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Long-lived nonequilibrium states in the Hubbard model with an electric field
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We study the single-band Hubbard model in the presence of a large spatially uniform electric field out of
equilibrium. Using the Keldysh nonequilibrium formalism, we solve the problem using perturbation theory in the
Coulomb interaction U . We present numerical results for the charge current, the total energy of the system, and
the double occupancy on an infinite-dimensional hypercubic lattice with nearest-neighbor hopping. The system
is isolated from an external bath and is in the paramagnetic state. We show that an electric field pulse can drive the
system to a steady nonequilibrium state, which does not evolve into a thermal state. We compare results obtained
within second-order perturbation theory (SOPT), self-consistent SOPT, and iterated perturbation theory (IPT).
We also discuss the importance of initial conditions for a system which is not coupled to an external bath.
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I. INTRODUCTION

The recent growth of experimental interest in systems
driven out of equilibrium [1] has stimulated a lot of theoretical
activity to explain these experiments. The observation of Bloch
oscillations in ultracold atoms [2] and the corresponding
theoretical treatment of the fermionic Hubbard model in an
additional linear potential [3] give an interesting twist to the
classical problem of the electric current on a lattice and require
nonequilibrium many-body methods, developed by Kadanoff
and Baym [4] and Keldysh [5].

The nonequilibrium dynamical mean-field theory (NE-
DMFT), introduced by Schmidt and Monien [6] and Freericks
et al. [7], is a combination of the equilibrium [8] and
nonequilibrium DMFT formalisms. It has made feasible
nonperturbative calculations of many-body models driven
out of equilibrium by external fields. While for the Falicov-
Kimball (FK) model it was possible to formulate a definitive
numerically exact DMFT algorithm [7,9], for the Hubbard
model one currently has to choose between quantum Monte
Carlo methods and perturbative calculations. The nonequilib-
rium continuous time quantum Monte Carlo (NE CT-QMC)
technique [10,11] is a powerful calculational tool, but it suffers
from the so-called phase problem, which renders its usage to
relatively short real times. Hence, most Hubbard model results
for NE-DMFT are perturbative.

Recently, there has been a significant interest in the many-
body thermalization of isolated systems [12]. Cramer et al. [13]
studied the Bose-Hubbard model and provided general argu-
ments that after the interaction quench to a noninteracting state
the system will relax to a nonthermal state. The opposite case
of an interaction quench to a nonzero interaction was studied
by Eckstein and Kollar [14] for the Falicov-Kimball model
on the Bethe lattice using a numerically exact NE-DMFT
approach. It was found that the system never thermalizes.
The inability of the system to thermalize was attributed to
the presence of an infinite number of conserved quantities for
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the Falicov-Kimball model, due to the presence of immobile
f particles. Later Eckstein et al. [15] found that the Hubbard
model directly thermalizes only for interactions close to U

dyn
c .

For quenches to interactions both smaller and larger, the
system is initially trapped in a quasistationary nonthermal state
called a prethermalized state. Using the quantum Bolzmann
equation, Moeckel and Kehrein [16] argued that for small
values of the Coulomb interaction these prethermalized states
eventually evolve into thermal states on timescales of the order
of τtherm ∼ ρ−3

0 (0)U−4. However, there is evidence [17] that
the existence of the prethermalized state is an artifact of the
infinite dimensional limit.

Despite the fact that the prethermalized states cannot be
described by a simple Fermi distribution, interaction quenches
in the Hubbard model usually do lead to distributions qualita-
tively similar to Fermi ones. In particular the double occupancy
in prethermalized states decreases as the repulsive interaction
increases. An interesting change in behavior happens when,
instead of quenching the interaction, one quenches an external
electric field. When a DC field is applied to a system, it is
predicted to heat up [18] to T = ∞ as the current goes to zero,
thus providing an example of thermalization. Fotso et al. [19]
predict that this is just one of five different scenarios that
can occur for such a field quench. Tsuji et al. [20] studied
the Hubbard model under the application of an electric pulse
to the system, which is initially prepared in an interacting
thermal state (no U quench). They found that by tuning the
pulse parameters it is possible to achieve a long-lived state,
corresponding to a thermal state with a negative temperature,
where electrons behave as though they attract to each other.

In this paper, we study the behavior of the Hubbard model in
the presence of a uniform electric field. In particular, we show
how a combination of the interaction quench and an electric
field pulse can drive the system to a long-lived nonequilibrium
state, where the particle distribution does not resemble a
Fermi distribution. These results show the possibility of
prethermalizationlike behavior even for systems where double
occupancies can easily form, which is a counterpart to
strongly coupled systems which have been argued to have
prethermalized states because it becomes difficult to release the
energy of a double occupancy when the interaction is large. Our
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approximate calculations show that the system conserves its
properties even for times comparable to theoretical estimates
of the lifetime of prethermalized states. In Sec. II we develop
the formalism, in Sec. III we show the numerical results, and
in Sec. IV we present our conclusions.

