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The nonlinear response of noninteractingsBlochd electrons is examined within a nonequilibrium formalism
on the infinite-dimensional hypercubic lattice. We examine the effects of a spatially uniform, but time-varying
electric fieldsignoring magnetic-field effectsd. The electronic Green’s functions, Wigner density of states, and
time-varying current are all determined and analyzed. We study both constant and pulsed electric fields,
focusing on the transient response region and on local properties. These noninteracting Green’s functions are
an important input into nonequilibrium dynamical mean field theory for the nonlinear response of strongly
correlated electrons.
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I. INTRODUCTION

The linear-response theory of Kubo1 and Greenwood2 is
an attractive approach to understand how electronssin the
solid stated interact with external electromagnetic fields. It
can be usedsin principled to calculate general linear-response
functions in systems that have arbitrarily strong electron
correlations. Surprisingly, the linear-response regime
for many bulk materialssespecially for parabolic band
semiconductors3–7d and devices, holds for a wide range of
electric field strengths.

But there are a multitude of interesting nonlinear effects
in electric fields. Most electronic devices have a nonlinear
current-voltage relationstransistors, Josephson junctions,
etc.d and there is wide interest in nonlinear effects in bulk
materials as wellssince it is the nonlinearity that often deter-
mines the ultimate performanced.

Devices are also becoming smaller and smaller. Semicon-
ductor processing line features are well below 100 nm, and
there is significant research effort on nanoscale devices. In
the latter case, a potential difference of one volt produces an
electric field on the order of 107 V/cm for nanometer scaled
devices. These fields are large enough for nonlinear effects to
be important, if not critical, to determine the proper behavior
in an external field. There also has been significant research
performed on high energy density pulsed laser experiments,
where fields as high as 1010 V/cm can easily be attained
over a short time scale. In that case, one drives the material
out of equilibrium by the pulse, and studies how it relaxes
back to an equilibrium distributionsas a means to determine
relaxation times, etc.d.

There are few theoretical approaches to nonlinear effects
in solid-state systems. The formalism was developed inde-
pendently by Kadanoff and Baym8 and Keldysh9,10 in the
early 1960ssBaym11 and Keldysh12 have each written short
historical accounts of their discoveriesd. These approaches
include the effects of external fields to all orders and typi-
cally use perturbation theory to determine the effects of
many-body interactions.13 In the 1980s, Wilkins and
collaborators3–7,14–16spent much effort in developing these
ideas further, and in examining nonlinear responses in finite

dimensions. Here we extend that work to infinite-
dimensional lattices, where we find many of the results for
the electronic Green’s functions can be determined analyti-
cally. Our formalism allows for an analysis of steady-state
effects slike the Wannier-Stark ladders17d and of transient
effectsslike the response to a pulsed fieldd. Our focus on the
infinite-dimensional problem represents the natural evolution
of dynamical mean field theorysDMFTd from equilibrium to
nonequilibrium problems. DMFT was introduced fifteen
years ago to provide an alternative limitsthat of infinite di-
mensionsd where the many body problem could be solved.18

It has had tremendous success with strongly correlated mod-
els like the Falicov-Kimball model,19–21 the Hubbard
model,22–24 the periodic Anderson model,25,26 the Holstein
model,27,28 and others being solved in equilibriumsfor re-
views, see Refs. 29 and 30d. The key element of the DMFT
is that the self-energy for the lattice problem is local, so the
lattice problem can be mapped onto an effective impurity
problem in a nonzero time-dependent field. Because these
impurity problems can be solved with sophisticated numeri-
cal algorithms, these many-body problems can also be
solved. After the success seen in model system calculations,
many in the field have moved into real materials problems by
combining density functional theory with DMFT. The results
have been extraordinary for a variety of correlated materials
like plutonium,31,32 vanadium oxide,33 and transition-metal
ferromagnets34 ssee Ref. 35 for a pedagogical reviewd. These
results, and many others, show that the DMFT is an accurate
and controlled approximation in three dimensions that cap-
tures most of the strong-correlation physics in these systems.

The time is now ripe to explore nonequilibrium problems
with DMFT. Since the nonequilibrium system on an infinite-
dimensional lattice also has a local self-energy, it too can be
mapped onto an effective impurity problem, now in a non-
vanishing two-time field. In particular, for the Falicov-
Kimball model, the action is quadratic in the Fermionic vari-
ables, so the Feynman path integral can be evaluated
explicitly as the determinant of a continuous matrix operator
seven in the presence of the nonvanishing time-dependent
fieldd. There are many numerical issues associated with solv-
ing the resulting equations, but they appear to be control-
lable. Here we focus on the noninteracting problem for three
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main reasons:sid the noninteracting solution provides an im-
portant benchmark in the limit where the interactions vanish;
sii d the calculation of the determinant of a continuous matrix
operator requires that operator to be discretized onto a finite
grid, with finite time cutoffs on the Kadanoff-Baym contour,8

so it is important to understand the transient evolution of
nonequilibrium solutionsswhich are simplest to examine for
the noninteracting cased; and siii d the generalization of the
Hilbert transform from the equilibrium to the nonequilibrium
problem is identical to the one used in the noninteracting
case, since the self-energy is local. Hence the noninteracting
solutions and the formalism used to derive them will have
many useful applications to the solution of the strongly cor-
related nonequilibrium problem. We will present results for
that work in a separate publication.

