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Time-domain pumping a quantum-critical charge density wave ordered material
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We determine the exact time-resolved photoemission spectroscopy for a nesting driven charge density wave
(described by the spinless Falicov-Kimball model within dynamical mean-field theory). The pump-probe
experiment involves two light pulses: the first is an ultrashort intense pump pulse that excites the system into
nonequilibrium, and the second is a lower amplitude, higher frequency probe pulse that photoexcites electrons.
We examine three different cases: the strongly correlated metal, the quantum-critical charge density wave, and
the critical Mott insulator. Our results show that the quantum critical charge density wave has an ultraefficient
relaxation channel that allows electrons to be de-excited during the pump pulse, resulting in little net excitation.
In contrast, the metal and the Mott insulator show excitations that are closer to what one expects from these
systems. In addition, the pump field produces spectral band narrowing, peak sharpening, and a spectral gap
reduction, all of which rapidly return to their field free values after the pump is over.
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I. INTRODUCTION

Charge density wave (CDW) systems are interesting as they
exhibit an order parameter given by the modulation of the
charge density of electrons in real space. Often the ordering
pattern is commensurate with the lattice, which means the
translational invariance of the system is partially broken. In
other cases, the order is incommensurate with the lattice, which
proves to be much more difficult to simulate. In electron-
mediated CDW’s the ordering disappears by the buildup of
subgap states which can open novel conducting channels. In
particular, the CDW has a quantum critical point, which is
a metal-to-insulator critical point, being insulating at T = 0
and metallic for nonzero T due to the emergence of subgap
states at the chemical potential precisely as T increases from
zero. We study how these subgap states affect the time-domain
pumping of the CDW, especially with regards to photoemission
experiments.

Recently, there has been significant interest in pump-
probe experiments on these materials including photoemission
spectroscopy (PES), core-level PES (XPS), and electron
diffraction. In particular, TbTe3 [1,2], TaS2 [3–7], and TiSe2

[6,8] were investigated with pump-probe angle-resolved PES,
which provides both time and angle resolution. One of the
reasons for performing these experiments was to try to resolve
whether the CDW order is mediated by the electrons, by
the phonons, or by the electron-phonon coupling [9]. Time-
domain experiments have the potential to separate out these
effects on short time scales—electron-mediated interactions
should be fast and phonon-mediated ones should be slow
on fs time scales. In this sense, TiSe has been identified as
an electron-mediated CDW (and possibly an excitonic CDW
[6,8,10]). The nonequilibrium driving of these systems has
also produced new nonequilibrium phases which do not occur
in equilibrium [11–13].

In addition, the PES signal in the above experiments
showed that the CDW gap generically closes for a short
period of time, but at the same time the modulation of the

charge density remains nonzero. The above experiments also
displayed oscillations of the PES signal at long times after
the pump pulse is gone, which oscillate at the frequency of
the phonon responsible for the ordering; we do not model
such behavior in the all-electron model studied here. An initial
theoretical study was conducted on the simplest noninteracting
CDW system [14]. The PES response shows that the CDW gap
closes (while the order parameter remains nonzero) when the
pump is on and it restores after the pump pulse is turned off.

In order to address how a CDW behaves after being pumped,
we calculate the PES response for the CDW ordered phase of
the Falicov-Kimball model [15]. This model possesses both a
metal-insulator phase transition and a transition from uniform
to commensurate or incommensurate CDW ordered phases in
equilibrium [16,17]. It has an exact solution in nonequilibrium
[18,19] within the dynamical mean-field theory (DMFT).
The equilibrium density of states (DOS) displays nontrivial
behavior in the ordered phase: The width of the CDW gap in
the DOS (which occurs at zero temperature) does not change
when the temperature increases, in opposition to what happens
in BCS theory [20], where the gap in the DOS continuously
closes as Tc is approached from below. Instead, it initially fills
the gap region with subgap states which increase until the gap is
fully filled at the critical temperature [21–23]. Another feature
of this model is that there is a critical value of the interaction
where the subgap states start to form at the chemical potential
just as T increases above zero. This quantum critical state has
an instantaneous transition from an insulator at T = 0 to a
metal for any finite temperature. Hence, the Falicov-Kimball
model shows additional correlation effects and our work goes
beyond the previous calculations of the PES signal on the
simplest noninteracting CDW model [14]. We expect our
results to be useful in experiments on real CDW materials
such as those already mentioned above.

The remainder of the paper is organized as follows: In
Sec. II we present the theory for our calculations. It consists
of two subsections: In Subsec. II A, we define the time-
dependent Hamiltonian of system in the CDW ordered state.
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In Subsec. II B, we describe the theory for the photoemission
response function. In Sec. III, we present our results for
PES function in the CDW ordered phase and discussion. We
conclude in Sec. IV.

II. FORMALISM

We develop the nonequilibrium DMFT to solve for the
two-time-contour-ordered Green’s function defined on the
Kadanoff-Baym-Keldysh time contour. We generalize
the theory to encompass CDW ordered phases of the Falicov-
Kimball model, which requires an additional 2 × 2 matrix
structure. Finally, we derive the formulas for the time-resolved
PES response function.

