εk < 0. When we go to the
gauge-invariant Green’s function {denoted by G̃(k,trel,tave) =
G[k(trel,tave),trel,tave]}, we simply make the transformation

k → k(trel,tave) = k +
∫ 1

2

− 1
2

dλA(tave + λtrel), (53)

which means the reduced Brillouin zone for the gauge-
invariant Green’s function satisfies εk(trel,tave) � 0. This is an
added complication that one has to deal with in a gauge-
invariant formulation for a system with reduced spatial
symmetry because if we had the full Brillouin zone, it would be
identical for the gauge-invariant case and the case in a gauge.
Instead, the reduced Brillouin zone becomes time dependent
for the gauge-invariant formalism.

Our strategy for calculating the current is to use the gauge-
invariant Green’s function. We will first determine the linear-
response formula for the current, and then generalize it to
the nonlinear-response case. This is simple to do in a gauge-
invariant formalism because the formula is independent of the
vector potential. The current density operator is defined as the
commutator of the Hamiltonian and the charge polarization

j(t) = i

⎡
⎣H (t),

∑
j

Rj c
†
j (t)cj (t)

⎤
⎦ , (54)

which becomes

j(t) = −i
∑
i,δ

ti,i+δ(t)�δc†i (t)ci+δ(t), (55)
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where δ denotes a nearest-neighbor translation vector from
site i. In linear response, we ignore the time dependence of
the hopping. Next, we write the linear-response current by
summing only over the A sublattice because the field is uniform
and we have current conservation in the system. With the field
along the diagonal, the current along each spatial component
can be written as

jα(t) = −it
∑
i∈A,δ

δα[c†i (t)ci+δ(t) + c
†
i+δ(t)ci+2δ(t)], (56)

with the second term coming from the B sublattice contribu-
tions. We now convert to a momentum-space representation,
which gives

jα(t) =
∑

k:εk�0

∇kα
εk[c†k(t)ck(t) − c

†
k+Q(t)ck+Q(t)] (57)

and is easily recognizable as the correct formula for the linear-
response current.

To generalize this formula to the nonequilibrium case, we
evaluate the expectation value of the current operator by using
the gauge-invariant Green’s function

〈jα(t)〉 =
∑

k:εk+A(t)�0

∇kα
εk[G̃<

11(k,t,t) − G̃<
22(k,t,t)]. (58)

This formula has been written for the nonequilibrium case
since the linear-response form of the current has no de-
pendence on the vector potential, and hence is the correct
form to generalize to nonequilibrium. Using the fact that
G̃<(k,trel = 0,tave) = G<[k + A(tave),trel = 0,tave] then shows
that

〈jα(t)〉 =
∑

k:εk+A(t)�0

∇kα
εk[G<

11(k + A(t),t,t)

−G<
22(k + A(t),t,t)], (59)

where we changed to using the t , t ′ representation for the
Green’s function. Now, we simply shift k → k − A(t) to get
our final formula for the current

〈jα(t)〉 =
∑

k:εk�0

∇kα
εk−A(t)[G

<
11(k,t,t) − G<

22(k,t,t)]. (60)

One can also derive the current in the more traditional way
by working with the formulation entirely in the Hamiltonian
gauge, and the result is identical.

III. BLOCH OSCILLATION IN A CDW SYSTEM

In a pure material composed of electrons interacting with
the periodic lattice potential, the system does not satisfy Ohm’s
law. Instead, if a field is applied to the material, it generates an
oscillating current called a Bloch oscillation [23,24]. Ohm’s
law is recovered when one introduces scattering into the system
and the field is small enough to be in the linear-response
regime. As surprising as this result might be, it is even more
surprising in that it is quite difficult to observe in real materials
because the scattering time, for even the most pure materials,
is too short for the system to show the Bloch oscillation. It
has been observed in semiconductor superlattices [25–27], in
cold atoms in an optical lattice [28,29], and also in ultrasmall
Josephson junctions [30].

If we go back to the theory we developed in Sec. II, and set
U = 0 to recover the single-band model, then one immediately
can solve for the evolution operators because the 2 × 2 matrix
becomes diagonal. If we work in the full Brillouin zone, then
we find that the current satisfies

〈jα(t)〉 =
∫

dε

∫
dε̄ ρ(ε)ρ(ε̄)f (ε)

×{−ε̄ cos[A(t)] + ε sin[A(t)]}, (61)

which is proportional to sin(Et), with a temperature-dependent
amplitude. The current oscillates about zero, so the energy
added to the system also oscillates about zero, and after each
Bloch period, given by 2π/E, the system returns to the original
state it was in before the field was put on. This is a well-known
property of Bloch oscillations in a noninteracting single-band
model. When scattering is added into the system, the current
oscillates about a net positive value, so that a nonzero amount
of heat is always added to the system.