The organization of this contribution is as follows: in Sec.
II, we present the formalism for the nonlinear response, in
Sec. III, we present our numerical results, and in Sec. IV, we
present our conclusions.

II. GREEN’S FUNCTIONS FOR BLOCH ELECTRONS IN
AN EXTERNAL ELECTRIC FIELD

The Hamiltonian for tight-binding electrons hopping on a
hypercubic latticesin the absence of any external fieldsd is

H = − o
i j

ti jci
†cj − mo

i

ci
†ci , s1d

where tij is the Hermitian hopping matrixschosen to be18

tij = t* /2Îd for nearest neighbors asd→`d, and m is the
chemical potential. We shall consider the case when this sys-
tem is coupled to an external electromagnetic field. An elec-
tromagnetic field is described by a scalar potentialfsr ,td
and a vector potentialAsr ,td via

Esr ,td = − ¹ fsr ,td −
1

c

]Asr ,td
]t

s2d

for the electric field, withc the speed of light. We will use
the Landau gauge wheref=0 to perform our calculations, so
the electric field is described solely by the vector potential.
This provides a significant simplification of the formalism
for spatially uniform sbut possibly time-varyingd electric
fields.

Unlike many time-dependent Hamiltonians, the effect of
the vector potential is not easily described by adding a time-
dependent piece to the Hamiltonian in addition to the time-
independent piece in Eq.s1d. Instead, one uses the so-called
Peierls’ substitution15 for the hopping matrix:

tij → tij expF−
ie

"c
E

Ri

R j

Asr ,td ·drG , s3d

whereRi is the spatial lattice vector associated with lattice
site i sand similarly for sitejd and e is the electric charge.
Note that the Peierls’ substitution is a simplified semiclassi-
cal treatment of the electromagnetic fieldsour vector poten-
tial is a classical, not quantum fieldd and we are ignoring
dipole sand multipoled transitions between bands because we

consider just a single-band model. In this case, the Hamil-
tonian of the noninteracting electrons coupled to an electro-
magnetic field becomes

Hstd = o
i j

ti j expF−
ie

"c
E

Ri

R j

Asr ,td ·drGci
†cj − mo

i

ci
†ci .

s4d

The corresponding electric field becomes

Esr ,td = −
1

c

]Asr ,td
]t

. s5d

We will choose the vector potential in such a way that either
the field is zero beforet=0 and is then turned on, or the field
becomes asymptotically small ast→−` and it is adiabati-
cally switched on; in this way, the early time Hamiltonian is
always given by Eq.s1d. We put in by hand the condition of
thermal equilibriumswith no electrical currentd in the distant
past, since a noninteracting system can never establish ther-
mal equilibrium without being in contact with an interacting
thermal bath. The magnetic field has a complicated structure
in infinite dimensions, because it involves the curl of the
vector potential, which would need to be defined correctly
for the infinite-dimensional limit. Because we are interested
in electric fields with weak spatial dependence, we shall as-
sume the associated magnetic field is small enough that we
can neglect it, even though we will allow the electric field to
vary in time. This is an approximation, because our electro-
magnetic fields no longer satisfy Maxwell’s equations, unless
the field is uniform in space and constant in time. This con-
dition can be relaxed, perhaps by using a gradient expansion
for the weak spatial dependence of the fields,15 but such an
approach is cumbersome in infinite dimensions. From now
on, we neglect the spatial dependence of the vector potential
si.e., we are considering only spatially uniform but time-
varying electric fieldsd.

It is convenient to introduce a momentum-space represen-
tation for the Hamiltonian, which becomes

Hstd = o
k
FeSk −

eAstd
"c

D − mGck
†ck , s6d

with ck =o jcj expfiR j ·kg and ck
†=o jcj

† expf−iR j ·kg. Note
that the Hamiltonian in Eq.s6d is a special time-dependent
Hamiltonian, because it commutes with itself for all times
fHstd ,Hst8dg=0, which greatly simplifies the analysis of the
time-dependent Green’s functions developed below.

The expression for the time-ordered single-particle
Green’s function is defined to be

gTsk,t,t8d = −
i

"
kT„ckstdck

†st8d…l. s7d

Because of the special time dependence of the Hamilton-
ian, this Green’s function can be determined analytically.
In Eq. s7d, the operators are expressed in a Heisenberg
picture, where the time dependence isOstd=expfitHstdgO
3expf−itHstdg with Hstd determined from Eq.s4d, the time
ordering symbolT orders earlier times to the rightswith a
change of sign when two Fermionic operators are inter-
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changedd, and the angle brackets indicate a thermal averag-
ing kOl=Trfexps−bHdOg /Trfexps−bHdg, with b=1/T the
inverse temperature and the Hamiltonian being the field free
searly-timed Hamiltonian from Eq.s1d. We directly solve for
the Green’s function by finding the time dependence of the
momentum-dependent creation and annihilation operators,
and then directly solve for the Green’s function by taking the
relevant expectation values and traces.15,36,37 The starting
point is to calculate the time dependence of the operators:

d

dt
ck

†std =
i

"
FeSk −

eAstd
"c

D − mGck
†std, s8d

d

dt
ckstd = −

i

"
FeSk −

eAstd
"c

D − mGckstd, s9d

which can be integrated to give

ck
†std = expF i

"
E

−`

t FeSk −
eAst̄d

"c
D − mGdt̄Gck

†, s10d

ckstd = expF−
i

"
E

−`

t FeSk −
eAst̄d

"c
D − mGdt̄Gck . s11d

It is now easy to find the expression for the time-ordered
Green’s function by inserting the time dependence from Eqs.
s10d and s11d into the definition of the Green’s function in
Eq. s7d to yield

gTsk,t,t8d = −
i

"
ust − t8dexpF−

i

"
E

t8

t FeSk −
eAst̄d

"c
D − mGdt̄G

3f1 − f„eskd − m…g +
i

"
ust8 − td

3expF−
i

"
E

t8

t FeSk −
eAst̄d

"c
D − mGdt̄G

3f„eskd − m…, s12d

since the averages satisfykck
†ckl= fseskd−md and kckck

†l
=f1− f(eskd−m)g with fsxd=1/f1+expsbxdg being the
Fermi-Dirac distribution, andeskd the band structure.

In infinite-dimensional calculations, it is important to also
determine local properties, like the local Green’s function
fgloc=okgskdg, the local density of statessDOSd, and the
local distribution function. Often these local quantities are
not examined in nonequilibrium calculations that focus on
momentum space in order to make contact with Boltzmann-
equation-like approachessbut some previous work has fo-
cused on local properties38d. The Green’s function in Eq.s12d
depends on botheskd andesk −eA /"cd. Hence, the summa-
tion over momentum cannot be performed simply by intro-
ducing an integral over the noninteracting DOS. Instead, the
method of Mueller-Hartmann must be used,39–41 to perform
the integrations over the Brillouin zone and to extract the
leading contributions asd→`. The algebra is straightfor-
ward, but lengthy. The final result is

gloc
T st,t8d = −

i

"
E defust − t8d − fse − mdg

3rsedexpF− i
e

"

1

do
a
E

t8

t

dt̄ cos
eaAast̄d

"c G
3 exp

t*2

4"2HF1

d
o
a
E

t8

t

dt̄ cos
eaAast̄d

"c G2

−
1

d
o
a
E

t8

t

dt̄E
t8

t

dt̄8 cos
eahAast̄d − Aast̄8dj

"c J
3 eimst−t8d/", s13d

wherea denotes the component of the vector potential and
rsed=expf−e2/ t*2g /Îpt*ad is the noninteracting DOSsanda
is the lattice spacingd. Note that in the limitA →0, this re-
duces to the well-known noninteracting Green’s function on
a hypercubic lattice.

While the results of Eq.s13d are completely general, they
are quite cumbersome for calculations, and it is useful to
consider some simpler limits. The easiest case to evaluate,
which is what we consider for the remainder of this paper, is
to examine the case where the vector potential lies along the
s1, 1, 1,…d diagonal fAstd=Astds1,1,1, . . .dg. This choice
simplifies the calculations significantly. In this case,
the momentum-dependent Green’s function in Eq.s12d
depends on just two macroscopic objects—the band struc-
ture eskd and an additional energy functionēskd
=−t* limd→`oa sinskaad /Îd:

gTse,ē,t,t8d = expF−
i

"
E

t8

t Heskdcos
eaAst̄d

"c

+ ēskdsin
eaAst̄d

"c
Jdt̄Geimst−t8d/"

3S−
i

"
Dfust − t8d − fse − mdg. s14d

Hence the local Green’s function can be found by integrating
over a joint density of states37

r2se,ēd = o
k

dfe − eskdgdfē − ēskdg, s15d

which yields

gloc
T st,t8d =E deE dēr2se,ēdgTse,ē,t,t8d. s16d

Using the techniques of Mueller-Hartman39–41 again gives
the following expression for the joint density of states:
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r2se,ēd =
1

pt*2ad expS−
e2

t*2
−

ē2

t*2
D . s17d

Substituting the joint density of states of Eq.s17d into Eq.
s16d and integrating overē gives the final expression for the
local Green’s function:

gloc
T st,t8d = −

i

"
E defust − t8d − fse − mdg

3rsedexpF− i
e

"
E

t8

t

dt̄ cos
eaAst̄d

"c G
3expF− t*2SE

t8

t

dt̄ sin
eaAst̄d

"c D2Y 4"2G
3eimst−t8d/". s18d

Of course, the result in Eq.s18d agrees with that of Eq.s13d
when the vector potential lies along the diagonal.

