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Direct observation of Higgs mode oscillations in the pump-probe photoemission spectra
of electron-phonon mediated superconductors
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Using the nonequilibrium Keldysh formalism, we solve the equations of motion for electron-phonon
superconductivity, including an ultrafast pump field. We present results for time-dependent photoemission spectra
out of equilibrium which probe the dynamics of the superconducting gap edge. The partial melting of the order
by the pump field leads to oscillations at twice the melted gap frequency, a hallmark of the Higgs or amplitude
mode. Thus the Higgs mode can be directly excited through the nonlinear effects of an electromagnetic field and
detected without requiring any additional symmetry breaking.
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I. INTRODUCTION

The amplitude, or Higgs mode, is deeply intertwined with
the historical development of the BCS theory of superconduc-
tivity. Although the presence of the Higgs mode is fundamental
to superconductivity, it remained elusive for many decades,
and its presence and observability are still under debate in
many contexts [1-3]. Direct observation of the Higgs mode
as an oscillation of the superconducting order parameter
is difficult with standard methods since it does not couple
linearly to electromagnetic fields [4]. It can be observed if it is
coexistent with another order, such as a charge-density wave
(CDW) [5-7]; however, it is difficult to distinguish from other
effects such as phonon splitting due to the secondary order [7].

More generally, the dynamics of superconductors is a field
of study with a long, rich history. Until recently, studies were
mainly limited to the frequency domain, where measurements
are averaged over long times. This changed with the advent of
time-resolved spectroscopy, which is performed by exciting
the system with an ultrashort pump laser pulse, followed
by an equally short probe pulse. These tools have opened a
new window into the complex dynamics of superconductors
(as well as other ordered phases, e.g., CDW insulators [8])
by performing studies on the gap [9,10], collective [11],
quasiparticle [12,13], and interaction dynamics [14—17].

Theoretical studies of the Higgs mode in the time do-
main have a longer history than experiments (see, e.g.,
Refs. [18-20]). However, the theory is usually done within
the context of BCS theory and, more importantly, focuses
on single-time dynamics. These neglect important dynamical
processes that are present in real materials, including melting
of the superconducting order, and relaxation processes and
thus provide a qualitative description at best. Recently, it was
shown that a driving field tuned to a frequency 2w = 2A, twice
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the superconducting gap, could be used to resonantly excite
the amplitude mode in NbN [21-23], which was confirmed by
terahertz transmission experiments.

In this work, we show that the amplitude mode can be
excited without tuning to a resonance and, rather, that it
is a fundamental part of the dynamics and how time- and
angle-resolved photoemission spectroscopy (tr-ARPES) can
be used to directly observe the amplitude mode, without the
need for an additional degree of freedom for the amplitude
mode to couple to. The pump pulse perturbs the ordered state,
resulting in changes of the effective free-energy landscape F.
The minimum in F is reduced and shifts towards smaller-order
|Al. This goes beyond the linear response regime, where the
system is simply perturbed from its equilibrium state without
affecting the free-energy landscape in which it lives. The
nonlinear coupling is critical to the excitation of the Higgs
mode. After perturbation, oscillations about the new minimum
will occur at a frequency of 2|A|, with subsequent damping
and hardening as the system returns to its equilibrium state.
These amplitude, or “Higgs,” oscillations were observed using
tr-ARPES in charge- and spin-density-wave systems [24-27],
as well as cold atomic gases [28].

The dynamics of the superconducting order parameter are
often studied with a “quantum quench,” where one of the
physical parameters that make up the superconducting state
is changed [18,20], resulting in damped oscillations with
constant final frequency 2A ... A similar result was obtained
numerically through truncated equation-of-motion approaches
[29,30]. Here, we go beyond the single-time approaches and
directly simulate the pump/probe process in a superconductor
by self-consistently solving the Gor’kov equations in the time
domain. We simulate the pump-probe process using a two-time
Green’s function formalism. This formalism captures the full
frequency dependence of the pairing interactions and the return
to equilibrium through electron-phonon scattering and allows
for the calculation of the time-resolved single-particle spectral
function, as measured with tr-ARPES [31]. We focus on the
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FIG. 1. (Color online) Illustration of Higgs excitation. (a) Free-
energy landscape F[A] for the complex order parameter near the
phase transition. The Higgs (amplitude) and Nambu-Goldstone
(phase) modes are indicated. (b) Schematic of the excitation process.
The light pulse displaces F on sufficiently short time scales such
that the order parameter |A| cannot respond adiabatically, leading to
oscillations about the new minimum.

spectra near the Fermi level, where the signatures of the order
parameter A clearly appear both in and out of equilibrium.
After pumping, the system exhibits oscillations at twice the
gap energy, which is now time dependent [A(¢)]. As the pump
fluence is increased, the gap partially melts, leading to slower
oscillations.