Our goal here is to study how this situation changes when
we have a two-band model that arises from the presence of
CDW order. Even though the system is noninteracting, we
no longer have any guarantee that the system can return
to its initial state after a Bloch period. Since the excitation
of electrons across the gap requires quantum-mechanical
tunneling across the gap, it is not obvious that the electrons
excited across the gap can all be deexcited at any specific time.
Indeed, we will find out that this does not occur in general.

Based on the theory developed in Sec. II, we can calculate
the current with a dc field using the nonequilibrium Green’s
function technique. The procedure is to discretize the contour,
calculate the relevant evolution operators for each momentum
point, and use them to construct the retarded and lesser
Green’s functions as functions of momentum and time. From
these Green’s functions, all relevant physical quantities can be
calculated. We turn on a spatially uniform dc electric field
of amplitude E0 abruptly at time t = 0, and calculate the
subsequent evolution of the system. To verify the formalism,
we examine the case with U = 0.01 and E0 = 1, where the dc
field is much larger than the gap size, so the system should have
similar behavior to the single-band model and illustrate similar
Bloch oscillations. Figure 4 shows the current, the upper band
electron occupancy, and the total energy for this case. The
current oscillates with the Bloch frequency and has a small
reduction of the amplitude over time due to the dephasing in
the system (because there are two bands since U �= 0). Note
how the current appears to oscillate about zero, but because of
the decaying amplitude, there is a net current, when integrated
over time, and hence there is a small net transfer of energy
into the system. The upper band electron occupancy has a
nearly sawtooth nature to it as electrons are excited and then
deexcited from the upper band. The electrons move between
the lower and upper bands almost as if they do not feel the
presence of the gap. The increase of energy as a function of
time appears to be quite similar to the single-band case, but it
does not actually go to zero at the Bloch period; instead, it has
a small residual energy gain there.

We illustrate the behavior of dielectric breakdown, where
current is induced across the gap due to a large electric field, in
Fig. 5. When the field magnitude is much smaller than the gap,
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FIG. 4. (Color online) Current, upper band occupancy and
change in energy for a U = 0.01 CDW system placed in a dc field
with E(t) = θ (t). Panel (a) shows the current, which is close to the
known sine wave that occurs at U = 0 with a frequency equal to the
amplitude of the dc field (ω = E0 = 1). Panel (b) shows the upper
band electron occupancy as a function of time. Panel (c) shows the
total energy shift from the ground-state energy as a function of time.

field-assisted tunneling across the gap is a rare event that is
difficult to achieve because the tunneling process sees a large
barrier, while the opposite case, where the field magnitude is
much larger than the gap, readily has field-assisted tunneling
occur. The bottom panel shows the former case, while the

FIG. 5. (Color online) Dielectric breakdown of the CDW insu-
lator for large electric fields. The upper band filling is plotted for
different U and E0 values. When E0  U , as shown in panel (a),
the upper band electrons are excited as if there is no gap, although
we never fully fill the upper band, which occurs when n+ = 0.5.
Here, we show two cases with the same ratio of U/E0: U = 0.05 and
E0 = 1 (red curve, long period) and U = 0.5,E0 = 10 (blue curve,
short period). Note how the total amount excited depends on more
than just the ratio of U/E0. When U  E0 [panel (b), note change in
vertical scale], much fewer electrons are pumped to the upper band.
Here, we show a large gap U = 5 and smaller fields E0 = 1 (violet,
short period) and E0 = 0.5 (magenta, long period). Note how the
maximum amplitude decreases as the gap increases by comparing
panel (a) to panel (b).

FIG. 6. (Color online) Results for U = 1 in a dc field E(t) =
θ (t) (E0 = 1). Panel (a) shows the current, which has an initial
transient response that settles down to a “steady state” and shows
complex oscillations that are not given solely by the Bloch-oscillation
frequency. Panel (b) shows the upper band filling as a function of time
as the system is driven by the electric field. Panel (c) shows the total
energy as a function of time.

top panel shows the latter. Because quantum tunneling always
occurs, no matter how small the field amplitude is, there is no
sharp distinction between the case where Bloch oscillations
readily occur and where they are suppressed. It is instead a
crossover. But, we expect the crossover to occur close to the
region where E0 = U since the gap is always equal to U in
equilibrium.