III. NUMERICAL RESULTS

A. Current density and Bloch oscillations

We begin by studying the current density of the system in
the presence of the electric field. The current operator is
determined by the commutator of the polarization operator
sdefined byP=oiRici

†cid with the Hamiltonian of the system.
The expression for thea-component of the current-density
operator has the following form:

j a =
eat*

"Îd
o
k

sinSkaa −
eaAastd

"c
Dck

†ck . s19d

The expectation value of theath component of the current
can be easily calculated from the time-ordered Green’s func-
tion in Eq. s12d in the limit t8→ t+:

kj al = − i
eat*

Îd
o
k

sinSkaa −
eaAastd

"c
DgTsk,t,t+d,

=−
eat*2

4dp"
sinSeaAastd

"c
D E de

dfse − md
de

rsed, s20d

where the summation over momentum is performed the same
way as before. The total magnitude of the current density is
just Îd times this result, since each component along the
diagonal is the same. In the limit of low temperature, we
perform a Sommerfeld expansion, which gives

k jstdl =
eat*2rsmd
4Îdp"

sinSeaAstd
"c

D s21d

fwith Astd the value of the vector potential for each compo-
nentg. Note that in the case of a constant field,Astd

=−Ectustd is a linear function oft, and the current is sinu-
soidal, even though the field is time-independent. This is the
well-known Bloch oscillation,42 with a frequencyvBloch
=eaE/". Since we have no scattering, the system is a perfect
conductor, but the periodicity of the lattice restricts the wave
vector to lie in the first Brillouin zone which causes the os-
cillatory current.

One can investigate a current-current correlation function
to determine a noise spectrum, but because the current is
periodic, the noise profile would be just two delta functions
for a constant field, and we will not learn anything interest-
ing from examining the noise.

It is interesting to note that the current is nonzero for the
caseAstd=const, which corresponds to the case of zero elec-
tric field. This is a consequence of the fact that the vector
potential results in a shifting of the Fermi surface. In the case
of an interacting system this current will be destroyed by
interparticle scattering. In our case, a free-energy analysis
will show that the lowest-energy state is the one without any
current. There are a number of analogies of the response of
this system to the response of a superconductorssuch as an
ac response to a dc field, the presence of current-carrying
states that do not disappear over time, etc.d. All of these
results are artifacts of the lack of scattering in the system.

To find the resistivity of the system, we consider the case
of a uniform static electric fieldsalong the diagonald of mag-
nitude EÎd, which is turned on att=0, so that Astd
=−Ectustd fAastd=−Ectustdg, and the potential along a path
bs1,1,1, . . .d /Îd is equal toV=−EbÎd sthe lengthb is the
distance over which we have a potential dropd. The expres-
sion for the Ohm’s law in the formV= jRad−1 scurrent den-
sity multiplied by the resistance-area productd, gives the fol-
lowing expression for resistance-area product:

Rad−1 =
V

j
=

4p"Edb

eat*2rsmdY sinSeaEt

"
D . s22d

The resistivity is defined to be 1/b times the resistance-area
product, in the linear-response limit ofE→0. Therefore,

rlin. resp.=
4p"2d

e2a2t*2rsmd
1

t
. s23d

This result is proportional tod, as it should be because the
conductivity is proportional to 1/d in infinite dimensions.
The correct resistivity is zero for a noninteracting system.
Here we see that the linear-response resistivity in Eq.s23d
goes to zero in the limit of large timet→`.

Let us estimate the linear response resistance of the bal-
listic metal from the expression in Eq.s23d, which can be
finite because the linear-response resistance has a factor of
b/ t in it. For the ballistic metal the lengthb over which the
electrons have moved in the timet should beb=vFt, with vF
a suitable average of the Fermi velocity. This gives the resis-
tance
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Rlin. resp.=
4p"2vFd

e2ad+1t*2rsmd
. s24d

This expression corresponds to the Sharvin resistance43,44 for
a single-band model in infinite dimensions. In three dimen-
sions, the Sharvin resistance ish/2e2 divided by the number
of channels, which is a Fermi surface factor multiplied by
4p /kF

2Area. To compare with our formula, we must first note
that we map the hopping integral onto the effective masssfor
low electron fillingd via

t* =
"2Îd

ma2 s25d

and thatadt*rsmd=C is a constant of order onefproportional
to skFadd−2 for low filling g. Therefore,

Rlin. resp.=
4pmvFaÎd

e2C
~

h

2e2

4Îd

skFadd−3 , s26d

which has a Sharvin-like formsbut appears to have the
wrong dependence onkFa for d=3; this most likely is an
artifact of the problems with assuming a spherical Fermi sur-
face in large dimensions, which is valid only for vanishing
electron densitiesd.

We can also investigate the heat current carried when
there is an electrical field presentsbut no temperature gradi-
entd, and we find that its average value vanishes at half fill-
ing, as expected, because the thermopower vanishes at half
filling, and we have no thermal gradients to directly drive a
thermal currentsin the general case, the energy part of the
current vanishes, and the chemical potential piece will give a
contribution of −mj to the heat currentd. So heat transport is
trivial unless one introduces a thermal gradient to the tem-
perature, which we do not do here.