II. FORMALISM

We consider the single-band Hubbard model on a d-
dimensional Bravais lattice with the Hamiltonian

Ĥ (t) =
∑
ij,σ

Tij (t)ĉ†iσ ĉjσ − μ0

∑
iσ

ĉ
†
iσ ĉiσ + U (t)

∑
i

n̂i↑n̂i↓,

(1)

where Tij (t) are hopping coefficients with the time dependence
described below, μ0 is the noninteracting chemical potential,
and U (t) is the on-site Coulomb interaction (which can also be
time dependent). We describe the external spatially uniform
electric field via the vector potential A(t)

E(t) = −∂tA(t) . (2)

The Peierls substitution [21] is used to account for the electric
field in the Hamiltonian, so the hopping matrix elements satisfy

Tij (t) = Tij exp[−iA(t) · (Rj − Ri)] . (3)

In k space, the noninteracting part of the Hamiltonian in
Eqs. (1) and (3) becomes diagonal:

Ĥ0(t) =
∑

k

ξ (k − A(t))ĉ†kσ ĉkσ (4)

where ξ (k) = ε(k) − μ0, and ε(k) is the dispersion law ε(k) =∑
i T0ie

ik·Ri .
In order to investigate the Hamiltonian in Eq. (1), we use

the Keldysh nonequilibrium Green’s function formalism. For
the details of the formalism, we refer the reader to the original
article [5] and the review by Rammer and Smith [22]. At
time t0 = 0, the system is prepared in thermal equilibrium at
temperature T0 with E(t0) = U (t0) = 0. Then one can study
various profiles of turning on U (t) and E(t).

The matrix Green’s function is expressed using cre-
ation/annihilation operators in the Heisenberg representation
as

G
kσ

(t,t ′) = G
αβ

kσ (t,t ′) = −i〈TC ĉkσ (tα)ĉ†kσ (t ′β)〉0 (5)

where TC is the time-ordering operator along the Keldysh
contour, indices α,β = ± determine whether the correspond-
ing time lies on the forward or return branch of the Keldysh
contour, and 〈...〉0 denotes the thermal average with respect to
the initial noninteracting thermal density matrix

〈...〉0 = Tr(ρ̂0...)

Tr(ρ̂0)
, ρ̂0 = e−Ĥ (t0)/T0 , (6)

with T0 being the temperature at t0 (and the vector potential
vanishes at t0). Analytic formulas for the noninteracting
Green’s functions G0

kσ
(t,t ′) have been derived in Refs. [23]

and [24]. We would like to emphasize that those are exact
solutions for the Hamiltonian in Eq. (4), which means that the
electric field is taken into account nonperturbatively. So in
the following by the term “noninteracting” we mean functions

where the electric field is included, but the interaction between
electrons is not.

The matrix Green’s function in Eq. (5) obeys the Dyson
equation

G
kσ

= G
0,kσ

+ G
0,kσ

⊗ 

kσ

⊗ G
kσ

(7)

where the symbol ⊗ denotes the time convolution and matrix
multiplication

(A ⊗ B)αβ(t,t ′) =
∫ +∞

t0

∑
γ

Aαγ (t,t1)Bγβ(t1,t
′)dt1. (8)

For the Hubbard Hamiltonian in Eq. (4), the charge current
density operator is

ĵασ (t) = e

N�

∑
k

∂

∂kα

ε[k − A(t)]ĉ†kσ ĉkσ (9)

where N is the total number of lattice sites, and the current
density can be found using the equal-time lesser Green’s
function [24] G< = G+−

jασ (t) = − i

N

∑
k

G<
kσ (t,t)

∂

∂kα

ε[k − A(t)]. (10)

The lesser Green’s function G<
kσ (t,t ′) also allows one to

calculate the thermal average (per unit cell) of the double
occupancy operator D̂ = ∑

i n̂iσ n̂iσ̄

D(t) = i

NU (t)

∑
k

lim
t ′→t

{−i∂t − μ0 + ε[k − A(t)]}

×G<
kσ (t,t ′), (11)

and the total energy of the system per unit cell satisfies

Etot(t) = i

N

∑
k

lim
t ′→t

{−i∂t − μ0 − ε[k − A(t)]}G<
kσ (t,t ′).