We next look at what happens at the crossover where the
dielectric breakdown occurs U = E0 in Fig. 6 with U = E0 =
1. In this case, the current is initially driven to a relatively large
amplitude and then stabilizes and shows complex oscillations.
The transient response settles down rapidly to a more steady-
state behavior. This occurs even though there is no scattering,
and hence must come from dephasing effects. About 40% of
the electrons are driven to the upper band as the initial field
is switched on. The upper band electron number transiently
oscillates, but maintains a level around 40% of the total number
of electrons. In this quasi-steady state, the current oscillates
around zero, so there is no net increase in the energy transferred
to the system after we absorbed the initial energy that occurred
during the transient response. It is clear in this case that the
system will not return back to the state it initially was in
after the Bloch period. This is one of the main differences
that occurs for the noninteracting model in a two-band system
versus a single-band system.

The effect of scattering on Bloch oscillations driven by
a dc field (in the high-temperature disordered phase) has
been studied in the Falicov-Kimball model [31,32] and in the
Hubbard model [33] as has photoexcitation [34–36]. There are
two important energy scales in the problem. The first is the field
amplitude E0 and the second is the scattering strength, which is
commonly denoted by Uint. In the case of weak scattering, two
scenarios are possible for the evolution of the local density
of states: (i) the delta function peaks of the Wannier-Stark
ladder (a series of delta function peaks in the local DOS
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FIG. 7. (Color online) Fourier transform of the current response
j (ω) to a dc field E = θ (t) (E0 = 1) for different U values.

separated by the Bloch frequency ωB = E) broaden due to
scattering but remain near the Bloch frequencies or (ii) the
delta function peaks split due to Uint and broaden, but each
Wannier-Stark miniband has a Mott-type transition. In cases
where the interaction is strong enough to drive the system
into an insulating phase, more complex behavior can occur.
For the Falicov-Kimball model, one still sees remnants of the
Wannier-Stark physics [22,37], while they seem to be more
strongly suppressed in the Hubbard model [38–40].

One way to try to identify the important energy scales is
to look at the oscillation frequencies that arise in the current
that is driven by the field. To do this, we use a discrete Fourier
transform of the current versus time traces, over a range of
time where the transient effects have died off and the system is
in a quasi-steady state (which is actually a nearly periodically
varying state with a period given by the Bloch period); the
time interval we used is 40 � t � 80. These results are plotted
in Fig. 7. We find that when U is much larger than the field
amplitude E0, the current oscillates at frequencies U ± E0

as shown in the U = 5 case. When U < 2E0, peaks appear
around E0 ± U/2. For intermediate values, these two effects
mix as indicated with the U = 3 case. Hence, in this two-band
system, when the dc field is applied, the band gap U and the
electric field amplitude are the two main factors that affect
the electron oscillations and these two factors interact with
each other to produce new oscillation frequencies, that are not
simply what might have been predicted by just looking at the
two energy scales.

As we hinted at above, it is also interesting to examine
the nonequilibrium local DOS. We show this DOS in Fig. 8
for a number of different average times. Even though one
might have expected the DOS to instantly switch between the
equilibrium and the nonequilibrium results as the field is turned
on, since the DOS measures the quantum mechanical states of
the system, they must evolve from one result to the other
continuously and this occurs slowly in this case because the
equilibrium DOS has long tails in the time domain due to the
inverse square root singularity at the upper or lower band edge.
When we construct the retarded Green’s function to describe

FIG. 8. (Color online) Local DOS for U = 1.5 at different av-
erage times with E0 = 1 and on the A sublattice. The first panel
is the equilibrium result (tave → −∞). Panel (b) has tave = 0 and
corresponds to when the field is turned on. Panel (c) has tave = 10 and
hence is in the transient response regime. Panel (d) has tave = 500 and
is approaching the steady state.

these two systems and fix the average time, then for some
relative times, we have one time before the field being turned
on and one after. This “mixed” Green’s function interpolates
between the equilibrium and nonequilibrium steady-state
DOS. If it also has long tails in time, then the evolution
from equilibrium to nonequilibrium can be slow. This DOS
can not easily be measured. A photoemission experiment
measures a convolution of the local lesser Green’s function
(or a similar rf spectroscopy measurement for a cold-atom
system), nevertheless, the DOS is often one of the first
properties used to characterize the behavior of the system, and
the nonequilibrium generalization is important to determine.