An intuitive understanding of the dynamics that occur
during the pump-probe process can be gained by considering
the free-energy landscape for the complex [U(1)] order. The
ordered state is perturbed from its equilibrium position by a
laser pulse, resulting in changes of the free-energy landscape
JF. The minimum in F is reduced due to the decrease of
quasiparticles involved in ordering. If the response of the
complex order parameter is slower than the changes in F,
oscillations about the new minimum will occur (see Fig. 1) at
a frequency of 2| A|, with subsequent damping and hardening
as the system returns to its equilibrium state.

II. METHODS AND MODEL

We consider the Holstein model

H=> e®eclex+ QD blbi—g Y cleibi + b)),
k i i

where the individual terms represent the kinetic energy of
electrons with a dispersion e(k), the energy of phonons
with a frequency €2, and a coupling between them whose
strength is given by g. Here, c]; (cq) are the standard creation
(annihilation) operators for an electron in state «; similarly, b};
(by) creates (annihilates) a phonon in state «. For concreteness
we study a square-lattice dispersion with nearest-neighbor
hopping V.,

€(k) = =2V, [cos(ky) + cos(ky)] — u, (1)

where p is the chemical potential. We have used the convention
that 7 = ¢ = e = 1, which makes inverse energy the unit of
time.
The electron-phonon interaction is treated at the self-
consistent Born level, where the self-energy is given by
26,1 = ig?Ty GL . (1,t)T DS(1,1), )

loc
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where 7 is the z Pauli matrix in Nambu space and G{ (¢,1') =
Zk Gﬁ(t,t’), 1.e., the local Green’s function.

The equations to be solved are computationally demanding,
and as such, the parameters are chosen with an eye towards the
feasibility of the simulation. We study a square-lattice tight-
binding model at half filling. The nearest-neighbor hopping
strength is V,, = 0.25 eV, and the phonon frequency and
coupling are chosen as 0.8V,,, and 1.38V,,,, respectively. The
resulting phonon coupling is of intermediate strength (A &
0.58), which is within the Migdal limit. In the calculations,
in addition to the strongly coupled Einstein phonon, to avoid
unphysical metastable states within the phonon window due
to infinitely long lifetimes we include a weakly coupled
low-energy phonon in the distribution with Qe = 1 meV
and g&/eak =1 meV?. For these parameters, the transition
temperature T, &~ 18.7 meV. All data shown are calculated
at T = 04T,.

The pumped superconductor is modeled by self-
consistently solving the Gor’kov equations for the Migdal-
Eliashberg model in the time domain. By treating
superconductivity at this level, one avoids the issues of
gauge invariance that arise in isotropic attractive-U models
[32,33]. The electron-phonon interactions are treated on the
level of the self-consistent Born approximation. The resulting
time-domain Green’s functions are then used to obtain the
tr-ARPES spectra [34].

The solution of the Nambu-Gor’kov equations in the
time domain requires self-consistency on the entire Keldysh
contour. We utilize the standard two-time Keldysh formalism,
where the contour Green’s functions are 2 x 2 matrices in
Nambu space [32,33],