B. Local density of states

Next we examine the spectral function and the density of
states in the presence of a field. The time-dependent spectral
function can be calculated from the retarded Green’s function
gRst ,t8d=−si /"dust− t8dkhcstd ,c†st8djl swith the operators ex-
pressed in a Heisenberg pictured using the Wigner
coordinates45 by introducing the average timetave=st+ t8d /2
and the relative timetrel= t− t8 variables. In this case, the
spectral function as a function of the average timesand Fou-
rier transformed over the relative timed is equal to

Astave,k,vd = −
1

p
ImE

0

`

dtrele
ivtrelgRsk,tave,treld, s27d

and the DOS is equal to

Astave,vd = −
1

p
ImE

0

`

dtrele
ivtrelgloc

R stave,treld. s28d

In general, the retarded Green’s function can be found
from the same technique used to calculate the time-ordered

Green’s function: first one introduces the time dependence of
the Heisenberg operators, then one evaluates the operator
averages. Since the anticommutator of two local creation and
annihilation operatorssor two operators in the momentum
basisd is equal to one, we get

gRsk,t,t8d = −
i

"
ust − t8deimst−t8d/"

3expF− i
eskd

"
E

t8

t

dt̄ cos
eaAst̄d

"c G
3expF− i

ēskd
"
E

t8

t

dt̄ sin
eaAst̄d

"c G s29d

for the momentum-dependent Green’s function and

gloc
R st,t8d = −

i

"
ust − t8d E dersedeimst−t8d/"

3expF− i
e

"
E

t8

t

dt̄ cos
eaAst̄d

"c G
3expF− t*2SE

t8

t

dt̄ sin
eaAst̄d

"c D2Y 4"2G ,

s30d

for the local Green’s functionsusing thet andt8 coordinatesd.
Note that these Green’s functions have no temperature de-
pendence, hence the spectral function and the DOS are inde-
pendent of temperature. This is characteristic of a noninter-
acting system.

The spectral function, in the absence of a field, is a delta
function fAsk ,vd=dsv−eskd+mdg. When a field is turned
on, the time dependence is no longer a pure exponential, so
the spectral function deviates from the delta function, be-
coming a peaked function of nonvanishing width. In the limit
wheretave→`, the steady state is approached and the spec-
tral function becomes a set of evenly spaced delta functions,
since the Green’s function becomes a periodic function in
trel.

The analysis for the local DOS is more complicated.
Since thee dependence in Eq.s30d is so simple, the integral
can be performed directly, with the result

gloc
R stave,treld = −

i

"
ustreldeimtrel/"expF−

t*2

4"2uIstave,treldu2G ,

s31d

where

Istave,treld =E
tave−trel/2

tave+trel/2

dt̄ expFi
eaAst̄d

"c
G . s32d

In order to evaluate some numerical results, we first con-
sider the case of a constant electric field turned on att=0. In
this case, we get
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Istave,treld = us− tave − trel/2dus− tave + trel/2dtrel + us− tave − trel/2dustave − trel/2dFtave + trel/2 + s1 − eiseaE/"dstave−trel/2dd
"

ieaE
G

+ ustave + trel/2dus− tave + trel/2dFseiseaE/"dstave+trel/2d − 1d
"

ieaE
− tave + trel/2G + ustave + trel/2dustave − trel/2d

3
"

ieaE
seiseaE/"dstave+trel/2d − eiseaE/"dstave−trel/2dd. s33d

This result has some interesting properties. IfE→0, thenI
= trel for all tave, andgloc

R is a Gaussian intrel, which Fourier
transforms to a Gaussian in frequency, i.e., it becomes the
noninteracting DOS. There is an interesting scaling behavior.
If we define t̄ave= taveeaE/", t̄rel= treleaE/", and v̄
=v" /eaE, then

Istave,treld =
"

eaE
Īst̄ave, t̄reld, s34d

with Ī a function independent ofE. Hence

gloc
R st̄ave, t̄reld = −

i

"
ust̄reldeimt̄rel/eaE

3expF−
t*2

4e2a2E2uĪst̄ave, t̄reldu2G , s35d

and the DOS becomes

Ast̄ave,v̄d = −
1

p
ImE

0

`

dt̄rele
iv̄t̄relgloc

R st̄ave, t̄reld, s36d

with the normalization chosen soedv̄Asv̄d=1 sfor easier
comparison of curves for differentEd. Hence we expect the
DOS to have the same shape as a function ofv̄ swith a
possible shift due to the chemical potential factord, but the
amplitude of the oscillations grows asE increasesfbecause
of the minus sign in the exponent in Eq.s35dg. But that turns
out only to be true nearv=0. At other frequencies, the evo-
lution with E is not always monotonic, because the DOS
conserves total spectral weight, so there cannot be a mono-
tonic evolution of the peaks at all frequencies.

Note that the DOS satisfies two properties in equilibrium.
The first is that the integral over frequency equals 1. The
second is that the DOS is always positive. The proof for the
integral yielding 1 holds even in the nonequilibrium case,
because the anticommutator of two Fermionic creation and
annihilation operators at the same time is still one. The posi-
tivity does not hold, because the standard derivation, using
the spectral representation, requires the Hamiltonian to be
independent of time in order to be able to be used, and
thereby prove the positivity. Indeed, the DOS in the presence
of a field has regions where it is negative.