One should note that due to the long tail in time for the
equilibrium Green’s function, it becomes difficult to think of
the local DOS as being defined at a specific average time
only. The DOS involves the Fourier transform with respect
to relative time, so it is defined in terms of two times, and
one can have one of the times being long after the field is
turned on, even if the average time is before the field is turned
on. This is illustrated dramatically in Fig. 8(b), which has
an average time equal to the time the field is turned on, but
already shows significant deviations from the equilibrium DOS
in Fig. 8(a). In particular, the gap is no longer well defined, and
there is significant subgap structure. In the transient regime of
Fig. 8(c), we see this evolve even further, and we also see the
DOS go negative for some frequencies. This is not an artifact
of a truncation of the Fourier transform, but commonly occurs
for transient DOS in nonequilibrium calculations since there is
no Lehmann representation for the transient DOS that allows
us to prove non-negativity of the DOS. Finally, in Fig. 8(d),
we see the emergence of the steady-state DOS, with its new
gap structure occurring at the half-odd integers (except for
the missing subband at ω = −1.5); the separation of the gaps
appears to be governed primarily by E0 here. This result is
similar to what one might expect due to Wannier-Stark physics,
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FIG. 9. (Color online) Local DOS on the A sublattice for U = 3
at different average times with E0 = 1. The same average times are
chosen as shown in Fig. 8. In this case, the evolution of the DOS is
much more mild, but we definitely see a reduction in the magnitude
of the overall gap for long times and a splitting of the lower band,
while the upper band does not appear to change too significantly.

where the delta function peaks are split due to the CDW gap,
but what is surprising here is the center of the CDW gap
is occurring at half-odd integers here rather than at integers
which is what the Wannier-Stark picture would predict.

The case U = 3 and E0 = 1 is plotted in Fig. 9. It shows
that the lower band can split and be shifted. Already at tave = 0,
the nonequilibrium local DOS shows a split lower band that
eventually approaches a shift of the (split) band edge by ±E0

from its equilibrium location at −U/2. The upper band density
of states does not shift at all and it shows a large enhancement
at the lower band edge of the upper band (although, we do
not believe the singularity remains, but can not go far enough
out in time to verify this). In this case, there are not as many
field-related gaps observed, perhaps because the DOS is too
small at larger frequencies for those structures to be seen.
More intriguing is the fact that the structure tends to be more
broadened at larger U even though there still is no interaction
in the system.

We next show the evolution of the local DOS on the A

sublattice for U = 1 and various field amplitudes in Fig. 10.
The arrows indicate the positions of field-induced gaps in the
spectrum. We find that for all cases of the field amplitudes
the DOS shows gaps at half-odd integer multiples of E0, just
like what we already observed in Fig. 8 when we had U =
1.5. We also note that, in some cases, there is no miniband
centered around a specific gap that we expect to see. This
occurs for large frequencies for all cases. In addition, the case
with E0 = 1 and ω = 0.5 [Fig. 10(b)] shows a pseudogaplike
behavior, with the “gap” occurring at just one point. The field
magnitude controls the size of the gap as well, as we see the
gap size grow as E0 increases. In the E0 = 2 case, only the
gap at ω = 1 is clear, while the other gap edges do not show
significant features. One can still see a Wannier-Stark–type
ladder in these systems, but the peaks no longer occur just
at the Bloch frequencies, but are shifted, and also broadened,
as we expect them to be. Clearly, the behavior of the DOS is

FIG. 10. (Color online) Evolution of the “steady-state” (tave =
300) local DOS for the A sublattice and U = 1 for different dc
field amplitudes. Red arrows show the positions of the electric-field-
induced gaps.

complex, and depends in a nontrivial way on the site energy
U and the field amplitude E0. There does not appear to be
any simple way to relate them to Wannier-Stark physics in a
coherent fashion.

The imaginary part of the Fourier transform of the local
lesser Green’s function at tave = 500 is plotted for two different
U values and compared to the local DOS in Fig. 11. The ratio
of the lesser curve to the DOS curve gives the local distribution

FIG. 11. (Color online) Imaginary part of the lesser Green’s
function (black) at (a) U = 1.5 and (b) U = 3 compared to the
corresponding local DOS (red) on the A sublattice with E0 = 1.
The curves were calculated at tave = 500. The ratio of the black curve
to the red curve gives the local distribution function, which would be
Fermi-Dirac–type for a thermalized system. The distribution function
that one would extract from the U = 1.5 case is clearly nonthermal
(focus on the region around ω = 1) since it would not be monotonic.
It is more difficult to judge whether the case with U = 3 could be
described by some effective thermal distribution, but the last peak
(near ω = 2) does not look like it has the right shape to be described
by a Fermi-Dirac–type distribution.
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function. If the system was driven to a thermal distribution at
long times, then the distribution function would be monotonic
and given by the Fermi-Dirac distribution function with some
effective temperature. This clearly is not the case for U = 1.5
since one can see for the miniband centered around ω = 1 that
the distribution function must be increasing for a finite range of
frequency. It is more difficult to see whether the larger-U case
could be described via the fluctuation-dissipation theorem, but
the miniband occupancy near ω = 2 does not have the same
shape as the local DOS, and hence it looks like this would
require a nonmonotonic distribution function as well.

