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a b s t r a c t

The mapping of steady-state nonequilibrium dynamical mean-field theory from the lattice to the

impurity is described in detail. Our focus is on the case with current flow under a constant dc electric

field of arbitrary magnitude. In addition to formulating the problem via path integrals and functional

derivatives, we also describe the distribution-function dependence of the retarded and advanced

Green’s functions. Our formal developments are exact for the Falicov–Kimball model. We also show how

these formal developments are modified for more complicated models (like the Hubbard model).

& 2009 Elsevier B.V. All rights reserved.

1. Introduction

Dynamical mean-field theory (DMFT) began in 1989, when
Metzner and Vollhardt suggested the large-dimensional limit
(with an appropriate rescaling of the hopping integral) as a
simplifying limit for the many-body problem that nevertheless
still included the important competition between minimizing the
kinetic and potential energies of the system [1]. These ideas were
implemented into a complete DMFT by Brandt and Mielsch with
the exact solution of the Falicov–Kimball model at half filling [2].
Since that time, nearly all equilibrium many-body models have
been solved in the large-dimensional limit with DMFT. Recently,
progress has been made on nonequilibrium extensions of DMFT
[3–7] for the Falicov–Kimball model and for the Hubbard model
[8]. In situations where the perturbing fields (or the time-
dependent part of the Hamiltonian) maintains the translational
invariance of the lattice, the self-energy remains uniform and
local, as follows from the Langreth rules [9] and the perturbative
expansion in the hopping by Metzner [10].

In this work, we examine the steady-state limit of none-
quilibrium DMFT. We start the system in equilibrium at an inverse
temperature b and wait a long time after the field or time-
dependence has been turned on, so that the system has
reorganized itself to the long-time response of the driving fields
(or time dependence) [11,12]. We are inherently assuming that the
long-time limit of the Hamiltonian is different from the original
equilibrium Hamiltonian. It need not have any explicit time
dependence in this limit though. We will show that the Keldysh
formulation of the many-body theory [ignoring the third
(imaginary) branch of the contour described by Wagner [13]]

produces the exact steady-state solution for the Falicov–Kimball
model; we will also discuss modifications for the Hubbard model
(and more complicated models). Our approach works with
functional integrals and derivatives. Most of the techniques are
completely straightforward, but these details have not appeared
in the literature yet, and provide useful insights into the solution
of nonequilibrium problems via DMFT.

2. Formalism for the Falicov–Kimball model

We will focus our efforts first on the Falicov–Kimball
model, whose Hamiltonian [15] is the following (in a uniform
electric field described by a uniform vector potential E ¼
�@AðtÞ=c@t):

HFK ¼
X

k

fe½k� eAðtÞ=‘ c� � mgcykck þ U
X

i

cyi ciwi; ð1Þ

where we employed Peierls’ substitution [14]. Here, ck and cyk
destroy and create a spinless itinerant fermion with momentum k,
eðkÞ ¼ �limd-1ðt

�=
ffiffiffi
d
p
Þ
Pd

i¼1 coski is the bandstructure on an
infinite-dimensional hypercubic lattice, m is the itinerant-electron
chemical potential, U is the conduction-electron–local-electron
interaction, wi is the number operator for the spinless localized
electrons at site i, and we use the real-space basis for the itinerant
electron operators in the second term of H. In the following we
set ‘ ¼ c ¼ t� ¼ 1.

We are interested in the steady-state limit of the response,
which can be determined in the limit where the vector potential is
turned on in the infinite past (but after the system has fully
equilibrated into an equilibrium distribution with inverse tem-
perature b); in other words, we choose AðtÞ ¼ limt0-�1y
ðt � t0Þðt � t0ÞE. In nonequilibrium physics there are two different
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Green’s functions that are required to describe the system. One is
the retarded Green’s function and the other is the Keldysh Green’s
function. The former describes how the quantum density of states
(DOS) varies with energy, while the latter describes how the
electrons are distributed amongst those states. Naively, one
would assume that the quantum states would be independent
of the initial temperature, although they will depend on the
electric field strength, the fillings of the particles, and the
interaction energy. But it is well known in equilibrium many-
body physics that interacting systems often display some
temperature dependence to the DOS. Noninteracting problems,
and the Falicov–Kimball model are exceptions, however, where
the DOS is independent of how the electrons are distributed
amongst the states. It is the goal of this work to elaborate on this
situation in nonequilibrium cases.