It is interesting to consider the limit of largetave, i.e.,
tave→`, then we get the steady-state solution. We take only
the last term ofIstave,treld in Eq. s33d becausetave is always
larger thantrel in this limit. The Green’s function becomes

gloc
R stave→ `,treld = −

i

"
ustreld

3expF t*2

2e2a2E2XcosSeaE

"
trelD − 1CG .

s37d

The Fourier transform of this is a set of delta functions, with
different amplitudes, that are equally spaced in frequency,
with a spacingeaE/" ssince the Green’s function is periodic
in treld. This is the famous Wannier-Stark ladder,17 expected
for systems placed in an external electric field. In the results
plotted in Fig. 1, the fact that the peaks at multiples of this
frequency get larger, and grow in height astave grows, indi-
cates our results are showing the correct buildup to the
steady state, but they will never get there untiltave→`. It is
no coincidence that this frequency is the same as the Bloch
oscillation frequency. This discussion was first described in
detail from the Green’s function approach by Davies and
Wilkins.16 Note that the DOS is non-negative in the steady
state.

We can calculate the weight of the delta functions by
performing the Fourier series integral. The frequencies are
NeaE/", and the Fourier coefficient is

wN =
2

eaE
E

0

2p"/eaE

dtrel cosSNeaE

"
trelD

3 expF t*2

2e2a2E2XcosSeaE

"
trelD − 1CG

=
2"

e2a2E2E
0

2p

ducossNudexpS t*2

2e2a2E2fcosu − 1gD .

s38d

For our numerical results, we examine how the system
approaches the steady state as the field is turned on. We work
at half filling sm=0d, where the DOS is symmetric; hence,
we plot only the results for positive frequencies. The field
needs to be large enough for our calculations to be able to
see the nonlinear effects of the field on the DOS. For us, the
numerical results can easily see effects on the DOS when
eaE/".0.1. In Fig. 1, we plot results foreaE/"=1. While it
is true that the Green’s functions fort and t8 both less than
zero are equal to their equilibriumsfield-freed limit, the
Wigner DOS feels the effect of the fields for all finitetave,
because the integral overtrel always includes some Green’s
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functions with eithert or t8 larger than zero. We can see that
significant “precursor” effects occur only fortave.−2 here,
and the DOS develops significant oscillations before one can
see the delta functions start to build up at the integer frequen-
cies.

We plot a close up of the region aroundv=1 in Fig. 2.
Note how a sharp peak develops as the average time in-
creases, but there are significant oscillations nearv=1 whose
amplitude decreases slowly astave increases.

In Fig. 3, we plot the DOS in thev̄ variable nearv̄=0 for
t̄ave=100 and for five values ofeaE/" s0.1, 0.3, 1.0, 3.0, and
10.0d. This shows how the oscillations grow asE increases.
For other integer values ofv, the evolution is not monotonic
in the field strengthE sfor example, atv=1 the peak values
increase withE for 0.1,eaE/",0.7 and then decrease for
0.7,eaE/",10d.

C. Distribution functions

In addition to the spectral function and the DOS, it is
interesting to examine the distribution function. In equilib-
rium, the distribution function is a Fermi-Dirac distribution

function, but the distribution function can change for non-
equilibrium cases. In order to discuss distribution functions,
we need to define two more Green’s functions—the so-called
lesser and greater Green’s functions. They are defined as
g.st ,t8d=−si /"dkcstdc†st8dl and g,st ,t8d=si /"dkc†st8dcstdl

FIG. 1. Density of statesAstave,vd sin units 1/adt* with a the
lattice spacing andd→` the spatial dimensiond for noninteracting
electrons witheaE/"=1. Note how the DOS is essentially a Gauss-
ian for tave,−2, but then develops large oscillations astave in-
creases. The DOS approaches a steady state for large time given by
a set of delta functions, equally spaced by the Bloch oscillation
frequency. The DOS is no longer positive once the field is turned
on, but the integral does always equal 1.

FIG. 2. Close up of the density of statesAstave,vd nearv=1 for
noninteracting electrons witheaE/"=1. Note how the DOS ap-
proaches a steady state for large time by developing a sharp peak,
but that there are significant oscillations near the sharp peak that
decay slowly in time.