(12)

For the sake of brevity we will omit the “per unit cell” wording
and refer to these quantities as the total current, the double
occupancy, and the total energy for the remainder of the paper.

When the shift U (t)nσ̄ of the chemical potential is in-
corporated into the noninteracting Green’s functions (i.e.,
perturbation theory is implemented in terms of the Hartree-
Fock Green’s functions), we have only a single diagram
for the second-order contribution to the self energy shown
in Fig. 1. When the lines correspond to the Hartree-Fock

i,tα j,t’βσ

− σ

− σ

FIG. 1. Second-order contribution to the self energy. The solid dot
vertices correspond to the interaction U and time changes along the
horizontal direction. The solid lines represent either the Hartree-Fock
(SOPT), or the dressed (self-consistent SOPT) Green’s function, or
the effective medium for the equivalent impurity problem (IPT).
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Green’s functions, we obtain the second-order perturbation
theory (SOPT). If we use the dressed Green’s functions for
the lines, we obtain the self-consistent SOPT. Thus for the
self-consistent SOPT case the corresponding formula is



αβ(2)
ij,σ (t,t ′) = U (t)Gαβ

ij,σ (t,t ′)Gβα

ji,σ̄ (t ′,t)Gαβ

ij,σ̄ (t,t ′)U (t ′).

(13)

We use the limit of infinite dimensions on the hypercubic
lattice with nearest neighbor (nn) hopping, introduced in
Ref. [25], which simplifies calculations tremendously. In this
limit, the hopping is scaled as Tnn = t∗

2
√

d
(d is the space

dimension and t∗ is the hopping energy unit), the density of
states becomes a Gaussian

ρ0(ε) = 1

t∗
√

π
exp

(
− ε2

t∗2

)
(14)

and the self energy becomes local [26]



ij,σ

= 

ii,σ

δij , 

kσ

= 

ii,σ

. (15)

The spatially uniform electric field E(t) is created by the vector
potential, aligned along the main diagonal of a hypercube,

A(t) = A(t)(1,1,...) . (16)

For this choice of the vector potential, current density
components jασ turn out to be identical for each axis, and
due to the scaling of the hopping, they vanish as ∼1/

√
d , but

the current density along the main diagonal jσ remains finite.
In numerical calculations we always plot this nonvanishing
component.

The computational scheme is realized as follows. We
calculate the Hartree-Fock Green’s functions G

0,kσ
using

analytic relations. Summation over k gives us the local
Hartree-Fock Green’s functions so that we can calculate the
second-order self energies from Eqs. (13) and (15). Then we
solve the Dyson equation in Eq. (7) numerically and find the
dressed Green’s function G

kσ
. Equation (7) is a linear Volterra

matrix equation of the second kind and allows a very efficient
numerical integration [27]. The solution obtained this way will
be the SOPT solution. If we want to obtain the self-consistent
SOPT solution, we use the SOPT Green’s function G

kσ
as a

first approximation. Then summing over k we obtain a local
dressed Green’s function G

ii,σ
, use it to calculate new values

for the self energies in Eqs. (13) and (15), and repeat all the
previous steps until the dressed Green’s functions converge.
Then the lesser Green’s function G<

kσ (t,t ′) is used to find the
charge current, the total energy, and the double occupancy
according to Eqs. (10)–(12).

This approach can also be generalized to IPT. In that case,
one needs to write additional equations for the impurity model,
and the self-energy diagram in Fig. 1 is applied to the impurity
Hamiltonian instead of the lattice one. We will not discuss the
details of the IPT scheme here and instead refer the reader to
articles by Amaricci et al. [28] and Eckstein and Werner [29].
Our approach is different from those only in the absence of
imaginary time piece of the contour, which is always valid if
one starts from the noninteracting thermal state.

i , t

FIG. 2. Hartree-Fock self-energy diagram for the Hubbard model.

III. LONG TIME APPLICABILITY AND SERIES
RESUMMATION

An issue for using perturbation theory is its applicability for
different parameter regimes. In the nonequilibrium formalism,
a perturbation expansion is expressed in powers of∫ tmax

t0

Ĥi(t)dt , (17)

where Ĥi(t) is the interaction part of the Hamiltonian in Eq. (1),
written in Heisenberg representation, and tmax should be larger
than any of the external times (i.e., times over which there
is no integration). For a time independent Ĥi(t) the integral
in Eq. (17) grows linearly with tmax, so that the terms of the
order of k in the interaction grow as t kmax, which can lead to
a divergence of the results if a resummation of the diagrams
is not done properly. This can be best seen if we consider
the Hartree-Fock diagram for the self energy, which is shown
in Fig. 2. For time-independent U , this diagram gives the
self-energy matrix