A. CDW ordered state Hamiltonian

The Falicov-Kimball model involves two kinds of particles:
heavy electrons, which are localized on the lattice sites,
and light itinerant electrons [15], which are allowed to
hop between nearest-neighbor sites. The model possesses a
transition into a commensurate bipartite CDW ordered phase
[16,17] at low temperature. At half-filling, this occurs for
any value of the Coulomb interaction and sufficiently low T .
Employing the Kadanoff-Baym-Keldysh approach [24,25], the
nonequilibrium DMFT formalism was developed previously
for the uniform phase [18,19,26]. Recently, we generalized it
for the case of the bipartite CDW ordered phase [27,28]. Here,
we only summarize the main steps of the theory to establish
our notation.

The ordering arises from the nesting instability of the
Fermi surface with a modulation wave vector given by Q =
(π,π, . . . ). We employ two sublattices A and B which have
different electron densities (in a checkerboard pattern). This
implies that the Brillouin zone is cut in half, called the reduced
Brillouin zone (rBZ). To define each sublattice, we apply the
modulation wave vector Q as follows:

eiQ·Ri =
{

1, Ri ∈ A,

−1, Ri ∈ B,
(1)

where Ri is the position vector for the ith lattice site.
We express the Hamiltonian in terms of fermionic annihi-

lation and creation operators with respect to this underlying
two-sublattice system. We can do this either in real space or in
momentum space. In the real space picture, we simply add an
extra index for the sublattice:

ci → ci,α, α = A,B. (2)

Performing a Fourier transform to momentum space, but with
the summation over the lattice restricted to be either over the A

sublattice or the B sublattice only, produces the corresponding
momentum-dependent operators ck,α . In the momentum space
picture, we introduce two new operators which define the
fermionic operators for the k and k + Q subspaces as follows:

c̃1k = ck and c̃2k = ck+Q, (3)

where the momentum k is restricted to the rBZ and k + Q is
restricted to the complement of the rBZ. The same notation
is employed for the creation operators. Applying a Fourier
transformation, we find that the relation between the real space

operators in Eq. (2) and the momentum space operators in
Eq. (3) can be written in matrix form:

[
c̃1k
c̃2k

]
= Û

[
ckA

ckB

]
, where Û =

∥∥∥∥∥∥∥∥
1√
2

1√
2

1√
2

− 1√
2

∥∥∥∥∥∥∥∥. (4)

The matrix Û is unitary and the
√

2 factors are chosen to
satisfy the standard commutation relations for the fermionic
annihilation and creation operators. The connection between
any quantity that is constructed from two operators in the
real space representation Ô(k) (which is a 2 × 2 matrix in the

ordered state) and in the momentum space representation ˆ̃O(k)
follows from the unitary transformation via

ˆ̃O(k) = ÛÔ(k)Û−1. (5)

Employing this notation, the time-dependent Hamiltonian
of the ordered system is written as

H(t) =
∑
iα

Hα
i −

∑
ijαβ

t
αβ

ij (t)c†iαcjβ, (6)

where the local term describes the Coulomb interaction
between the localized and itinerant electrons on the ith site
of the αth sublattice and the chemical potential (site energy):

Hα
i = Unα

icn
α
if − μnα

ic + Eα
f nα

if . (7)

The number operators of the itinerant and localized electrons
are given by nα

ic = c
†
iαciα and nα

if = f
†
iαfiα , respectively. The

nonlocal kinetic-energy term of the Hamiltonian describes
hopping of itinerant electrons between the nearest-neighbor
sites (that belong to different sublattices—we will work on
an infinite-dimensional hypercubic lattice). We work in units
where � = c = e = a = 1.

In a pump-probe experiment, the material is first irradiated
with an intense ultrafast pump pulse to excite the electronic
subsystem. Later, a higher frequency, lower amplitude probe
pulse is used to measure the temporal evolution of the
nonquilibrium electrons. To model this scenario, we choose
the pump pulse to be an electric field E(t) with a Gaussian
envelope of the form

E(t) = E0 cos[ωp(t − t0)] exp
[−(t − t0)2

/
σ 2

p

]
, (8)

where E0 = |E0| is the magnitude of the field at time t = t0
(the maximum of the pump pulse). Here, we assume that the
electric field is spatially uniform and that it is directed along
the main diagonal in the infinite dimensional space (1, 1, . . . ,
1). We also ignore all magnetic field and relativistic effects.
This allows us to describe the electric field via a spatially
uniform vector potential in the Hamiltonian gauge:

E(t) = − d

dt
A(t). (9)

We exploit a Peierls’s substitution to the kinetic-energy term of
the Hamiltonian to describe the interaction between itinerant
electrons and the external electric field in Eq. (8). Hence, the
hopping matrix depends on time explicitly as follows:

t
αβ

ij (t) = t
αβ

ij exp

[
−i

∫ Rj,β

Ri,α

A(t) · dr
]
, (10)
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where t
αβ

ij is the (constant) hopping matrix in the absence of
an external electric field. Performing a Fourier transformation
to momentum space, we rewrite the time-dependent kinetic-
energy term in the form

Ĥkin(t) =
∑

k

[c†kA c
†
kB]ε̂[k − A(t)]

[
ckA

ckB

]