IV. CONCLUSIONS

In this work, we have given details about how one can
exactly solve for the Bloch-oscillation problem in a lattice
with a basis, as given by the two-sublattice CDW order.
This is the simplest generalization of the Bloch-oscillation
problem to multiple bands and, surprisingly, it has much richer
behavior than one might have naively expected. The problem
can be solved exactly by working in a 2 × 2 basis for the
evolution operators for each momentum pair k and k + Q. We
developed this formalism and showed how to calculate relevant
observables. We also verified a number of nontrivial exact
relations that the solution must satisfy including moment sum
rules of the local DOS and an equality of two different forms
for the average energy as a function of time. This formalism
works and is exact in any spatial dimension. For concreteness,
and to compare to work done for interacting systems, we solved
the problem in infinite dimensions on the hypercubic lattice.

We used this formalism to study the Bloch-oscillation
problem given by the question of how does this system evolve
after a large amplitude field is turned on at t = 0. We found that
the current undergoes a transient response before settling into
a steady-state-like behavior for longer times, but the time trace
of the current versus time is not governed solely by the Bloch
frequency but shows more complex structure and behavior.

We also examined the local DOS to see how the Wannier-
Stark ladder physics was modified by the gap in the spectrum.
We found complex behavior here as well, which is not
determined solely by any simple rule for how the system will
evolve, although we did find a propensity for minibands to form
with gaps at half-odd integer multiples of the field amplitude.

Finally, we examined whether the fluctuation-distribution
theorem holds at long times, and we found that typically, as one
might expect, the systems do not follow a thermal distribution,
but show a markedly athermal distribution of states.

The work we presented here will be challenging to observe
in CDW systems in condensed matter, but they could be
seen more easily in cold-atom systems on double-well optical
lattices, where this model is a natural model to describe the
behavior of those systems. While the local DOS can not be
measured, analogs to photoemission experiments are possible,
as is the possibility of measuring the number of particles in
each band as a function of time. It might even be possible to
construct the current versus time by processing time-of-flight
images to determine the momentum distribution functions and
summing them over momentum (weighted by the velocity) to
get the current.
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APPENDIX A: CALCULATION OF FIRST THREE
MOMENTS OF THE RETARDED GREEN’S FUNCTION

The nth-order moments are defined as follows:

μii
n (tave) =

∫ +∞

−∞
dω ωnAii(ω,tave). (A1)

This expression is equivalent to

μii
n (tave) = −Im

[
in

∂n

∂tnrel

GR
ii(trel,tave)

]
trel=0+

. (A2)

We now verify the exact results for the first three moments
for our retarded Green’s function. In infinite dimensions,
the moments for the local retarded Green’s function in our
inhomogeneous system satisfy the following [17]: (1) the
zeroth-order moment is 1; (2) the first-order moment is ±U/2;
(3) the second-order moment is 1/2 + U 2/4; and (4) the
third-order moment is ±U/4 ± U 3/8. (The A sublattice has a
plus sign in the first and third moments.) The zeroth moment
follows directly by just setting t → t ′+ in the retarded Green’s
function. Since the retarded Green’s functions are just linear
combinations of the elements of the time-evolution operators,
we can directly verify the moments by calculating the first three
derivatives of the time-evolution matrix (we set μ = U/2 to
make the formulas less cumbersome).