HF

ii,σ
(t) = −iUG<

0,ii,σ̄ (t) 1 = Un0,σ̄ · 1 , (18)

where 1 is the unit 2 by 2 matrix. Instead of a numerical
solution of the Dyson equation in Eq. (7), we can write it as
an infinite series

G
kσ

= G
0,kσ

+ G
0,kσ

⊗ 

kσ

⊗ G
0,kσ

+ G
0,kσ

⊗ 

kσ

⊗ G
0,kσ

⊗ 

kσ

⊗ G
0,kσ

+ ... (19)

and try to calculate the dressed Green’s function using the
explicit expression in Eq. (19). For the self energy in Eq. (18),
the inner integrations can be done analytically, leading to the
result

G
kσ

(t,t ′)=(
1 + iUn0,σ̄ (t ′ − t) + 1

2 (iUn0,σ̄ (t ′ − t))2 + ...
)

× G
0,kσ

(t,t ′) (20)

which sums up to

G
kσ

(t,t ′) = exp(−iUn0,σ̄ (t − t ′)) G
0,kσ

(t,t ′). (21)

From Eq. (20), we see that the truncation of the Dyson equation
after the kth power in U leads to results which diverge as
Uk(t − t ′)k and only an exact summation of the infinite series
in Eq. (19), or, which is the same, a numerical solution of the
Dyson equation in Eq. (7), correctly reproduces the oscillating
exponent in Eq. (21).

For a paramagnetic solution, we can generalize Eq. (21)
and claim that by using the Dyson equation, the single time
part of the self energy can be accounted for exactly with the
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++ + ... =

i , t i , t i , t i , t

FIG. 3. Single time self-energy diagrams for the Hubbard model.

formula

GR
kσ (t,t ′) = exp

(
−i

∫ t

t ′

σ̄ (t1)dt1

)
GR

0,kσ (t,t ′).

In the case of the Hamiltonian in Eq. (1), the sequence of
diagrams producing the single time part of the self energy is
shown in Fig. 3 and sums up to the dressed Green’s function

so that the self energy is


HF

ii,σ
(t) = −iU (t)G<

ii,σ̄ (t) 1 = U (t)nσ̄ · 1 , (22)

which means that we can analytically calculate the Hartree-
Fock Green’s function and therefore perform subsequent
perturbation theory relative to this function.

There are no inner integrations in the second-order self-
energy diagram in Fig. 1, however there are inner integrations
in higher-order diagrams, so one can still ask whether these
can lead to terms that are divergent as t → ∞. In fact they
do diverge [30], so in nonequilibrium calculations one has
to regularize these terms by using a series resummation
procedure, though it is not always clear how this can be done.

One may think that the divergence of the perturbation
expansion terms at large times is unique to the nonequilibrium
formalism, and, for example, in Matsubara formalism, such an
issue can never occur because the expansion is performed in
powers of ∫ β

0
Ĥi(τ )dτ

where the integration interval is fixed, therefore it may seem
that the summation of an infinite series in not necessary, since
taking enough expansion terms we can improve our expansion
as far as it is desired. But this is not exactly so. Writing the
Dyson equation as an infinite series

Gkσ (iωn) = G0
kσ (iωn) + G0

kσ (iωn)Unσ̄G0
kσ (iωn)

+G0
kσ (iωn)Unσ̄G0

kσ (iωn)Unσ̄G0
kσ (iωn) + ...,

(23)

we can find the resulting density of states (DOS)

ρ(ω) = (
1 + 2Unσ̄ (ω + μ) + 2U 2n2

σ̄ (ω + μ)2 + ...
)

× ρ0(ω + μ) (24)

where ρ0 is the noninteracting DOS in Eq. (14). The prefactors
to the exponent diverge at large frequencies, and although the
exponent prevents the divergence, it is obviously unphysical,
since Eq. (24) gives a negative DOS as ω → ∞. Only the
summation of all terms in Eq. (24) produces the correct result

ρ(ω) = ρ0(ω + μ − Unσ̄ ). (25)

In this sense the equilibrium result in Eq. (24) is a direct
analog of the nonequilibrium result in Eq. (20), because
any truncation of the perturbation series expansion leads
to unphysical results. Thus the Keldysh formalism and the
Matsubara formalism have similar convergence issues, but
in the Matsubara formalism these issues are hidden by the
finiteness of the imaginary time interval and by the simplicity
of the Dyson equation, which reduces to a simple algebraic
equation, as opposed to the integral equation in Eq. (7).