=
∑

k

[c̃†1k c̃
†
2k] ˆ̃ε[k − A(t)]

[
c̃1k
c̃2k

]
. (11)

Here, the extended band energy ε̂[k − A(t)] [26] is off-
diagonal in the real space two-sublattice representation

ε̂[k − A(t)]

=
∥∥∥∥ 0 ε(k) cos[A(t)]+ε̄(k) sin[A(t)]

ε(k) cos[A(t)]+ε̄(k) sin[A(t)] 0

∥∥∥∥, (12)

where ε(k) = − limd→∞ t∗
∑d

r=1 cos kr/
√

d and ε̄(k) =
− limd→∞ t∗

∑d
r=1 sin kr/

√
d (we apply the same scaling of

the hopping term as in equilibrium DMFT). The extended
band energy in Eq. (12) is diagonal in the momentum space
representation. By performing the unitary transformation in
Eq. (4), we obtain for ˆ̃ε[k − A(t)]

ˆ̃ε[k − A(t)] = Û ε̂[k − A(t)]Û−1

=
∥∥∥∥ε(k) cos[A(t)]+ε̄(k) sin[A(t)] 0

0 −ε(k) cos[A(t)]−ε̄(k) sin[A(t)]

∥∥∥∥. (13)

The CDW ordered state is characterized by two order
parameters. The heavy electron order parameter �nf =
(nA

f − nB
f )/2(nA

f + nB
f ) is the difference of the heavy electron

occupation on the A and B sublattices. It reaches its maximum
value of 1/2 at T = 0 and becomes equal to 0 at T = Tc. Since
the heavy electrons do not interact with the external electric
field, this order parameter does not change in time and remains
fixed at its equilibrium value. While this may seem like an odd
behavior, it arises because the heavy electrons are localized,
and hence they remain fixed, even when a field is applied to
the system. This behavior also occurs in the simplified model
where the CDW is determined by a band structure with a fixed
checkerboard pattern to the site potential. In CDWs that arise
due to a phonon distortion, the order parameter associated with
that distortion can relax in time, but the behavior described
above is what one would expect to see for short times.

The starting point for our calculations is an equilibrium state
at a given temperature. To solve for the order parameter at this
temperature, we avoid critical slowing down of the iterative
DMFT process by working with a fixed order parameter, which
determines the heavy electron filling on each sublattice [29].
Then the heavy electron site energies Eα

f are calculated from
the DMFT solution. The order parameter is adjusted until
these two energies are equal, signifying the thermodynamic
equilibrium state. At this point, we can determine the order
parameter of the conduction electrons (which never reaches
its maximal value of 1/2 due to Pauli blocking). It is given
by the difference of the itinerant electron filling on the two
sublattices �nc(t) = [nB

c (t) − nA
c (t)]/2[nA

c (t) + nB
c (t)]. Since

itinerant electrons interact with the external electric field, this
order parameter changes in time when the field is applied.
Indeed, it is even distinct from the heavy electron order

FIG. 1. Kadanoff-Baym-Keldysh time contour, which runs from
a minimum time to a maximum time along the real time axis, then
backwards to the minimum time, and then parallel to the imaginary
time axis for a length given by the inverse of the initial equilibrium
temperature.

parameter when the system is in equilibrium and it can change
sign when the external pulse excites the system [14].

B. Time-resolved PES response function

We exploit the theory for time-resolved, pump-probe, PES
developed recently for the normal phase [30]. This theory
also holds in the CDW ordered phase, but in this case we
have to generalize it for the two-sublattice system. The PES
response function is computed from the lesser Green’s func-
tion, which can be extracted from the contour-ordered Green’s
function. Since the Hamiltonian of the system depends on
time explicitly, we have to apply the Kadanoff-Baym-Keldysh
formalism to solve for the contour-ordered Green’s function
that depends on two times. In this case, the contour-ordered
Green’s function is defined on the Kadanoff-Baym-Keldysh
time contour in Fig. 1 as follows:

Gc
k(t,t ′) = −i〈Tcck(t)c†k(t ′)〉, (14)

where the average 〈O(t)〉 = Tr exp[−βH(t → −∞)]O(t)/Z
is calculated in equilibrium, before the system is hit by
the electric pulse, and we assume the Hamiltonian becomes
time independent at early times. The partition function is
Z = Tr exp[−βH(t → −∞)], and β = 1/T is the inverse of
the initial equilibrium temperature. The continuous matrix
operators must be converted to discrete matrices. This is
done by employing a finite discretization to the contour
in Fig. 1 with a fixed spacing �t = (tmax − tmin)/N on
its real branch and �τ = β/n on its imaginary branch, so
the Green’s function in Eq. (14) is a (2N + n) × (2N + n)
matrix [19]. Further, for the set of {�t1 > �t2 > �t3 > · · · }
({N1 < N2 < N3 < · · · }), we extrapolate the results with a
quadratic Lagrange interpolation formula to the zero spacing
limit �t → 0 (N → ∞).