The first derivative is easy to find:

∂U (k,t,t ′)
∂trel

= − i

2

(
εk(t) U

2
U
2 −εk(t)

)
U (k,t,t ′)

− i

2
U (k,t,t ′)

(
εk(t ′) U

2
U
2 −εk(t ′)

)
(A3)

(the factor of 1
2 comes from the fact that t = tave + trel/2 and

t ′ = tave − trel/2). In the limit trel → 0+, U (k,t,t) → I and the
first derivative becomes

∂U (k,t,t ′)
∂trel

∣∣∣∣
trel→0+

= −i

(
εk(t) U

2
U
2 −εk(t)

)
. (A4)

We substitute this result into the definition of the local retarded
Green’s function in Eq. (45), which requires us to sum over
momentum. Using the fact that

∑
k 1 = 1

2 for a summation
over the reduced Brillouin zone then yields

∂GR
ii(t,t

′)
∂trel

∣∣∣∣
trel→0+

= −
∑

k

(
εk(t) − εk(t) ± U

2
± U

2

)
(A5)
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which becomes ∓U/2 and shows that the first-order moment
is ±U/2 from Eq. (A2) with n = 1.

The second derivative of the retarded Green’s function can
be obtained by differentiating the first derivative

∂2U (k,t,t ′)
∂t2

rel

= − i

2

∂

∂trel

(
εk(t) U

2
U
2 −εk(t)

)
U (k,t,t ′) − i

2

(
εk(t) U

2
U
2 −εk(t)

)
∂U (k,t,t ′)

∂trel

− i

2
U (k,t,t ′)

∂

∂trel

(
εk(t ′) U

2
U
2 −εk(t ′)

)
− i

2

∂U (k,t,t ′)
∂trel

(
εk(t ′) U

2
U
2 −εk(t ′)

)
. (A6)

The derivative of the U (k) matrix was evaluated in Eq. (A3). The derivative of the Hamiltonian matrix becomes

∂

∂trel

(
εk(t) U

2
U
2 −εk(t)

)
= 1

2
E(t) · ∇kεk(t)

(
1 0
0 −1

)
(A7)

with a similar equation for the t ′ matrix, but with t → t ′ and an overall sign change on the right-hand side. Here, E(t) is the
time-dependent electric field E(t) = −dA(t)/dt . So, the first and third terms in Eq. (A6) cancel in the limit t = t ′+, and the rest
of the terms give

∂2U (k,t,t ′)
∂t2

rel

∣∣∣∣
trel→0+

= −
(

ε2
k (t) + U 2

4

)
I. (A8)

So, the second derivative of the Green’s function becomes

∂2GR
ii(t,t

′)
∂t2

rel

∣∣∣∣
trel→0+

= i
∑

k

(
ε2
k (t) + U 2

4
+ ε2

k (t) + U 2

4
± 0 ± 0

)
= i

(
1

2
+ U 2

4

)
(A9)

in the limit as t → t ′+, where we used the relation
∑

k ε2
k (t) = 1

4 for the infinite-dimensional density of states. So, using Eq. (A2)
with n = 2 shows that the second moment satisfies μii

2 = 1/2 + U 2/4.
The third derivative of U (k,t,t ′) has many more terms:

∂3U (k,t,t ′)
∂t3

rel

= − i

4
E(t) · ∇kεk(t)

(
1 0
0 −1

)
∂U (k,t,t ′)

∂trel
− i

4

∂

∂trel
E(t) · ∇kεk(t)

(
1 0
0 −1

)
U (k,t,t ′)

− i

4
E(t) · ∇kεk(t)

(
1 0
0 −1

)
∂U (k,t,t ′)

∂trel
− i

2

(
εk(t) U

2
U
2 −εk(t)

)
∂2U (k,t,t ′)

∂t2
rel

+ i

4

∂U (k,t,t ′)
∂trel

E(t ′) · ∇kεk(t ′)
(

1 0
0 −1

)
+ i

4
U (k,t,t ′)

∂

∂trel
E(t ′) · ∇kεk(t ′)

(
1 0
0 −1

)

− i

2

∂2U (k,t,t ′)
∂t2

rel

(
εk(t ′) U

2
U
2 −εk(t ′)

)
+ i

4

∂U (k,t,t ′)
∂trel

E(t ′) · ∇kεk(t ′)
(

1 0
0 −1

)
. (A10)

In the limit trel → 0+, we substitute in the first and second derivatives at equal times from Eqs. (A4) and (A8) and set t = t ′ in
the rest. This yields

∂3U (k,t,t ′)
∂t3

rel

= i

4

∂

∂t
[E(t) · ∇kεk(t)]

(
1 0
0 −1

)
− 1

2
E(t) · ∇kεk(t)

(
1 0
0 −1

) (
εk(t) U

2
U
2 −εk(t)

)

+ 1

2
E(t) · ∇kεk(t)

(
εk(t) U

2
U
2 −εk(t)

) (
1 0
0 −1

)
+ i

(
ε2
k (t) + U 2

4

) (
εk(t) U

2
U
2 −εk(t)

)
. (A11)

Since we will be substituting this result into the formula for
the retarded Green’s function, where the U11(k) term always
appears plus the U22(k) term and similarly for the U12(k) and
U21(k) terms, the only nonvanishing contributions come from
the off-diagonal pieces of the last term in Eq. (A11). Hence,
the third derivative of the retarded Green’s function is

∂3Gii(t,t ′)
∂t3

rel

∣∣∣∣
trel→0+

=±
∑

k

[
Uε2

k (t)+U 3

4

]
= ±

(
U

4
+ U 3

8

)
.