Our starting point is to define the contour-ordered Green’s
function on the two-branch Keldysh contour, which runs from
t ¼ �1 to 1 and back. We define it only for the case of
an impurity in a time-dependent dynamical mean field
denoted lC:

GCðt; t
0Þ ¼ �iTrcf fTCrimpSðlCÞcðtÞc

yðt0Þg=Z; ð2Þ

with rimp the steady-state density matrix for the impurity, the
operators denote time evolution in the Heisenberg picture with
respect to the impurity Hamiltonian Himp ¼ �mcyc þ Uwic

yc,
the S-matrix (evolution operator) satisfies

SðlCÞ ¼TCexp �i

Z
C

dt

Z
C

dt 0cyðtÞlCðt ; t
0Þcðt 0Þ

� �
; ð3Þ

Z ¼ TrcfrimpTCSðlCÞ is the partition function, the time ordering
is with respect to the ordering along the contour, and the trace is
over the four states of the spinless conduction and localized
electrons. The long-time-limit density matrix is a priori unknown
(while the lambda field is determined self-consistently with the
DMFT algorithm). In practice, one needs to evolve the full many-
body system from the time the field is turned on until the long-
time limit is reached (and use the so-called restart theorem [16]
to determine it). We will see, however, that the density matrix
does not enter into the calculation of retarded or advanced
quantities for the Falicov–Kimball model, so we defer further
discussion at the moment. We will work with Wigner coordi-
nates [17] of average T ¼ ðt þ t0Þ=2 and relative trel ¼ t � t0 time
below.

We begin our discussion by considering a problem that has no
localized particles, so we do not take the trace over the f -
electrons, but instead, simply set wi ¼ 0. The full solution,
including the trace over f-particles can be easily constructed from
this solution, as we show below. It is convenient to break up the
two-branch contour into a þ branch, where the time increases
from �1 to þ1 and a minus branch, where time decreases
from þ1 to �1. Then the evolution operator in Eq. (3) can be
rewritten as

SðlCÞ ¼TCexp �i

Z 1
�1

dt

Z 1
�1

dt 0fcyþðtÞl
T
ðt ; t 0Þcþðt

0Þ

�

�cyþðtÞl
o
ðt ; t 0Þc�ðt

0Þ � cy�ðtÞl
4
ðt ; t 0Þcþðt

0Þ

þcy�ðtÞl
T
ðt ; t 0Þc�ðt

0Þg

i
; ð4Þ

where the fermionic operators with the þ or � subscript live on
the corresponding time branch; the minus sign enters from the
change of direction in how the time evolves on the two different
branches. When both time arguments lie on the þ branch or the �
branch, we have time-ordered (T) or anti-time-ordered ðT Þ
objects, respectively. When one is on the þ and one on the �,
we have the lesser (o) or greater ð4Þ functions. To be concrete,

the four different Green’s functions are defined as follows (we
suppress the trace over the f -electrons, which is needed for the
Falicov–Kimball model, but is neglected for the moment):

GT ðt; t0Þ ¼ �iTrcfTtrimpSðlCÞcþðtÞc
y
þðt
0Þg=Z; ð5Þ

GT ðt; t0Þ ¼ �iTrcfTtrimpSðlCÞc�ðtÞc
y
�ðt
0Þg=Z; ð6Þ

Goðt; t0Þ ¼ iTrcfrimpSðlCÞc
y
þðt
0Þc�ðtÞg=Z; ð7Þ

G4ðt; t0Þ ¼ �iTrcfrimpSðlCÞcþðtÞc
y
�ðt
0Þg=Z; ð8Þ

where the t and t subscripts denote time-ordering or anti-time-
ordering, respectively. The retarded and advanced Green’s func-
tions are defined to be Gr ¼ GT � Go and Ga ¼ �GT þ Go, which
can be written as

Grðt; t0Þ ¼ �iyðt � t0ÞTrc½rimpSðlCÞfcðtÞ; c
yðt0Þgþ�; ð9Þ

Gaðt; t0Þ ¼ iyðt0 � tÞTrc½rimpSðlCÞfcðtÞ; c
yðt0Þgþ�; ð10Þ

in terms of the operators. Similarly, the Keldysh and anti-Keldysh
Green’s functions are defined to be GK ¼ G4 þ Go and GK ¼ �GT�

GT þ G4 þ Go, or

GK ðt; t0Þ ¼ �iTrcfrimpSðlCÞ½cðtÞ; c
yðt0Þ��g; ð11Þ

GK ðt; t0Þ ¼ �iTrcfrimpSðlCÞf½cðtÞ; c
yðt0Þ�� � ½cðtÞ; c

yðt0Þ��gg: ð12Þ

Note that the anti-Keldysh Green’s function vanishes, but we need
its functional form in order to take functional derivatives for
different Green’s functions below. Using the definition of the
evolution operator, we immediately find that the Green’s func-
tions can be found as functional derivatives of the partition
function. The explicit relations are

GT ðt; t0Þ ¼ �
dlnZ

dlT
ðt0; tÞ

; GT ðt; t0Þ ¼ �
dlnZ

dlT
ðt0; tÞ

; ð13Þ

Goðt; t0Þ ¼
dlnZ

dl4ðt0; tÞ
; G4ðt; t0Þ ¼

dlnZ

dloðt0; tÞ
; ð14Þ

for the time-ordered, anti-time-ordered, lesser, and greater
Green’s functions, respectively. We will discuss the alternative
retarded, advanced, Keldysh and anti-Keldysh basis below. Now
that we have all of these definitions, we can actually solve
explicitly for these Green’s functions using the equations of
motion (EOMs). We take the definition of the Green’s function,
and differentiate with respect to time; where appropriate,
one needs to take into account the time ordering, which
brings down terms proportional to the l fields. This procedure
is straightforward to complete, and the end result is the
following:

i@tG
T ðt; t0Þ ¼ dðt � t0Þ � mGT ðt; t0Þ þ

Z 1
�1

dtlT
ðt; tÞGT ðt ; t0Þ

�

Z 1
�1

dtloðt; tÞG4ðt ; t0Þ; ð15Þ

�i@tG
T ðt; t0Þ ¼ dðt � t0Þ þ mGT ðt; t0Þ �

Z 1
�1

dtl4ðt; tÞGoðt ; t0Þ

þ

Z 1
�1

dtlT
ðt; tÞGT ðt ; t0Þ; ð16Þ

i@tG
oðt; t0Þ ¼ �mGoðt; t0Þ þ

Z 1
�1

dtlT
ðt; tÞGoðt ; t0Þ

�

Z 1
�1

dtloðt; tÞGT ðt ; t0Þ; ð17Þ
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�i@tG
4ðt; t0Þ ¼ mG4ðt; t0Þ �

Z 1
�1

dtl4ðt; tÞGT ðt ; t0Þ

þ

Z 1
�1

dtlT
ðt; tÞG4ðt ; t0Þ; ð18Þ

with similar equations for derivatives with respect to t0 which
we do not write down explicitly.

On the lattice, one can exactly solve for the analogous contour-
ordered Green’s functions in the case where U ¼ 0 [18]. One can
see from the exact solution, that the noninteracting retarded
Green’s function becomes average time independent for long
times after the field has been turned on. We make the ansatz that
the retarded self-energy is also independent of average time in the
long-time limit (which is consistent with gauge-invariance
arguments [19,20,7], but is an independent ansatz). Then, it is
straightforward to show that the interacting retarded Green’s
function is independent of average time. In general, we can only
show that the average time dependence of the contour-ordered
Green’s function is periodic in average time with a period given by
the Bloch period 2p=E [8]. This allows us to make a continuous
Fourier transform with respect to the relative time (frequency
dependence o) and a discrete Fourier transform with respect to
the average time (Fourier components noB ¼ nE) for all of the
different components of the contour-ordered objects (time-
ordered, anti-time-ordered, lesser, greater, and Keldysh); the
retarded and advanced components depend only on the contin-
uous frequency o.