T / !
= t t t)c_x (f
GCty = —i| To CTkT( )CkTT( ? CTkT( )iy ( ? 3)
€l (D (1) ey (Deky ()
(Gt FEt)
“\Rwr) -6oan)
where ¢t and ¢’ lie on the Keldysh contour and 7¢ is the

contour time-ordering operator. The equations of motion (on
the contour) are

“

[i9, % — a()]GL(t,1') = 8C(t,t)T + / dz £°(t,2)G(z,1),
C

&)

ek — AW 0
() = ( 0 e[k A(t)])’ ©)

where Ty is the identity matrix, €;(k) = € (k) = €(k) is the
bare dispersion given above, and A(¢) is the time-varying
vector potential in the Hamiltonian gauge. On the Keldysh
contour, the Langreth rules can be applied to separate the
contour equation into various well-known components: the
Matsubara (M), lesser (<), and greater (>) Green’s functions,
as well as the mixed real-imaginary /[ types. The equations of
motion are solved on the contour by using massively parallel
computational methods for integro-differential equations, as
described in Ref. [35]. The data in the normal state are obtained
by performing the simulations without allowing a solution in
the anomalous channel.
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FIG. 2. (Color online) The tr-ARPES spectra of (a) the normal state in equilibrium [the inset shows the full spectrum, with the green box
indicating the region for (a)—(c)], (b) the superconducting state in equilibrium, and (c) the superconducting state 65.8 fs after a pump with
Eax = 0.9 V/ay. The vertical red lines indicate the Fermi momentum &z, and the horizontal solid (dashed) line indicates the Fermi level
(phonon frequency €2). The dotted horizontal line indicates the gap-shifted phonon frequency (€2 + Ap). The maximum along the line k = kF,

denoted ¢, is shown with a marker.

Once the Green’s functions are obtained, tr-ARPES spectra
can be computed. For a probe pulse of width o, the gauge-
invariant tr-ARPES intensity at time 7, is [34]

I(k,w,t)) = Im[ dt dt’ p(t,t',to)ei“’(tft/)GE(l t,)(t,t/), @)

where p(t,t',t9) is a two-dimensional normalized Gaussian
with a width o, centered at (¢,¢) = (f,%). Note that here
only one component of the full Nambu matrix is used. The
field-induced shift in k has to be corrected via a gauge shift in
the momentum argument of G with [36]

k(z,t)=k+ %/ dif A(D). ®)

To determine the tr-ARPES spectral weight, we utilize a probe
with a Gaussian envelope whose width o, = 16.45 fs.

The field is explicitly included via the Peierls substitution
k(t) = k — A(¢), where A(¢) is the vector potential in the
Hamiltonian gauge, which has no scalar potential ®.

This includes the field beyond linear coupling, which is
critical for the excitation of the Higgs mode (see Ref. [23]).

We have checked that the inclusion of local electron-
electron scattering up to second order in the interactions does
not qualitatively affect our results (a comparison is shown in
Sec. IV), where the addition to the self-energy is given by

261 = Ut Gl (1.6)% Te{ Gl (1.1) B Gl (1 )T ).
)

The phonon bath is kept fixed by ignoring the feedback of
the electrons on the phonons; we remain outside of the regime
where this is expected to be important, i.e., strong pumping,
the formation of static Peierls distortions (CDWs), or quenches
of the interaction constant [37].

III. RESULTS

Figure 2 shows the tr-ARPES spectra obtained from the
calculations in equilibrium [Figs. 2(a) and 2(b)] and after
pumping [Fig. 2(c)]. Here, the maximum field strength E,, =
0.9 with units of volts per lattice constant (V/ap). The spectra

are broader than is usual in equilibrium ARPES due to
the Heisenberg uncertainty introduced by a time-resolved
measurement. The diamond markers indicate the maximum
of the constant momentum cut [energy distribution curve
(EDC)] at k = kf, which we will denote by ¢ throughout. In
equilibrium, the spectra show the usual hallmarks of a strongly
coupled BCS superconductor: the spectra are pulled back from
the Fermi level by some amount, visible both in the decrease
of spectral weight at the Fermi level and the downward shift
of ¢. In addition, the kink due to the strongly coupled phonon
at w = Q shifts down in binding energy, and shadow bands
appear along @ = —ex due to the particle-hole mixing. For the
equilibrium superconductor ¢ is atroughly —55 meV, although
the magnitude of the true gap Ao, which is determined from
the spectral gap in the equilibrium self-energy, is slightly less
(Ao ~ 48 meV). The difference arises because ¢ is shifted
by the broadening of the single-particle spectrum and probe
resolution.

After pumping, the characteristics of superconductivity are
reduced in magnitude. ¢ and the gap shift of the phonon
kink are reduced, and the spectral weight in the shadow
bands is no longer visible. In fact, the spectrum more closely
resembles a normal metal at some elevated temperature.
However, superconductivity never fully disappears at this field
strength (as we will show below), suggesting that an elevated
temperature scenario does not fully capture the behavior here.