(A12)

So, the third moment satisfies μii
3 = ±(U/4 + U 3/8) with plus

on the A and minus on the B sublattices. Hence, we have now
analytically verified the results for the first three moment sum
rules. This is an important check that our formalism is correct.

APPENDIX B: DERIVATION OF THE FORMULAS FOR
THE ENERGY AND THE HEATING RATE

An additional check that we will use for the current formula
is to verify energy conservation. The total energy Etot is found
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by simply taking the expectation value of the Hamiltonian (at
half-filling with μ = U/2)

Etot(t) =
∑

k:εk�0

[
εk(t)〈c†k(t)ck(t)〉 + U

2
〈c†k(t)ck+Q(t)〉

+ U

2
〈c†k+Q(t)ck(t)〉 − εk(t)〈c†k+Q(t)ck+Q(t)〉

]
.

(B1)

Using the Green’s functions in the gauge then yields

Etot(t) = −i
∑

k:εk�0

[
εk(t){G<

11(k,t,t) − G<
22(k,t,t)}

+ U

2
{G<

12(k,t,t) + G<
21(k,t,t)}

]
. (B2)

The power pumped into the system is due to the acceleration
of the electron along the electric field. A direct computation
shows that

∂Etot(t)

∂t
= 〈j〉 · E(t). (B3)

We now show this identity analytically, using our results for
the current and the total energy. The equation of motion
for the lesser Green’s function follows from derivative of
the respective evolution operator. We find the following four
equations:

∂tG
<
11(k,t,t ′) = i

U

2
G<

12(k,t,t) − i
U

2
G<

21(k,t,t); (B4)

∂tG
<
12(k,t,t ′) = i

U

2
G<

11(k,t,t) − i
U

2
G<

22(k,t,t)

− 2iεk(t)G<
12(k,t,t); (B5)

∂tG
<
21(k,t,t ′) = −i

U

2
G<

11(k,t,t) + i
U

2
G<

22(k,t,t)

+ 2iεk(t)G<
21(k,t,t); (B6)

and

∂tG
<
22(k,t,t ′) = −i

U

2
G<

12(k,t,t) + i
U

2
G<

21(k,t,t) (B7)

in the limit t ′ → t . Hence, the derivative of the total energy
with respect to time becomes

∂Etot(t)

∂t
= −i

∑
k:εk�0

[∂tεk(t)]{G11(k,t,t) − G22(k,t,t)} (B8)

since the terms that do not involve the time derivative of the
time-dependent band structure all cancel (which also follows
from the Feynman-Hellman theorem). Using the fact that
∂tεk(t) = E(t) · ∇kεk(t) and the final result for the expectation
value of the current in Eq. (60) yields Eq. (B3). This is a second
stringent test that the formalism is correct.

Finally, we examine the filling in the transient upper and
lower bands by determining the corresponding occupancy.
Similar to the equilibrium case, the creation operators for the

instantaneous upper and lower bands are written as

c
†
k+(t) = αk(t)c†k(t) + βk(t)c†k+Q(t), (B9)

c
†
k−(t) = βk(t)c†k(t) − αk(t)c†k+Q(t) (B10)

with the corresponding annihilation operators being the Her-
mitian conjugate. Now, the electron occupancy in the upper
band is denoted by n+(t) and that of the lower band by n−(t):

n+(t) =
∑

k:εk�0

〈c†k+(t)ck+(t)〉

=
∑

k:εk�0

[
α2

k (t)〈c†k(t)ck(t)〉 + β2
k (t)〈c†k+Q(t)ck+Q(t)〉

+αk(t)βk(t)〈c†k(t)ck+Q(t) + c
†
k+Q(t)ck(t)〉] (B11)

and

n−(t) =
∑

k:εk�0

〈c†k−(t)ck−(t)〉

=
∑

k:εk�0

[
β2

k (t)〈c†k(t)ck(t)〉 + α2
k (t)〈c†k+Q(t)ck+Q(t)〉

−αk(t)βk(t)〈c†k(t)ck+Q(t) + c
†
k+Q(t)ck(t)〉]. (B12)