The lattice Green’s function is a 2 × 2 block matrix in the
ordered phase

Ĝc
ε,ε̄(t,t ′) =

∥∥∥∥∥G
c,AA
ε,ε̄ (t,t ′) G

c,AB
ε,ε̄ (t,t ′)

G
c,BA
ε,ε̄ (t,t ′) G

c,BB
ε,ε̄ (t,t ′)

∥∥∥∥∥, (15)

where all the dependence on k is summarized by the two
band energies [when the field is in the diagonal direction as in
Eq. (13)]; we adopt the following notation for the momentum-
dependent Green’s function: Gc

k(t,t ′) = Gc
ε,ε̄(t,t ′).

We employ the standard iterative algorithm of nonequilib-
rium DMFT for the Falicov-Kimball model to determine the
Green’s functions [28]. To verify our numerical results, we
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check the spectral moment sum rules which continue to hold
in the ordered phase and in nonequilibrium. Here we work with
the local Green’s functions which involve the two-dimensional
integration of Eq. (15) over ε and ε̄ weighted by the joint
density of states on the infinite-dimensional hypercubic latice;
the local Green’s functions are the diagonal elements of the
2 × 2 matrix with the retarded Green’s function extracted from
the contour-ordered Green’s function. The moments of the
local retarded Green’s function are defined as follows:

μR,α
n (ta) = − 1

π

∫ ∞

−∞
dωIm

∫ ∞

−∞
dtre

iωtr in
∂n

∂tnr
GR,α(ta,tr ),

(16)

where α = (A,B) and we use the Wigner coordinates for
the average ta = (t + t ′)/2 and relative tr = t − t ′ times.
The local density of states on the α sublattice Aα(ta,ω) =
−ImGR,α(ta,ω)/π is the Fourier transform of the retarded
Green’s function with respect to the relative time tr . We
calculate the zeroth, first, and second moments which satisfy
[31]

μ
R,α
0 (T ) = 1, (17)

μ
R,α
1 (T ) = −μ + Unα

f , (18)

μ
R,α
2 (T ) = 1

2 + μ2 − 2Uμnα
f + U 2nα

f , (19)

with nA
f = 1/2 + �nf and nB

f = 1/2 − �nf . When we run
calculations, we find that when the maximal pulse amplitude
is large (E0 = 30), we can verify that the extrapolated Green’s
functions have accurate spectral moments. On the other hand,
when the field amplitude is small (E0 = 1), then the accuracy
is too poor to have trustworthy results unless the time steps are
made prohibitively small [32].

In the case of the CDW ordered phase, we calculate
the time-resolved PES response function Pα(ω,t0

′) for each
sublattice. It is double-time Fourier transform of the lesser
Green’s function weighted by the probe pulse envelope
function s(t) as follows [30]:

Pα(ω,t0
′) = −i

∫ tmax

tmin

dt

∫ tmax

tmin

dt ′s(t)s(t ′)e−iω(t−t ′)G<
α (t,t ′),

(20)

where α = A,B. We assume the envelope function is a
Gaussian of the form

s(t) = 1

σb

√
π

e−(t−t0
′)2/σ 2

b , (21)

where t0
′ is the time when the probe pulse has its maximum and

it defines the time delay relative to the pump pulse maximum
at t0 in Eq. (8) and σb defines the effective width of the probe
pulse. The width of the pulse determines the energy or time
resolution of the PES response function: the broader width of
the pulse, the better the energy resolution and the worse the
time resolution, and vice versa if it is narrower [32]. Because
we work with the total PES and not the angle-resolved PES in
this paper, we do not need to worry about gauge invariance. The
PES response function is always manifestly gauge invariant.

FIG. 2. Equilibrium phase diagram of the Falicov-Kimball model
as functions of temperature and the Coulomb interaction. There are
five different phases: disordered metal (strongly correlated metal)
with no gap in the DOS (red); Mott insulator with a Mott gap in
the DOS (blue); weakly correlated CDW insulator with a CDW gap
(green); strongly correlated CDW insulator with CDW gap in the
DOS (purple); correlated CDW metal with a CDW gap in the DOS
but nonzero DOS at the chemical potential level (gold).

III. RESULTS

We present our results for the time-resolved pump-probe
PES response function in the CDW ordered phase of the
Falicov-Kimball model. Before discussing the nonequilibrium
results, we present the equilibrium phase diagram of the
Falicov-Kimball model in the temperature-Coulomb inter-
action plane in Fig. 2. In the normal state, we identify a
disordered metal (or correlated metal) phase with no gap in the
equilibrium DOS of the Falicov-Kimball model (red), and a
Mott insulator phase with a Mott gap in the DOS (blue, critical
value of the Coulomb interaction when the Mott gap appears
is equal to U = √

2 ≈ 1.4). In the ordered state, there is a
CDW gap in the DOS defined by sharp features at ω ≈ ±U/2.
We identify a weakly correlated CDW insulator phase for
small U ’s (green, which is continuously connected to the
Fermi gas), and a strongly correlated CDW insulator phase
for large U ’s (purple, which is connected to the atomic limit).
For intermediate values of U , a correlated CDW metal phase
is characterized by nonzero DOS (within the aforementioned
CDW spectral gap features at ω ≈ ±U/2) around the Fermi
level for nonzero temperatures. At zero temperature, this phase
collapses to a single point at U ≈ 0.86 (called the quantum
critical point), and the DOS is nonzero also only at the Fermi
level. In this work, we examine three different Coulomb
interactions that define three different phases in the CDW
ordered state.