Up to now we have considered the simple case of the
Hartree-Fock self energy, which had no inner integrals, and
therefore the infinite series summation was needed only for
the Green’s function calculation. But higher order self-energy
contributions have internal vertices, over which the integration
must be performed. In this case, regularization of the large time
divergences leads to Dyson-like equations for the calculation
of the self energy too.

One may question the validity of the perturbation expan-
sions at large times, since regularization of the divergent terms
does not guarantee the precision of the results. We think that
this question should be answered individually in each case,
taking into account how good the observables, which should
be conserved, are conserved, how physical the results are
and so on. But if we want to advocate the nonequilibrium
perturbation expansion, we can say that higher-order self-
energy expansions in the Matsubara formalism will suffer
from the same problems at large frequencies as higher-order
self-energy expansions in Keldysh formalism at large times, if
resummation of diagrams is not done properly.

IV. NUMERICAL RESULTS

We present the results of SOPT, self-consistent SOPT,
and IPT calculations of the nonequilibrium current, double
occupancy, total energy, and Green’s functions as functions
of time for a half-filled metal. In equilibrium, perturbative
approaches provide reliable results when U is far from metal-
insulator transition, which happens at [31] Uc(T = 0) ≈ 4.1.
The initial state of the system is noninteracting (U = 0) and
is in thermal equilibrium at an initial temperature T0. In all
calculations presented in this paper, unless otherwise noted, the
electric field E and Hubbard U are turned on simultaneously
at t = 0, thus one should remember that temperatures T0 given
for each plot characterize only the initial total energy of the
system, since an additional energy of 1

4U is instantaneously
pumped into the system due to the sudden change of U at
t = 0, and then subsequent Joule heating can further change
the energy when a current flows. On the plots, the energy
and temperature are measured in units of hopping energy
t∗, time—in units of �/t∗, the electric field—in units of
t∗/(ea)—where a is the lattice constant, and the current
density—in units of et∗/(�ad−1).

A. No electric field

In order to check our numerical scheme and compare
different methods, we consider first the case without the
electric field. From the equilibrium calculations, we know
that all three methods work well for small U regimes, but
the SCSOPT is unable to show the formation of the side bands
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FIG. 4. (Color online) The equilibrium density of states (DOS)
versus frequency ω, calculated using SOPT (solid), SCSOPT (dotted),
and IPT (dashed) at T = 0.01 for (a) U = 2 and (b) U = 3.

as U is increased (see Fig. 4). The SOPT is able to capture the
side bands formation but becomes less reliable compared to
the IPT for large U ’s. This equilibrium experience agrees well
with the nonequilibrium calculations, shown in Fig. 5, panels
(a) and (c), when the interaction U (t) is turned on linearly from
0 to U during the time interval [0,19]. We see that the final
total energy in SCSOPT differs also from that of the SOPT
and IPT calculations, which are very close to each other, and
the difference grows as U is increased, because the density of
states in SCSOPT deviates more and more from the SOPT and
IPT density of states, as seen in Fig. 4.

The situation changes for the case of an interaction
quench [15], shown in panels (b) and (d), when U (t) = Uθ (t).

Since the Hamiltonian in Eq. (1) becomes time independent,
the total energy should be conserved. However, we see that the
SOPT always loses energy. For example, for the case U = 2,
shown in panel (c), the additional energy, pushed into the

-0.55

-0.50

-0.45

-0.30

-0.25

-0.20

E
to

t

U=2, ton=19

SOPT
SCSOPT

IPT

-0.18

-0.16

-0.14

-0.12

-0.10

-0.08

-0.06

U=2, ton=0

(b)

SOPT
SCSOPT

IPT

-0.6

-0.5

-0.4

-0.2

-0.1

0 2 4 6 8 12 14 16 18

E
to

t

time

U=3, ton=19

(c)

SOPT
SCSOPT

IPT

-0.2

0.0

0.2

0.4

0.6

0.8

1.0

0 2 4 6 8 12 14 16 18time

U=3, ton=0

(d)

SOPT
SCSOPT

IPT

FIG. 5. (Color online) Nonequilibrium total energy for (a) U =
2, ton = 19, (b) U = 2, ton = 0, (c) U = 3, ton = 19, (d) U = 3, ton =
0, versus time calculated using SOPT (solid), SCSOPT (dotted), and
IPT (dashed) for T0 = 0.01.

system, should lead to the final temperature T ≈ 0.47 after the
system reaches thermal equilibrium. Instead, the final energy
corresponds to a temperature of ∼0.057. This behavior of the
SOPT was observed for the range of values U � 3 and also for
an initial temperature T0 = 0.1; the scheme cools down to the
initial temperature, “forgetting” about the additional energy
pumped into it by the sudden change of U . This is a problem
that can occur for approximations that are not conserving.