Here, we have the time-dependent generalization of the
instantaneous eigenvectors with

αk(t) =
U
2√

2
[
ε2
k (t) + U 2

4 − εk(t)
√

ε2
k (t) + U 2

4

] (B13)

and

βk(t) =
−εk(t) +

√
ε2
k (t) + U 2

4√
2
[
ε2
k (t) + U 2

4 − εk

√
ε2
k (t) + U 2

4

] . (B14)

Note that the momentum-dependent occupancies are just given
by the summand element for each k and k + Q pair. One
immediately sees that the filling satisfies

n+(t) + n−(t) =
∑

k:εk�0

〈c†k(t)ck(t) + c
†
k+Q(t)ck+Q(t)〉 (B15)

as it must. Furthermore, the energy becomes

Etot(t) =
∑

k:εk�0

[
nk+(t)

√
ε2
k (t) + U 2

4
−nk−(t)

√
ε2
k (t) + U 2

4

]
,

(B16)

which follows from the instantaneous eigenenergies. We now
directly show that Eq. (B16) is equivalent to Eq. (B1).
Substituting in the values for n+(t) and n−(t) shows that the
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coefficient of the 〈c†k(t)ck(t)〉 term is

[
α2

k (t) − β2
k (t)

]√
ε2
k (t) + U 2

4
=

√
ε2
k (t) + U 2

4

[
U 2

4 − U 2

4 − 2ε2
k (t) + 2εk(t)

√
ε2
k (t) + U 2

4

]
2
[
ε2
k (t) + U 2

4 − εk(t)
√

ε2
k (t) + U 2

4

]

=
2εk(t)

[
ε2
k (t) + U 2

4 − εk(t)
√

ε2
k (t) + U 2

4

]
2
[
ε2
k (t) + U 2

4 − εk(t)
√

ε2
k (t) + U 2

4

] = εk(t). (B17)

The coefficient of 〈c†k+Q(t)ck+Q(t)〉 is just the negative of this and the coefficients of 〈c†k(t)ck+Q(t)〉 and 〈c†k+Q(t)ck(t)〉 are equal
and satisfy

αk(t)βk(t)

√
ε2
k (t) + U 2

4
=

U
2

[ − εk(t) +
√

ε2
k (t) + U 2

4

]√
ε2
k (t) + U 2

4[
ε2
k (t) + U 2

4 − εk(t)
√

ε2
k (t) + U 2

4

] =
U
2

[
ε2
k (t) + U 2

4 − εk(t)
√

ε2
k (t) + U 2

4

]
[
ε2
k (t) + U 2

4 − εk(t)
√

ε2
k (t) + U 2

4

] = U

2
, (B18)

which proves the result we needed to show and which provides the third stringent test of the formalism.
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Bauer, A. Föhlisch, L. Kipp, W. Wurth, and K. Rossnagel, Phys.
Rev. Lett. 105, 187401 (2010).

[11] Wen Shen, Yizhi Ge, A. Y. Liu, H. R. Krishnamurthy, T. P.
Devereaux, and J. K. Freericks, Phys. Rev. Lett. 112, 176404
(2014).

[12] G. Gruner, Density Waves in Solids (Westview, Boulder, CO,
2000).

[13] R. E. Peierls, Z. Phys. 80, 763 (1933).
[14] A. P. Jauho and J. W. Wilkins, Phys. Rev. B 29, 1919 (1984);

R. Bertoncini and A. P. Jauho, ibid. 44, 3655 (1991).

[15] B. A. Foreman, Phys. Rev. B 66, 165212 (2002).
[16] E. Wigner, Phys. Rev. 40, 749 (1932).
[17] V. M. Turkowski and J. K. Freericks, Phys. Rev. B 73, 075108

(2006); ,73, 209902(E) (2006); V. Turkowski and J. K. Freericks,
ibid. 77, 205102 (2008); ,82, 119904(E) (2010); J. K. Freericks
and V. Turkowski, ibid. 80, 115119 (2009); J. K. Freericks and
V. M. Turkowski, ibid. 82, 129902(E) (2010).

[18] S. Kling, T. Salger, C. Grossert, and M. Weitz, Phys. Rev. Lett.
105, 215301 (2010).

[19] A. R. Kolovsky and E. N. Bulgakov, Phys. Rev. A 87, 033602
(2013).

[20] C. A. Parra-Murillo, J. Madroñero, and S. Wimberger, Phys.
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