In Figs. 3–5 we show the equilibrium DOS’s for three dif-
ferent Coulomb interactions U . The temperature dependence
of the equilibrium DOS is similar for all U and it behaves as
follows: at T = 0, the equilibrium DOS shows a full CDW
spectral gap whose width is precisely equal to the interaction
U . In this case, the system is completely ordered: one sublattice
is occupied by the f electrons and the other sublattice is
empty. This case corresponds precisely to the simplified CDW
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FIG. 3. Equilibrium DOS for U = 0.5 (correlated metal) at
different temperatures: T = 0.0178 corresponds to �nf = 0.49
(blue); T = 0.0278 corresponds to �nf = 0.4 (green); T = 0.0326
corresponds to �nf = 0.2 (red); T = 0.04 corresponds to �nf = 0
(black, dashed). Insets show the temperature dependence of the
corresponding order parameters of the localized (left) and itinerant
(right) electrons. Note how the subgap DOS rapidly forms and fills
in the gap region, while the signature of the spectral gap in the DOS
remains fixed at U for all T in the ordered phase.

studied earlier [33]. Increasing the temperature reduces the
ordering and subgap states start to appear within the gap
region [22]. These subgap states increase in magnitude, while
the singularity at the gap edge is reduced (but maintains the
same width U ) until the CDW gap becomes completely closed
at the critical temperature, and the order parameters vanish.

FIG. 4. Equilibrium DOS for U = 0.86 (material at the CDW
quantum critical point) at different temperatures: T = 0.03 corre-
sponds to �nf = 0.495 (blue); T = 0.047 corresponds to �nf =
0.4 (green); T = 0.053 corresponds to �nf = 0.2 (red); T = 0.06
corresponds to �nf = 0 (black, dashed). Insets show the temperature
dependence of the order parameters of localized (left) and itinerant
(right) electrons. Note how the subgap DOS rapidly forms at the
chemical potential producing a metal and then fills in the gap region,
while the signature of the gap in the DOS remains fixed at U for all
T in the ordered phase.

FIG. 5. Equilibrium DOS for U = 1.4 (critical point for the
Mott transition) at different temperatures: T = 0.033 corresponds to
�nf = 0.495 (blue); T = 0.0596 corresponds to �nf = 0.4 (green);
T = 0.07 corresponds to �nf = 0.2 (red); T = 0.08 corresponds to
�nf = 0 (black, dashed). Insets show the temperature dependence
of the order parameters of the localized (left) and itinerant (right)
electrons. Note how the subgap DOS rapidly forms but does not fill
the entire gap region due to Mott physics suppressing the DOS at the
chemical potential; the signature of the gap in the DOS still remains
fixed at U for all T in the ordered phase.

Note, however, that the filling in of the subgap DOS always
approaches that of the normal state, so if U is large enough to
be in the Mott insulating phase, no subgap states form within
the Mott gap region (which is always smaller than U ). We plot
the order parameters �nf and �nc in the insets of Figs. 3–5.

In nonequilibrium, when the system is pumped by the
external electric field, the transient DOS shows significant
changes in the gap region even for systems starting from zero
temperature [14,33]. At the same time, the itinerant electron
order parameter has significant time dependence and often
remains nonzero at the time when the gap closes in the DOS.
Here we illustrate the PES responses of the system at different
temperatures and for different interactions U .

In Fig. 6, we plot the PES response function at different
probe pulse times t0

′ in Eq. (21) for an interaction strength
U = 0.5 and for different temperatures. In the normal state,
this case corresponds to a correlated metal and the equilibrium
DOS for different temperatures is shown in Fig. 3. At the top of
Fig. 6, we show the pump pulse which is the electric field from
Eq. (9) with E0 = 30. The width of a probe pulse is equal
to σb = 7 (the same value will be used for all PES results
presented here). We check the accuracy of the results with the
sum rules in Eq. (16). In our calculations, we discretize a real
time interval t ∈ [−20,20] with three values of �t = 0.066,
0.05, and 0.033 and then we quadratically extrapolate the result
to the �t = 0 case. We have found that in this case the results
accurately satisfy the sum rules only for large amplitudes of the
field (E0 � 20). To obtain accurate results for smaller fields
rapidly becomes problematic due to the small discretization
size required and the increase in the size of the matrices used
in the calculation.
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FIG. 6. False color plot of the PES response function for U = 0.5
at different temperatures with a logarithmic color scale: (a) T =
0.0178 corresponds to �nf = 0.49; (b) T = 0.0278 corresponds to
�nf = 0.4; (c) T = 0.0326 corresponds to �nf = 0.2; (d) T = 0.04
corresponds to �nf = 0. The pump field with E0 = 30 is plotted
above, and the probe pulse width is σb = 7. Note how the pump pulse
does excite a substantial number of electrons to the upper band, but
it also de-excites electrons (similar to what happens in the simplified
CDW model) so that the net excitation at the end of the pulse
is small.