We next utilize the strength of the tr-ARPES approach and
focus on the changes of the spectra near the Fermi level Er
where the signature of SC is strongest (Fig. 3). Figure 3 shows
snapshots of the tr-ARPES spectra before [Fig. 3(a)] and after
[Figs. 3(b)-3(e)] pumping.

Immediately after the pump [Fig. 3(b)], there is a shift of
spectral weight from lower binding energies to the Fermi level,
partially closing the gap, and the EDC center ¢(¢) (diamond)
shifts back towards the Fermi level. The following panels
show that the spectral gap first closes right after the pump
[Fig. 3(b)] and then reopens and closes in the successive time
slices [Figs. 3(c)-3(e)], leaving behind a gap which is slightly
reduced compared to its equilibrium value [Fig. 3(e)]. Thus
both the spectral intensity and the spectral maximum oscillate
in time after the pump is applied.
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FIG. 3. (Color online) (a) The tr-ARPES spectrum near the Fermi level in equilibrium. (b)—(e) Spectra at various times after the pump,
illustrating the shift of the spectral weight back and forth across the Fermi level (a movie is available showing this in detail in the Supplemental
Material [38]). The maximum along the red line k = &y, denoted ¢, is shown with a marker. (f) Anomalous density F'=(z,¢) (see text), which
measures the strength of the superconducting state, and the vector potential [A(z)] as a function of time. The vertical lines indicate the time slices
shown in (a)—(e). The black arrows indicate the direction of the shift of the spectrum from the previous panel. (g) Energy distribution curves
(EDCs) at k = kp [red lines in (a)—(e)] for equilibrium and pumped superconductor (¢t = 107 fs). The marker indicates the EDC maximum (at

o = ¢). (h) False-color plot of EDC intensity as a function of time showing the oscillations after the pump.

To show that the superconductivity remains even though
there is spectral weight in the gap, we consider the “anomalous
density” F=(t,r) = ), F=(t,t) [in analogy with the normal
density n(t) = —i ), G (¢,1)] shown in Fig. 3(f). In equilib-
rium BCS theory, this quantity is related to one side of the gap

equation,
Ex
2T )’

where Ex = Ve + A%. After pumping, although the magni-
tude of the order parameter is reduced, superconductivity is
still present. Moreover, F<(t,t) shows the same oscillations
as observed in the spectra. The oscillations occur for long
times after the pump pulse, indicating that they are intrinsic
to the superconducting state, rather than directly related to
particulars of the pump. The snapshots [Figs. 3(c)-3(e)] are
taken at times corresponding to the minima and maxima of the
oscillations.

We further investigate the oscillations by considering the
EDCs atk = kp and analyze the dynamics. Figure 3(g) shows
the EDCs for the equilibrium and pumped superconductor (at
t = 107 fs). After pumping, ¢ returns towards the Fermi level,
but not fully. Figure 3(h) shows the EDCs as a function of
time delay. Upon arrival of the pump, the superconductivity is
reduced as spectral weight is scattered to above the Fermi level
and across the Brillouin zone. The band subsequently shifts

A
=0 tanh

F-(t,t' =1t)=
i ( ) 2Ex

(10)

back and forth at a particular frequency. This is markedly
different from the normal state, where the spectra after
pumping return monotonically to equilibrium [31] (unless
phonons are resonantly excited or the pump is sufficiently
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FIG. 4. (Color online) The position of the EDC maxima ¢ () for
various pump fluences. The shaded region indicates the times for
which the pump field is on (as defined by 1.5 the field width o). Solid
lines are fits to a decaying exponential plus a damped oscillation.
Inset: Fitted oscillation frequencies as a function of pump fluence
(maximum field in V/ay). The solid line is a quadratic polynomial fit.
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FIG. 5. (Color online) (a) The tr-ARPES spectrum in the super-
conducting state, 65.8 fs after the pump with E,x = 0.6 V/ay. The
hatched area indicates the region for integration in (b), and the orange
marker shows the EDC maximum. (b) Spectral weight integrated
above E . for two pump fluences (indicated in V/ay). (¢) EDC maxima
¢ (¢) reproduced from Fig. 4.

strong [37]), indicating that the superconducting order is
responsible for the oscillations.