In order to find the Green’s functions, we need to employ the
simplification from the retarded and advanced Green’s functions,
which depend only on the relative time, or frequency o. Hence,
we need the EOM for the retarded and advanced functions, which
can easily be shown to satisfy

ði@t þ mÞGrðtÞ ¼ dðtÞ þ
Z 1
�1

dtlr
ðt � tÞGrðtÞ; ð19Þ

ði@t þ mÞGaðtÞ ¼ dðtÞ þ
Z 1
�1

dtla
ðt � tÞGaðtÞ; ð20Þ

and are solved by

GrðoÞ ¼ 1

oþ m� lr
ðoÞ

; GaðoÞ ¼ 1

oþ m� la
ðoÞ

; ð21Þ

where we have solved the problem in frequency space after a
Fourier transformation. Next, we can show, by using the identities
that relate the different quantities (T , T , o, 4, r, and a) to each
other, that the EOM for Go becomes

ði@t þ mÞGoðt; t0Þ ¼

Z 1
�1

dtlr
ðt � tÞGoðt ; t0Þ

þ

Z 1
�1

dtloðt; tÞGaðt � t0Þ; ð22Þ

since lT
¼ lr
þ lo and GT ¼ Go � Ga. Substituting in the appro-

priate Fourier expansions then yields

oþ n

2
oB

� �
GoðnoB;oÞ ¼ lr oþ n

2
oB

� �
GoðnoB;oÞ

þloðnoB;oÞGa o� n

2
oB

� �
: ð23Þ

This can be directly solved to yield

GoðnoB;oÞ ¼
loðnoB;oÞ

D oþ n

2
oB;o�

n

2
oB

� �; ð24Þ

with

D oþ n

2
oB;o�

n

2
oB

� �
¼ oþ n

2
oB þ m� lr oþ n

2
oB

� �h i

� o� n

2
oB þ m� la o� n

2
oB

� �h i
: ð25Þ

Similarly, we have

G4ðnoB;oÞ ¼
l4ðnoB;oÞ

D oþ n

2
oB;o�

n

2
oB

� �; ð26Þ

and GT ðnoB;oÞ ¼ GoðnoB;oÞ þ dn0GrðoÞ and GT ðnoB;oÞ ¼
GoðnoB;oÞ � dn0GaðoÞ; the Kronecker delta functions enter
because the retarded and advanced Green’s functions are
independent of average time. One can directly show that

lT
ðnob;oÞ ¼ lT

ðnob;oÞ ¼ loðnob;oÞ ¼ l4ðnob;oÞ; ð27Þ

for na0. Now replacing the retarded and advanced quantities in
the denominator by the time-ordered, anti-time-ordered, lesser
and greater quantities, gives

D ¼ oþ n

2
oB þ m� lT 0;oþ n

2
oB

� �h i

� o� n

2
oB þ m� lT 0;o� n

2
oB

� �h i

þlo 0;oþ n

2
oB

� �
�noB þ l4 0;o� n

2
oB

� �h i
; ð28Þ

which involves just the zeroth component of the Fourier series
terms for the dynamical mean fields.

Finally, we can now solve the functional differential equations,
which take the form Gðnob:oÞ ¼7dlnZ=dlð�noB;oÞ, and de-
termine the partition function as

lnZ ¼

Z
doln½ðoþ m� lT

ð0;oÞÞðoþ mþ lT
ð0;oÞÞ

þloð0;oÞl4ð0;oÞ� þ C

þ
X
na0

loðnoB;oÞl4ð�noB;oÞ � lT
ðnoB;oÞlT

ð�noB;oÞ

D oþ n

2
oB;o�

n

2
oB

� � ;

ð29Þ

where we fix an undetermined constant C by equating with the
noninteracting result. It is a straightforward exercise to show that
the functional derivatives of this partition function yield the
Green’s functions.

Our next step is to repeat these results for the alternative r, a,
K , K basis. To start, the evolution operator becomes

SðlCÞ ¼Ttexp �
i

2

Z 1
�1

dt

Z 1
�1

dt0
�

�ð½cyþðtÞ � cy�ðtÞ�l
r
ðt; t0Þ½cþðt

0Þ þ c�ðt
0Þ�

þ½cyþðtÞ þ cy�ðtÞ�l
a
ðt; t0Þ½cþðt

0Þ � c�ðt
0Þ�

þ½cyþðtÞ � cy�ðtÞ�l
K
ðt; t0Þ½cþðt

0Þ � c�ðt
0Þ�

þ½cyþðtÞ þ cy�ðtÞ�l
K
ðt; t0Þ½cþðt

0Þ þ c�ðt
0Þ�Þ

o
; ð30Þ

where we have added a new field lK which will be set equal to
zero for all physical matrix elements that we evaluate. Using the
definitions for the retarded, advanced, Keldysh and anti-Keldysh
Green’s functions shows that we can determine them via
functional derivatives