Figure 6(a) corresponds to the lowest temperature T =
0.0178, when the order parameter is equal to �nf = 0.49. In
Fig. 7, we show an alternative view of this case corresponding
to vertical cuts through the data. We plot the PES for times
t0

′ starting from t0
′ = −14 and ending at t0

′ = 14 (even
though the range in time for the simulation lies in the interval
[−20,20]). This is dictated by a loss in conservation of the
total spectral weight of the PES signal at extreme times
(caused by a shrinking of the available range of relative
times).

Inset in Fig. 7, we plot the integral of the PES depending
on the delay time t0

′, where we depict the region that satisfies
the sum rule in black. For the times before t = −10, there is
PES signal only from electrons in the occupied lower band.
Then, the applied external field excites electrons to the upper
band and also closes the CDW gap. Nevertheless, there are
still two clear peaks at −U/2 and at U/2 and one can see

FIG. 7. PES response function for U = 0.5 at temperature T =
0.0178 (�nf = 0.49); this corresponds to vertical cuts through the
false color image in the previous figure. Different curves correspond
to different time delays t0

′ for the probe pulse and have been offset in
the vertical for clarity. Thin red lines are a guide to the eye. The upper
inset shows results for the total spectral weight of the PES response for
different t0

′. The loss of weight at the edges signifies that there is not
enough information in the calculated Green’s function to properly
construct the PES. Data from those red points are not included in
the main figure. The lower inset shows the time evolution of the
conduction electron order parameter, which goes from high order to
low order after the pulse has ended.

that the gap reforms after the pump pulse (approx. at t = 10).
During the pulse, there is a significant dressing of the bands,
which causes the overall effective bandwidth to shrink (and
corresponding peaks to grow and sharpen). This also results in
a small reduction of the spectral gap in the PES signal, which
can be seen by the inward curving of the leftmost peak, which
then curves back as the pulse ends. One can clearly see the
band narrowing and spectral gap reduction in the false color
plots.

At higher temperatures [Figs. 6(b)–6(d)] the scenario
remains similar. A slight difference is seen in Figs. 6(c)–6(d),
which corresponds to the temperatures T = 0.0326 (with the
order parameter �nf = 0.2), and T = 0.04 (with the order
parameter �nf = 0), respectively. In these cases, we see that

115167-6



TIME-DOMAIN PUMPING A QUANTUM-CRITICAL CHARGE . . . PHYSICAL REVIEW B 94, 115167 (2016)

gap completely disappears after the pump pulse, since there
is no gap in either equilibrium DOS (see Fig. 3). Also, there
are no apparent shifts of the peaks of the PES signal for these
cases, although the band narrowing and sharpening of peaks
can be easily seen in the false-color plots.

Figure 7 also shows the conduction electron order parameter
in the lower right inset. One can see that it starts off reasonably
flat, then oscillates and is reduced, ending nearly at zero.
The accuracy of these calculations is on the order of a few
percent. Even though the order parameter is sharply reduced,
the spectral gap feature remains, primarily because the heavy
electron order parameter is unchanged by the pump. One can
also notice that the conduction electron order parameter does
not vanish; nevertheless the CDW gap is closed. This feature
was also seen in the case of a noninteracting CDW system
at zero temperature [14]. It remains for the Falicov-Kimball
model at nonzero temperatures as well.

In the Supplemental Material [34], movies that show
vertical cuts through the false color images, or which animate
the waterfall images, are available. These movies clearly show
the sharpening of the peaks, the band narrowing, and the filling
in of the gap.

In Fig. 8, we plot the results of the PES response for U =
0.86, which corresponds to the quantum-critical point. In this
case, the equilibrium DOS at T = 0 shows a gap of size U .
Once T is made nonzero, there is DOS from subgap states that
appears starting at the Fermi energy (see Fig. 4). In Figs. 8(a)
and 9, we present the PES response function for different
times t0

′ for temperature T = 0.03 when the order parameter
is �nf = 0.495. In equilibrium, the PES response originates
from the lower band electrons only. At later times, the pump
pulse excites electrons from the lower band into the upper band,
providing additional signal. We see that the gap disappears at
times from t = −8 to t = −4, reforms, again disappears in the
range from t = 4 to t = 8, and then reforms again. In contrast
to the previous case of U = 0.5, all the electrons relax into a
lower band after the pump pulse: There is not any significant
PES response from upper band electrons after time t = 10.
This fast relaxation is surprisingly different from the results
of the PES response at zero temperature (identical to those of
the simplified model) [14]. In the case of simplified model at
zero temperature, excited electrons remain in the upper band
for long times after the pump pulse because they need a field
to de-excite them [14]. In the current case, the external electric
field excites itinerant electrons, but as they move to the upper
band, they also can be de-excited. While the de-excitation must
always be less than the excitation, it is this driving of electrons
back down to the lower band that dominates the behavior here,
leaving the system with few excitations after the pump pulse
is gone. In addition, the same spectral bandwidth narrowing,
peak sharpening, and spectral gap reduction seen previously
continue to occur transiently when the field is on, and disappear
afterward.

As the temperature is increased the system becomes more
metallic, which allows for more conventional excitation [see
Figs. 8(c)–8(d)]. Electrons relax into the states within a gap
region since the equilibrium DOS shows no gap at these
temperatures (see Fig. 4) and this process of relaxation is
slower. The excitations are longer lived as the de-excitation
process appears to be suppressed by these thermal fluctuations.