By increasing the pump fluence, the order can be further
reduced, and the effects of further reduction on the oscillations
can be observed. Figure 4 shows the oscillations after pumping
for various pump fluences. With increasing pump fluence, the
SC is further suppressed, as reflected in the reduction of |{]|.
Concomitantly with the decrease in SC, the oscillations slow

PHYSICAL REVIEW B 92, 224517 (2015)

down, confirming that the mode is determined by the state of
the system after pumping. This is the same mechanism that
leads to changes in the effective self-energy in the normal
state after pumping [39], although the field threshold where
the system deviates from the equilibrium behavior is much
lower. ¢ () is fitted to a decaying exponential combined with
a damped oscillation. The obtained frequencies w, scaled by
twice the equilibrium gap 2A, are shown in the inset. In the
limit of zero fluence, the oscillation frequency w extrapolates
to 2A, the equilibrium gap. This implies that tr-ARPES can
provide a clean measurement of A, which is obscured in
equilibrium by broadening of the spectral function and energy
resolution.

The effects of the changing gap at the Fermi level due
to amplitude mode oscillations are visible across the entire
spectrum, including at the gap edge, at the phonon kink,
and above the Fermi level. To illustrate this, we integrate the
spectral weight above the Fermi level, where the experimental
signal-to-noise ratio is usually large. Figure 5 compares the
integrated spectral weight [Fig. 5(b)] with ¢ (¢) extracted from
the EDCs as before. The oscillations are readily resolvable
in both cases, in particular for weaker fields where the
early-time behavior is not dominated by simple scattering. To
further underscore the point that these oscillations are absent
when there is no superconducting condensate, Fig. 6 shows
a comparison for similar fields between the superconducting
and normal states.

IV. EFFECT OF ELECTRON-ELECTRON INTERACTIONS

To account for electron-electron interactions, we have
considered local electron-electron scattering U at the level of
self-consistent second-order perturbation theory. The inclusion
of electron-electron scattering changes the energy absorption
and thus the state after pumping, leading to a change in the
oscillation frequency as the superconducting order is weaker,
as illustrated in Fig. 7. For comparison, a data set with larger
field but without Coulomb scattering is also shown.

Integrated spectral weight with SC

)
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Ss E,0=0.30
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= : : ;
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FIG. 6. (Color online) Spectral weight integrated above Er for comparing the superconducting and normal states (indicated in V/ag). The
gray region indicates the times where the field is on. The oscillations are visible only when the superconducting order is finite.
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FIG. 7. (Color online) Normalized “superconducting density”
F=(t,t) (see main text) for various strengths of the Coulomb
scattering U. The gray region indicates the times where the field
is on. Fields are in units of V/ag, and interactions are in eV.

V. CONCLUSION

The results of this study indicate that time-resolved ARPES
can be used to directly study the dynamics of Cooper pairs by
examining the time-resolved single-particle spectral function,
making the identification and examination of the Higgs mode
available in superconductors. This opens up new avenues for
studying superconductivity, both BCS and unconventional. By
perturbing the superconducting order from its equilibrium state
through nonlinear coupling to a strong field, we can access
regions of phase space that are not sampled in equilibrium.
This could be particularly interesting in the case where several
competing orders are present, such as in the high-7, cuprates

and pnictides.
More generally, the field of pump-probe spectroscopy, and

nonlinear coupling to a driving potential, is providing the
means to observe phenomena that were previously inaccessible

PHYSICAL REVIEW B 92, 224517 (2015)

to experiment. Here, we have illustrated this concept in
the context of Higgs oscillations in condensed matter, and
observations were reported previously in two rather dissimilar
systems: NbN [22,23] and cold atomic gases [28].

The Higgs mode is just one example of a phenomenon that
can be observed or unraveled from others by going into the
time domain and perturbing the system far from its equilibrium
state. Others include, for example, pumping the lattice and
driving the system from the disordered to a (possibly) ordered
phase [40]. Within this context, the combined capability of
experiment and theory in nonequilibrium spectroscopy and
modeling is set to grow into a fruitful approach to studying
emergent physics.
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