FIG. 3. Close up of the dimensionless density of statesAst̄ave,v̄d
near v̄=0 for noninteracting electrons witheaE/"=0.1, 0.3, 1.0,
3.0, and 10.0. Note how the peak in the DOS evolves as a function
of the electric field.
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swith the operators expressed in a Heisenberg pictured. These
Green’s functions can also be determined for Bloch elec-
trons, and their expressions are the same as those for the
retarded Green’s function in Eqs.s29d and s30d, except the
ust− t8d factor is replaced by −fseskd−md for g, and by
f1− fseskd−mdg for g.. There are three cases for the distri-
bution function that we can considersthe Wigner distribu-
tion, the quasiparticle distribution, and the local quasiparticle
distributiond. The most often used distribution function is the
Wigner distribution function, defined to be

fWignerstave,kd = − i"g,sk,t = tave,t8 = taved. s39d

The Wigner distribution function is always equal to the field-
free Fermi-Dirac resultfWignerstave,kd= f(eskd−m) for Bloch
electrons. The quasiparticle distribution function is defined in
analogy with the equilibrium result fg,sk ,vd
=2pi f svdAsk ,vdg via

fquasistave,kd =
1

2p

Im g,stave,k,vd
Astave,k,vd

s40d

snote that the name quasiparticle distribution does not neces-
sarily imply that there must be an underlying Fermi liquid in
the systemd. Since the only difference between the retarded
Green’s function and the lesser Green’s function is the re-
placement of the theta function by the Fermi-Dirac distribu-
tion swhich does not depend on the time variablesd, the ratio
of the two terms in Eq.s40d has an explicit factor of
f(eskd−m). The Fourier transform of the numerator is over
all trel, while the denominator is only over all positivetrel.
The integral Istave,treld is an odd function oftrel fsee Eq.
s32dg, which implies the numerator in Eq.s40d is 2pf(eskd
−m)Astave,k ,vd, and we find the quasiparticle distribution
function is equal to the Fermi-Dirac distribution once again.
The final distribution function to be defined is the local qua-
siparticle distribution function. This is

fquasi
loc staved =

1

2p

Im gloc
, stave,vd

Astave,vd
. s41d

This distribution function is nontrivial in a field, because the
DOS and the lesser Green’s function both have oscillations,
but the zeros occur at different locations on the frequency
axis, so the ratio in Eq.s41d can have significant oscillations.

The calculation of the local quasiparticle distribution
function is difficult because the presence of anfse−md factor
precludes us from performing the integral overe analyti-
cally; hence the numerical computations are more involved.
We need to evaluate the integral

g,stave,treld =
i

"
E dersedfse − md

3expF− i
e

"
xstave,treld −

t*2

4"2y2stave,treldG
s42d

numerically, withx=ReI , y=Im I, and I being the integral
in Eq. s32d. If eaE/"=0, then this is just the Fourier trans-
form of 2pi f svdrsvd, which gives the correct lesser func-

tion. If eaE/"Þ0, then the Green’s function has to be cal-
culated numerically. Because the real part of the lesser
Green’s function is nonzero for a longer range in time than
the imaginary part, the functiong, will have more oscilla-
tions than thegR function. The results for a local quasiparti-
cle distribution function are plotted in Fig. 4. As it follows
from this figure, the local quasiparticle distribution function
varies significantly from the equilibrium values astave in-
creases. This is because theg, Green’s function has high
frequency oscillations, which are not as strong in the DOS.
The oscillations continue astave increases, but they become
difficult to plot. Of course the momentum-dependent quasi-
particle distribution function is equal to the Fermi-Dirac dis-
tribution function for this problem.

Finally, we study the time dependence of the DOS for the
case of a sharp pulse during the period of time 0, t, tE. The
second derivative of the vector potential is proportional to
the strength of the magnetic fieldswhich we are neglectingd,
so we want to keep the second derivative small for the cal-
culations to make sense. We choose the electric field to have
the following time dependence:Estd=EustE− tdustd, which
corresponds to a vector potential

FIG. 4. Local quasiparticle distribution functionf locstave,vd for
noninteracting electrons witheaE/"=1 andT=0.1. Note how the
local quasiparticle distribution function varies significantly from the
equilibrium values astave increasessthe lowest panel is fortave=2d.
This is because theg, Green’s function has high frequency oscil-
lations, which are not as strong in the DOS. The oscillations con-
tinue astave increases, but they become difficult to plot.
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Astd = − cEtustE − tdustd − cEtEust − tEd. s43d

Note that these results are “singular” for the noninteracting
case, because the final vector potential is a constant that can
correspond to a current carrying state if the Fermi surface is
shifted from the zone center. Because there is no scattering,
such a current lives foreversbut would decay in the presence
of any scatteringd. Numerical calculations show that the DOS
deviates visibly from its equilibrium value during the times
utu, trelax when the amplitude of the field is larger or on the
order of t* ; the relaxation timetrelax is on the order of the
pulse timetE.

The results of the calculations are presented in Fig. 5 for
eaE/"=1 swheneaE/" is much smaller than 1, the oscilla-
tions become hard to seed. The nonequilibrium DOS shows
oscillating behavior, which then decays as time increases.
The results satisfy a symmetry relation, where the Wigner
DOS is identical fortave and tave8 when tave+ tave8 = tE.

We also consider the case of a smooth pulse with a
smooth turnon and turnoff of the electric field:Astd
=EctE exps−t2/ tE

2d /2 fwhich corresponds to an electric field
Estd=Et/ tE exps−t2/ tE

2dg. This field changes sign att=0 and
has it maximum amplitude att= ±Î0.5. The Wigner DOS is
symmetric intave, so we only plot results for positive times in
Fig. 6. Note that attave=0 the field has been on for a long
time, so the result is far from a Gaussian. The amplitude of
the peak in the DOS atv=0 is largest attave= ±Î0.5, and
decays rapidly for larger times.