The results produced by SCSOPT and IPT look more
reliable for U = 2 [panel (b)]. The SCSOPT conserves the total
energy much better than the IPT does. Due to the difference in
energy ranges between panels (a) and (b) one may think that
the situation in nonequilibrium is worse for the IPT, but it is
not the case and the difference between final total energy in
the SCSOPT and IPT is almost the same for panels (a) and (b).
For the case U = 3 the SOPT results become worse, the IPT
fails completely (the total energy starts to grow around t ∼ 2),
and only the SCSOPT calculations produce reasonable results.

We can conclude that for processes where the interaction
changes slowly and the system stays close to thermal equi-
librium, the relation between the SOPT, IPT, and SCSOPT
remains the same as in equilibrium: The SOPT and IPT
produce similar and most trustworthy results, because they are
more reliable in calculating the static DOS, while the precision
of the SCSOPT calculations becomes worse as U becomes
larger. But when the system parameters change fast, the SOPT
is unable to capture the thermodynamics of the process. This
means it is still able to calculate the static DOS properly, but
it is not able to calculate the electron distribution changes and
forces the system to restore the initial temperature. This is the
so called memory of the initial state [14]. At the same time,
the IPT and SCSOPT remain suitable methods for calculating
the fast electron distribution evolution, although the IPT fails
at some critical value of U , unlike the equilibrium situation,
where the IPT is able to describe the insulating (i.e., large U )
regime as well (when at half filling).

In order to investigate the issue of the thermalization of
the system, we follow the procedure of Eckstein et al. [15]
and plot the double occupancy for the interaction quench
U (t) = Uθ (t). Figure 6 shows the double occupancy for
U = 2. For each curve we take Etot(t = 19.9) and calculate
the equilibrium double occupancy corresponding to this value.
This equilibrium double occupancy is shown by the arrows.
For each nonequilibrium method, the equivalent equilibrium
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FIG. 6. (Color online) Double occupancy for the interaction
quench with U = 2 in (red solid) SOPT, (green dotted) SCSOPT,
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FIG. 7. (Color online) Nonequilibrium (a) current density, (b)
total energy, and (c) double occupancy versus time for different values
of T0 with E = 1, U = 0.25. Solid black lines correspond to the
SOPT with T0 = 0.1, solid bold red lines correspond to the SOPT
with T0 = 1, and dotted lines to the IPT calculation with T0 = 0.1.

method is used, i.e., for the nonequilibrium SOPT the corre-
sponding double occupancy is calculated using the equilibrium
SOPT and so on. The plot shows that for all methods the
system converges to the corresponding equilibrium value.
Calculations for the range of U � 2 show that for the SCSOPT
and IPT the difference between the final nonequilibrium
double occupancy and the corresponding equilibrium one
is less then 0.3%, and for the SOPT it is around 0.3% for
U = 0.25 and around 2% for U = 2.

B. Constant electric field

In Fig. 7, we plot the current density, total energy, and
double occupancy for T0 = 0.1 (black, SOPT calculation),
T0 = 1 (bold red, SOPT calculation), and T0 = 0.1 (black
dotted, IPT calculation). The system is a metal (U = 0.25)
placed in a diagonal electric field with the same components
Eα(t) = Eθ (t) along each axis and E = 1.

The SOPT current density (upper panel, solid lines) is a sine
function with period 2π�/(eaE) (or 2π/E in the units used
for plotting), modulated by a time-dependent amplitude. The
main oscillation period, as well as the physical mechanism
of the origin of the oscillating current, is the same as for
the Bloch oscillations in the noninteracting case [24]. The
modulation produces beats, which become smaller with time,
however do not vanish up to the largest times we have studied,
which is tmax = 400; the period of the beats decreases as the
initial temperature increases, which can be seen most easily
on the double occupancy panel. Higher initial temperatures
also reduce the amplitude of the current density oscillations.
The IPT curve (T0 = 0.1, dotted lines) shows a very different
behavior. Up to t ≈ 30 the current coincides with the SOPT
result, but then the oscillation amplitude continues to decline,
while the SOPT amplitude shows beats.