Grðt; t0Þ ¼ �
dlnZ

dlr
ðt0; tÞ

; Gaðt; t0Þ ¼ �
dlnZ

dla
ðt0; tÞ

; ð31Þ
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GK ðt; t0Þ ¼ �
dlnZ

dlK
ðt0; tÞ

; GK ðt; t0Þ ¼ �
dlnZ

dlK
ðt0; tÞ

; ð32Þ

where all derivatives must be evaluated with lK
¼ 0 after taking

the derivatives. Since we have already determined the retarded
and advanced Green’s functions when we solved for the Green’s
functions in the other basis, we need only solve for the Keldysh
and anti-Keldysh Green’s functions, which can be easily deter-
mined (via the EOM, or using the relation between the lesser and
greater Green’s functions) to give

GK ðnoB;oÞ ¼
lK
ðnoB;oÞ

D oþ n

2
oB;o�

n

2
oB

� �; ð33Þ

GK ðnoB;oÞ ¼
lK
ðnoB;oÞ

D oþ n

2
oB;o�

n

2
oB

� � ¼ 0: ð34Þ

Using these solutions, we can integrate them to find the partition
function, but we need to introduce appropriate anti-Keldysh fields
to give us the final functional form, because we set that field to
zero in all functional derivatives we evaluate. The end result is

lnZ ¼

Z
doln½ðoþ m� lr

ðoÞÞðoþ m� la
ðoÞÞ

�lK
ð0;oÞlK

ð0;oÞ� þ C

�
X
na0

lK
ðnoB;oÞlK

ð�noB;oÞ

D oþ n

2
oB;o�

n

2
oB

� � : ð35Þ

This completes the derivations for the two equivalent bases for
the impurity model with no localized electrons.

We now generalize for the case of the Falicov–Kimball model,
where we include the trace over the localized particles in all of the
relevant expectation values. The changes are straightforward to
work out, and we report them only in the r, a, K , and K basis.
Define the effective partition function by (noting that lr

¼ la�)

Z0ðmÞ ¼ C0exp

Z
do joþ m� lr

ðoÞj2

joþ mj2

� �
; ð36Þ

where C0 ¼ Trcrimp, is the noninteracting partition function for the
steady state in the absence of the time-dependent fields. Then the
full partition function is

ZFK ¼Z0ðmÞ þ e�bEf Z0ðm� UÞ; ð37Þ

with Ef the localized electron Fermi level, adjusted to give the
correct average filling of the localized particles. The average filling
satisfies

w1 ¼ 1�w0 ¼
e�bEf Z0ðm� UÞ

ZFK
; w0 ¼

Z0ðmÞ
ZFK

: ð38Þ

Green’s functions take the same form as they had for the case with
no localized particles, except we now have the sum of two terms:
one, weighted by w0, which is the result we have found above, and
one, weighted by w1, which has the same form as the result we
derived above but with m-m� U. The retarded Green’s function
takes the same functional form as it has in equilibrium, namely

GrðoÞ ¼ 1�w1

oþ m� lr
ðoÞ
þ

w1

oþ m� U � lr
ðoÞ

: ð39Þ

The Keldysh Green’s function is more complicated:

GK ðnoB;oÞ ¼ lK
ðnoB;oÞ

1�w1

D oþ n

2
oB;o�

n

2
oB

� �
2
64

þ
w1

D oþ n

2
oB;o�

n

2
oB

� �
jm-m�U

3
75: ð40Þ

Note that the retarded Green’s function appears to be
independent of the Keldysh Green’s function, and hence has no
explicit dependence on the distribution function, and thereby, no
dependence on the steady-state density matrix, but one needs to
carefully check to see whether the functional derivative of w1 has
any dependence on lK . Indeed, it is very easy to show that there is
no such dependence, because any functional derivative of the
partition function with respect to lK will bring down a factor of
lK , which is set equal to zero, so we immediately learn that

dmGrðoÞ
dlK
ðn1oB;o1

0Þ . . . dlK
ðnmoB;om

0Þ

�����
lK
¼0

¼ 0; ð41Þ

for all powers m. This is the generalization of the proof [21] that
the conduction-electron density of states for the Falicov–Kimball
model is independent of temperature in equilibrium to a proof of
the distribution-function independence of the conduction-elec-
tron density of states in the nonequilibrium ‘‘steady state’’. Of
course, this proof only holds in the case of a canonical distribution
of the heavy particles, where their filling is kept constant as the
temperature or the nonequilibrium driving fields are varied.