The proof of the symmetry relation for the Wigner DOS is
rather straightforward to do. If the vector potentialAstd has
definite parity,As−td= ±Astd, then it is easy to see from Eq.
s32d that Is−tave,treld= Istave,treld for even functions and
Is−tave,treld= Istave,treld* for odd functions. Since it is the
modulus ofI that enters into the calculation ofAstave,vd, the
DOS will satisfy the given symmetry rules. For the case of
the constant-field pulse, we need to shift the time axis by
tE/2 and shift the vector potential byEtE/2 to have a vector

potential that is odd in time. The shift of the vector potential
has no effect on the modulus ofI, since it contributes only a
phase, while the shift in the time axis is precisely what is
needed to give the symmetry relation described above. For
the Gaussian pulse, the vector potential is already an even
function, and the symmetry relation follows directly.

Note that we do not calculate the experimental probe of
the reflectivity as a function of time after the initial pulse,
because this system has no intrinsic scattering, so the optical
conductivity is always a delta function peak at zero fre-
quency, hence we would not learn anything interesting from
such an exercise here. It would be interesting to probe such
behavior in systems with intrinsic scattering mechanisms, to
understand how the different relaxation mechanisms can be
detected.

We end with a discussion about gauge invariance. Our
calculations have been performed in a specific gaugesone
with the scalar potential vanishingd. One can construct re-
tarded Green’s functions that are gauge invariant46 by trans-
forming away the scalar and vector potentials. Since we have
spatially uniform fields, the gauge-invariant Green’s function
is related to our Green’s function via the following transfor-
mation

FIG. 5. Local DOSsin units 1/adt*d for the case of a sharp flat
pulse with eaE/"=1.0, tE=10.0, and various average times. The
horizontal scale is the same in every panel, but the vertical scale
changes in the different panels. By comparing figuresad with figure
sbd, one can see that the response is identical for timestave and tave8
that satisfytave+ tave8 = tE.

FIG. 6. Local DOSsin units 1/adt*d for the case of a smooth
Gaussian pulse witheaE/"=10.0, tE=1.0, and various average
times. The results are completely symmetric between negative and
positive average times, so we plot only the positive times here. Note
how the oscillations are already strong attave=0, first increase
slightly, then fade away as the average time increases.
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g̃Rsk,tave,treld = gRSk −
1

"ctrel
E

−trel/2

trel/2

eAstave + t̄ddt̄,tave,trelD ,

s44d

where g̃R is the gauge-invariant retarded Green’s function.
This transformation amounts to atrel-dependent shift of the
momentum wavevector. If we have a constant electric field
turned on att=0, and the average time is large, then the shift
becomes independent oftrel, so all of our local quantities
become gauge invariant whentave is large enough. In other
cases, one has to first shift the momentum, and then Fourier
transform the relative time to a frequency, which is quite
complicated for the general case.

IV. CONCLUSIONS

We have studied the nonlinear response of Bloch elec-
trons to an external time varyingsbut spatially homoge-
neousd electric field by employing a nonequilibrium formal-
ism on an infinite dimensional hypercubic lattice. We found
that the current showed Bloch oscillations, even when the
electric field was constant in time, and we derived a form for
the Sharvin-like resistance of the system.

The time dependence of the DOS was calculated. We
showed that it becomes a Wannier-Stark ladder for long
times, but the transient evolution toward those discrete delta
functions had a complex structure, that survives out to long
times. We also examined a number of different kinds of dis-
tribution functions, and showed that the most commonly
chosen distribution functions retained the Fermi-Dirac form
regardless of the strength of the electric fieldsbut the local
quasiparticle distribution shows complex oscillatory behav-
iord. For pulsed fields, we saw the transient response build

and then decay. The amplitude of the oscillations was pro-
portional to the amplitude of the electric fieldE for a wide
range of field strengths, and we needed the field to be suffi-
ciently largeseaE/", t*d before they could be easily seen.
Of course, the oscillations decay at times larger than the
pulse time.

Finally, we discuss the relationship of this work to the
interacting case of the Falicov-Kimball modelswhere one
can examine nonequilibrium properties of a Mott insulatord.
In this case, we map the lattice problem onto an effective
impurity problem in a time-dependent field that depends in-
dependently on two time variables. Working in a real-time
representation, the impurity action on the Kadanoff-Baym
contour is quadratic in the fermionic variables, and hence is
equal to the determinant of a continuous matrix operator.
After introducing a discretized version of that operator, the
nonequilibrium impurity problem can be solved in exactly
the same way as the equilibrium problem, but now in a real-
time basis. Finally, the generalization of the Hilbert trans-
form, via the joint DOS in Eq.s17d, is employed to complete
the DMFT self-consistency loop. We will present details of
this algorithm, numerical strategies for solving the self-
consistency problem, and numerical results for the nonlinear
response of Mott insulators in another publication.
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