FIG. 8. False color plot of the PES response function for U =
0.86 (quantum critical material) at different temperatures on a
logarithmic color scale: (a) T = 0.03 corresponds to �nf = 0.495;
(b) T = 0.047 corresponds to �nf = 0.4; (c) T = 0.053 corresponds
to �nf = 0.2; (d) T = 0.06 corresponds to �nf = 0. The pump field
with E0 = 30 is plotted above, and the probe pulse width is σb = 7.

Also, the reduction of the spectral CDW gap is weakened,
but the band narrowing and sharpening only become slightly
weaker with temperature [Figs. 8(c)–8(d)].

Figure 9 also shows the conduction electron order param-
eter, which starts off reasonably flat, oscillates, and then is
restored nearly to its starting value. This surprising evolution is
similar to what is happening with the PES, which ends looking
very similar to the way it started with limited excitation. It
once again shows how this critical CDW state is efficient
in de-exciting electrons from the upper to the lower bands
due to the metallic density of states it has at the chemical
potential.

In the Supplemental Material [34], movies are available that
show the sharpening of the peaks, the band narrowing, and the
filling of the gap.

Finally, we present the results of the PES response function
for U = 1.4(≈ √

2) in Fig. 10. This is the point where the
system undergoes the Mott metal-insulator transition in the
normal state and it corresponds to a strongly correlated CDW.
The equilibrium DOS shows the CDW gap at zero temperature
and the critical Mott DOS (where the Mott gap is just starting to
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FIG. 9. PES response function for U = 0.86 at temperature T =
0.03 (�nf = 0.495). Different curves correspond to different times
t0

′ of the probe pulse. Thin red lines are a guide to the eye. The upper
inset shows results of integration of the PES response for different t0 ′.
The lower inset shows the time evolution of the conduction electron
order parameter, which transiently is reduced, but then is restored as
the pulse ends.

form) in the uniform phase (at temperatures higher than critical
T > Tc). In Fig. 5, we show the equilibrium DOS for different
temperatures for U = 1.4. Figures 10(a) and 11 correspond to
the lowest temperature T = 0.033 with �nf = 0.495. When
the pump pulse hits the system, we see the PES response
from the electrons in an upper band starting at time t = −10.
In contrast to the cases discussed above, here a gap remains
active during the entire time interval (there are always a small
amount of subgap states that preclude a rigorous gap, but they
remain small throughout the evolution). At longer times the
system does tend toward a steady state, as is also seen in case of
simplified model at zero frequency [14]. At the same time, we
see the same band narrowing, peak sharpening, and spectral
gap reduction as before.

Figures 10(c) and 10(d) correspond to higher temperatures
T = 0.7 (�nf = 0.2) and T = 0.8 (�nf = 0), respectively.
In these cases, the gap rapidly disappears at times from t =
−11 to t = −9, reforms for the period from t = −8 to t = 8
(during the pump pulse), and then disappears again at longer

FIG. 10. False color image of the PES response function for
U = 1.4 (critical Mott insulator) at different temperatures on a
logarithmic color scale: (a) T = 0.033 corresponds to �nf = 0.495;
(b) T = 0.0596 corresponds to �nf = 0.4; (c) T = 0.07 corresponds
to �nf = 0.2; (d) T = 0.08 corresponds to �nf = 0. The pump field
with E0 = 30 is plotted above, and the probe pulse width is σb = 7.

times. This is explained by the fact that there are significant
subgap states within the gap (at these temperatures), which
accelerates the process of de-excitation.

Figure 11 also shows the order parameter, which acts more
like the generic case. It starts off flat, oscillates, and is reduced,
nearly to zero. Even so, the spectral gap features remain
those of the CDW and not of the Mott phase, because of
the heavy electron order. This occurs even when nearly half
of the electrons are excited into the upper band, which is
the maximum one expects for a system approaching infinite
temperature. Surprisingly, this Mott phase has more total
excitation than the metal or the quantum critical CDW, both
which have smaller spectral gaps.

Once again, in the Supplemental Material [34], movies are
available that show the sharpening of the peaks, the band
narrowing, and the filling of the gap.

Since the PES spectra is convolved with the probe envelope
function, we also show how such a convolution affects the
equilibrium DOS. It removes a number of the sharp structures
in the DOS, and helps explain why those sharp structures
are not seen in the theoretical PES response functions that
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FIG. 11. PES response function for U = 1.4 at temperature T =
0.033 (�nf = 0.495). Different curves correspond to different times
t0

′ of the probe pulse. Thin red lines are a guide to the eye. The
upper inset shows the results of the integration of the PES response
for different t0

′. The lower inset shows the time evolution of the
conduction electron order parameter, which goes from high order to
low order after the pulse has ended.

we plotted earlier. These plots also show what the PES
would be in the quasiequilibrium approximation [30] (if one
also multiplied by the corresponding Fermi-Dirac distribution
function). Namely, we calculate the convolved DOS of the
equilibrium system with the pump-probe pulse as follows:

P (ω) = −i

∫
dνGr (ω − ν)|s̃(ν)|2/2π, (22)

where s̃(ν) is the Fourier transformation of s(t) in Eq. (21),
and Gr (ω) is total (sum of the A and B sublattices) equilibrium
retarded Green’s function.