In order to understand this result more fully, we examine
explicitly the functional derivative of the retarded Green’s
function with respect to the Keldysh dynamical mean field in
the time basis. We find that

dGrðt; t0Þ

dlK
ðt 0; tÞ

¼
1

4
TrcfTCrimpSðlCÞ½c

y
þðt
0Þ � cy�ðt

0Þ�½cþðtÞ þ c�ðtÞ�

½cyþðt
0Þ � cy�ðt

0Þ�½cþðtÞ � c�ðtÞ�=ZFK : ð42Þ

The þ and � subscripts denote which branch of the Keldysh
contour the time arguments lie on. This expression can be
simplified somewhat to the form

dGrðt; t0Þ

dlK
ðt 0; tÞ

¼
1

4
TrcfrimpSðlCÞ

�f�2cðtÞTt½c
yðt0Þcyðt 0ÞcðtÞ� þ 2Tt ½c

yðt0Þcyðt 0ÞcðtÞ�cðtÞ

þTt ½c
yðt0ÞcðtÞ�Tt ½c

yðt 0ÞcðtÞ� þTt½c
yðt0Þcyðt 0Þ�Tt ½cðtÞcðtÞ�

þTt ½cðtÞc
yðt 0Þ�Tt ½c

yðt0ÞcðtÞ� �Tt½c
yðt0ÞcðtÞ�Tt ½cðtÞc

yðt 0Þ�

�Tt ½cðtÞcðtÞ�Tt ½c
yðt0Þcyðt 0Þ� �Tt½c

yðt 0ÞcðtÞ�Tt ½c
yðt0ÞcðtÞ�g:

ð43Þ

We know that this correlation function vanishes for the
Falicov–Kimball model, but it is nontrivial to show that this is
so, and it does not appear obvious at all from the operator
expectation value above.

Note that we cannot make any further progress on evaluating
the Keldysh Green’s function in the steady state without knowing
what the density matrix is, and we do not know this explicitly.

3. Formalism for the Hubbard model

In the case of the Hubbard model, both particles can move, so
we have an evolution operator given by the product SðlmC ÞSðl

k
C Þ in

all of the expectation values that we need to evaluate; the m

electrons are the old c electrons and the k electrons are the old f

electrons. Now we can setup the formalism for calculating the
Green’s functions directly, just as for the Falicov–Kimball model,
but unfortunately, in this case, the equations of motion cannot be
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solved explicitly, so we cannot determine an explicit formula for
the partition function anymore. These expectation values can be
calculated with the numerical renormalization group, if we have
the explicit operator form for the density matrix, but as we
discussed above, this is not the case.

What we do have is an explicit operator average that tells us
the dependence of the Green’s function on the distribution
function (via the Keldysh dynamical mean field). It is just the
result in Eq. (43), generalized to include spin indices s on the
operators with unbarred time arguments, and s0 on operators
with barred time arguments. If that correlation function could be
evaluated for an (approximate) solution of the retarded Green’s
function for the Hubbard model [8], then we could determine how
strong the distribution-function dependence of the retarded
Green’s function was for that model. Unfortunately, this does
not appear to be a simple task at this point in time.

4. Conclusions

In this work, we have shown a number of explicit details for
the impurity problem in nonequilibrium dynamical mean-field
theory when one approaches the steady-state response. For the
Falicov–Kimball model, we can advance the functional analysis to
the point where we can prove that the retarded (and advanced)
Green’s function does not depend on the distribution function. In
addition, we derived a two-particle correlation function, that
would need to be evaluated for the general case, which
determines the strength of the distribution-function dependence
of the retarded (and advanced) Green’s function. While we can
explicitly show this correlation function vanishes for the Fali-
cov–Kimball model, we do not know how one would evaluate it
for the Hubbard model, particularly because we do not know what
the steady-state density matrix is for the model. Nevertheless, we
anticipate that it is not large, as we expect the steady-state

nonequilibrium density of states to depend only weakly on the
distribution function.
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