The current density plots in Fig. 7 show a dependence of
the system behavior on its initial temperature, despite the fact

that additional energy is pumped into the system by the electric
field. The total energy oscillations (middle panel) have a phase
shift of π/2 with respect to the current density, in agreement
with the relationship dEtot(t)/dt = E · j. This relationship
reflects the fact that the system energy increases, whenever
there is a current j in the direction of the electric field E,
and decreases, when the direction of the current is opposite.
The double occupancy (lower panel) is oscillating close to the
noninteracting value of 0.25. The main oscillation period is
the same as for the current density, but a slow temperature-
dependent modulation is now present in both the amplitude
and the phase of the oscillations. Note that for the half-filled
model in thermal equilibrium, the repulsive U (i.e., U > 0)
always leads to a double occupancy that satisfies D < 0.25,
while values D > 0.25 are possible only for attractive U . Since
we consider only a repulsive interaction here, the transient
times where the double occupancy satisfies D > 0.25 should
be viewed as a signature of nonequilibrium effects.

On the other hand, calculations within the IPT (Fig. 7,
dotted curves) show that in the long time limit the system
always approaches the thermal equilibrium state with T =
∞: The current vanishes, the total energy and the double
occupancy approach Etot = 0 and D = 0.25, respectively, and
the single particle distribution function (not plotted here)
shows that all available states are occupied with the same
probability [30]. This scenario of heating the system to an
infinite temperature is discussed in Refs. [18] and [29]. Of
course, such a situation never occurs in a real system (which is
attached to some form of a heat bath), since the heat is always
removed somehow [28], but if a mechanism for heat removal
is weak, the temperature can rise significantly.

The self-consistent SOPT calculations (not shown in
Fig. 7) agree well with the IPT results both qualitatively and
quantitatively: Current, total energy, and the double occupancy
coincide within about 5% up to t ≈ 50, but for larger times
IPT results show a faster decay. Thus we can conclude that
in presence of the electric field, the SOPT is reliable for
small time scales only, unlike the equilibrium case, where
the precision of the SOPT depends solely on the value of the
Coulomb interaction U .

C. Pulsed electric field

In this subsection, we examine the case when the electric
field is acting only within a finite time interval t ∈ [0,tf ],
Eα(t) = Eθ (t)θ (tf − t). For all the cases studied below, we
have verified that the IPT and the self-consistent SOPT results
are visually indistinguishable, so we choose the latter, since
it is less computationally demanding, therefore we can do
calculations using a finer energy grid for higher accuracy.

In Fig. 8, we plot the double occupancy and current
density for U = 0.25 (black) and U = 1 (bold red) for E = 1,
T0 = 0.1, and tf = 2 calculated within self-consistent SOPT.
Once the electric field is turned off, the double occupancy
relaxes to a constant value after a characteristic time ≈ 1,
which is consistent with an estimate τe ≈ �

t∗ of the time
between electron-electron collisions in the half-filled tight
binding model. The current decay can be fit by j (t) ≈
j (tf ) exp(−U 2(t − tf )/2), thus the characteristic time for
current decay turns out to be inversely proportional to U 2

in accordance with Boltzmann equation results [29].
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FIG. 8. (Color online) Nonequilibrium (a) double occupancy and
(b) current density versus time in the self-consistent SOPT for
different values of U for a pulsed field with E = 1, T0 = 0.1, tf = 2.

This vanishing of the current after the electric field is
turned off is due to the noncommutativity of the Hamiltonian
in Eq. (1) with the charge current operator in Eq. (9).
Thus the simultaneous presence of both the lattice and the
Coulomb interaction provides another mechanism for breaking
quasimomentum conservation, in addition to introducing a
thermal bath, as suggested in Ref. [28].

It is interesting to note that for small U and short electric
field pulses the SOPT produces results which are almost
identical to those of the self-consistent SOPT. Thus the SOPT
is accurate for short times, and only fails when the electric
field is present for longer times.

The current and the double occupancy behavior suggest
that at t = 100 for both U = 0.25 and U = 1, the system
reaches some stationary state. Notice that the final values of
the double occupancy are larger than 0.25 and increase with
the increase of U , which is impossible in thermal equilibrium
for repulsive U .

In order to investigate the origin of this phenomenon,
we plot the single-particle distribution function n(ε,ε̄; t) =
−iG<

ε,ε̄(t,t). As discussed in Ref. [24], when the E field is
aligned along the main diagonal of the hypercube, the k
dependence of the Green’s functions can be reduced to the
dependence on two “energies” εk and ε̄k, compared to the case
without an electric field, where we have the dependence of
all functions only on εk. In Fig. 9, we plot n(ε,ε̄; t = 100) for
E = 1, U = 0.25, T0 = 0.1, and tf = 1.625. If the system has
reached a thermal equilibrium, the resulting distribution must
be independent of ε̄, while along the ε axis we would have
a thermal distribution, corresponding to some temperature
T (and perhaps broadened due to the interactions). Instead,
we have a strong ε̄ dependence, and the ε dependence is far
from thermal, especially for ε̄ ≈ 0, where n(ε,ε̄) has a jump
at the Fermi energy ε = 0 but does not vanish for large ε’s.
Therefore at large times the system is stuck in a quasistationary
nonequilibrium state. It is exactly this nonequilibrium state
which is responsible for values of the double occupancies
which are incompatible with a thermal state.