In Fig. 12, we compare the convolution from Eq. (22)
to the equilibrium DOS for U = 0.5. Figures 12(a) to 12(d)
correspond to different temperatures starting from the lowest
T = 0.0178 to the highest T = 0.04, respectively. At high
temperatures the convolution and the DOS are almost the
same in Figs. 12(c) and 12(d), implying that the form of the
probe pulse does not play a significant role here. But, at low
temperatures in Figs. 12(a) and 12(b) the convolution does

FIG. 12. DOS (black) and convolved DOS (red) for U = 0.5
at different temperatures: (a) T = 0.0178 corresponds to �nf =
0.49; (b) T = 0.0278 corresponds to �nf = 0.4; (c) T = 0.0326
corresponds to �nf = 0.2; (d) T = 0.04 corresponds to �nf = 0.

FIG. 13. DOS (black) vs convolved DOS (red) for U = 0.86 at
different temperatures: (a) T = 0.03 corresponds to �nf = 0.495;
(b) T = 0.047 corresponds to �nf = 0.4; (c) T = 0.053 corresponds
to �nf = 0.2; (d) T = 0.06 corresponds to �nf = 0.
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FIG. 14. DOS (black) vs convolved (red) for U = 1.4 at different
temperatures: (a) T = 0.033 corresponds to �nf = 0.495; (b) T =
0.0596 corresponds to �nf = 0.4; (c) T = 0.07 corresponds to
�nf = 0.2; (d) T = 0.08 corresponds to �nf = 0.

not show a complete gap and does not distinguish separate
subgap states. As was mentioned above, one may improve the
energy resolution by increasing the width of the pulse, but this
decreases time resolution [32].

Similarly, in Fig. 13, we present the results for the
convolution for quantum critical case of U = 0.86. In this
case, the most interesting result is that we see a gap at the
lowest temperature at zero frequency [Fig. 13(a)] while the
equilibrium DOS shows states at zero frequency. This explains
how a gap in the PES response persists for the whole time
interval in Figs. 8(a) and 9.

Figure 14 shows the results for the convolution for U = 1.4.
Again, we find that there is a complete gap in the convolution
at the lowest temperature with no signs of subgap states.
At the highest temperature [in Fig. 14(d)], the convolution
is similar to the equilibrium DOS, with a clear two-hump
structure.

IV. CONCLUSIONS

In this work, we presented our results on the time-
resolved pump-probe PES response function in the CDW
ordered phase of the Falicov-Kimball model. We described the
general formalism to solve for the two-time Green’s function
defined on the Kadanoff-Baym-Keldysh contour within the
nonequilibrium DMFT in the CDW ordered phase. These
results are numerically exact, but we were forced to restrict
ourselves to the time interval t ∈ [−20,20], and to the case
of a large electric field amplitude for the pump pulse. Similar
calculations for small fields require significantly more com-
puter time. We examined three cases with different Coulomb

interactions, which correspond to the correlated metal, the
quantum-critical point for the CDW, and the critical point
for the Mott insulator in normal state. Further, we examined
different temperatures, starting from close to zero temperature
(when the system is fully ordered), to a temperature above Tc,
when the system is in the normal state. We have also analyzed
the role of the form of the probe pulse by comparing the
convolved equilibrium DOS with the equilibrium DOS.

The main counterintuitive result that we found is that
including many-body correlations into the CDW greatly
enhances the relaxation and de-excitation of the system. In
particular, the quantum critical case is quite difficult to excite
by the pump pulse. The most likely explanation for why
this occurs is that the excitation and de-excitation processes
are nearly balanced in this case, making it hard to generate
net electron transfer from the lower to the upper band.
Surprisingly, it is much easier to excite a Mott insulator than it
is the quantum-critical CDW or a weakly coupled CDW. We do
not have a full understanding as to why and how the quantum
correlations conspire to remove the excitations in this system;
this occurs in the absence of a thermal bath that the system is
coupled to.

We also note that the conduction electron order parameter
does not vanish while the CDW gap is closed at nonzero
temperatures. In addition, there is a complex subgap structure
to the DOS which fills in to close the CDW gap, unlike a
BCS picture where the entire spectral gap collapses by the gap
becoming progressively smaller. This appears to be a feature
of electronic-driven CDW systems, but we have no formal
proof that it must be present in all such models. Nevertheless,
by continuity, one can easily argue that if a hopping of the f

electrons is turned on, then for small values of the hopping,
the scenario given here should remain, because the nonzero
DOS cannot instantly collapse to zero. On the other hand, as
the hopping increases to be equal to the conduction electron
hopping, we recover the Hubbard model, and the behavior for
that system in the CDW phase is currently unknown.

The other interesting result is that there is a significant
spectral CDW gap shrinkage, bandwidth narrowing, and peak
sharpening in the field-dressed PES, which becomes less
pronounced as temperature rises. Some of these features could
be related to recent experiments [2], where a partial closing
of the spectral CDW gap is seen, but not a full closing. Our
theory is general and can be applied to other Hubbard-like
models. We hope our results might be helpful for experi-
mentalists to examine real materials which demonstrate CDW
order.
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