FIG. 9. (Color online) Particle distribution function in the self-
consistent SOPT at t = 100 for a pulsed field with E = 1, U = 0.25,
T0 = 0.1, tf = 1.625.

In Fig. 10, we plot the imaginary part of the Keldysh Green’s
function ImGK

εε̄(t1,t2) as a function of times t1,t2 for a pulsed
field with E = 1, U = 0.25, T0 = 0.1, tf = 3, and with fixed
ε = −2.625 and ε̄ = 1.125. We see that whenever t1 � 5 or
t2 � 5 the Keldysh function depends on both the average ta =
(t1 + t2)/2 and the relative tr = t1 − t2 times. But when t1 � 5
and t2 � 5 this function becomes independent of ta (i.e., the
height of the surface in Fig. 10 does not change as we move
along lines t2 = t1 + const.). The same holds for the real part
of the Keldysh Green’s function, as well as for the real and
imaginary parts of the retarded Green’s function for all values
(ε,ε̄). Thus we see that the nonequilibrium states of the system,
created by a pulsed E field are so called steady states, i.e., states
independent of the average time.

We can summarize our findings by saying that using
an electric field pulse we force a system into a long-lived
nonequilibrium steady state. It was argued by Moeckel and
Kehrein [16] that for small values of the Coulomb interaction,
the full thermalization happens on timescales of the order
of τtherm ∼ ρ−3

0 (0)U−4, so by long-lived we mean that this
nonequilibrium steady state does not thermalize even on this
time scale.

FIG. 10. (Color online) ImGK
εε̄(t1,t2) as a function of two times

t1,t2 for the pulsed field with E = 1, U = 0.25, T0 = 0.1, tf = 3, and
with fixed ε = −2.625 and ε̄ = 1.125.

245153-7



JOURA, FREERICKS, AND LICHTENSTEIN PHYSICAL REVIEW B 91, 245153 (2015)

0 0.5 1 1.5 2 2.5 3
tf [h/t*]

0.2

0.25

0.3

D
(t

=
50

)

U=0.25

U=1

FIG. 11. (Color online) Double occupancy versus the length of
the E pulse tf in the self-consistent SOPT measured at t = 50 for
T0 = 0.1, E = 1, U = 0.26 (dashed black), and U = 1 (bold red).

In order to investigate how the double occupancy of the
resulting nonequilibrium steady state depends on the length
of the E field pulse tf , we plot the double occupancy
measured at t = 50�/t∗ versus tf in Fig. 11. When tf = 0, the
double occupancy D(t = 50) corresponds to some equilibrium
thermal state and is always less than 0.25. Depending on the
length of the pulse, we can achieve D ≈ 0.27 for T0 = 0.1
and U = 0.25. As we can see from Fig. 8 even higher
double occupancies can be achieved for U = 1. The double
occupancies for both values of U achieve maximums when∫ tf

0 Eα(t)dt is roughly π in agreement with the prediction in
Ref. [20], however we believe that the final distribution of
the electrons in Fig. 9 cannot be described by the effect of
a negative temperature only and is, in fact, a nonequilibrium
distribution.

V. CONCLUSIONS

We have shown how various properties of a nonequilibrium
state of the Hubbard model in a spatially uniform electric field

can be calculated perturbatively in the Coulomb interaction U .
Such calculations are computationally inexpensive and allow
us to access times much longer than other existing methods,
so that even a transition of the system to the steady state can
be studied. We have shown that when the interacting system
without the external bath in the metallic state is placed into
a DC electric field the Bloch oscillations of the current are
suppressed by the heating of the system to infinite temperature.
We have also shown that a short electric field pulse can create
a steady (i.e., average time independent) nonthermal state,
which can exist for times longer than the available theoretical
estimates of lifetimes for nonthermal states.

One might think that the presence of this steady state is just
an artifact of the truncation of the perturbation series. Indeed,
at strong coupling this can occur if the interaction strength is
much larger than the hopping, because relaxation processes
require multiparticle effects. But here we have a weak U and
the perturbation theory is a self-consistent one, so it includes
many high-order diagrams. Hence, it is unlikely that these
effects arise solely from the truncation of the perturbation
theory. For large U , there is evidence that steady states can
occur even for continuously driven systems [19], but the
scenario for thermalization is more complex than what is seen
here at weak coupling.
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