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Nonlinear response of Bloch electrons in infinite dimensions
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The nonlinear response of noninteractijoch) electrons is examined within a nonequilibrium formalism
on the infinite-dimensional hypercubic lattice. We examine the effects of a spatially uniform, but time-varying
electric field(ignoring magnetic-field effectsThe electronic Green'’s functions, Wigner density of states, and
time-varying current are all determined and analyzed. We study both constant and pulsed electric fields,
focusing on the transient response region and on local properties. These noninteracting Green’s functions are
an important input into nonequilibrium dynamical mean field theory for the nonlinear response of strongly
correlated electrons.
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[. INTRODUCTION dimensions. Here we extend that work to infinite-
dimensional lattices, where we find many of the results for
The linear-response theory of Kuband Greenwodtlis  the electronic Green’s functions can be determined analyti-
an attractive approach to understand how electf@mghe  cally. Our formalism a_llows for an analysis of steady-state
solid statg interact with external electromagnetic fields. It €ffects (like the Wannier-Stark laddet and of transient
can be usedn principle) to calculate general linear-response ffects(like the response to a pulsed figl®ur focus on the
functions in systems that have arbitrarily strong electrornfinite-dimensional problem represents the natural evolution
correlations. Surprisingly, the linear-response regime®f dynamical mean field theoMFT) from equilibrium to
for many bulk materials(especially for parabolic band nonequilibrium problems. DMFT was introduced fifteen

: : : years ago to provide an alternative linfibat of infinite di-
Zleerzéﬁgr}?eulgtgf;seﬁn;ﬂg devices, holds for a wide range of mension$ where the many body problem could be solvéd.

But there are a multitude of interesting nonlinear effectsIt has had tremendous success with strongly correlated mod-

in electric fields. Most electronic devi h i els like the Falicov-Kimball modé®-2 the Hubbard
in electric fields. Most electronic devices have a nonlinear, o e122-24 the periodic Anderson modéi2s the Holstein

current-voltage relation(transistors, Josephson junctions, ,04e[27.28 and others being solved in equilibriuffor re-

etc) and there is _Wide_ interest in ponlinear effects in b“|kviews, see Refs. 29 and B0 he key element of the DMFT
materials as wellsince it is the nonlinearity that often deter- ig that the self-energy for the lattice problem is local, so the
mines the ultimate performance lattice problem can be mapped onto an effective impurity
Devices are also becoming smaller and smaller. Semicorproblem in a nonzero time-dependent field. Because these
ductor processing line features are well below 100 nm, angmpurity problems can be solved with sophisticated numeri-
there is significant research effort on nanoscale devices. lpal algorithms, these many-body problems can also be
the latter case, a potential difference of one volt produces asolved. After the success seen in model system calculations,
electric field on the order of YOv/cm for nanometer scaled many in the field have moved into real materials problems by
devices. These fields are large enough for nonlinear effects twombining density functional theory with DMFT. The results
be important, if not critical, to determine the proper behaviorhave been extraordinary for a variety of correlated materials
in an external field. There also has been significant researdike plutonium?132 vanadium oxid€® and transition-metal
performed on high energy density pulsed laser experimentgéerromagnet¥ (see Ref. 35 for a pedagogical reviewhese
where fields as high as 10V/cm can easily be attained results, and many others, show that the DMFT is an accurate
over a short time scale. In that case, one drives the materiand controlled approximation in three dimensions that cap-
out of equilibrium by the pulse, and studies how it relaxestures most of the strong-correlation physics in these systems.
back to an equilibrium distributiofas a means to determine  The time is now ripe to explore nonequilibrium problems
relaxation times, etg. with DMFT. Since the nonequilibrium system on an infinite-
There are few theoretical approaches to nonlinear effectdimensional lattice also has a local self-energy, it too can be
in solid-state systems. The formalism was developed indemapped onto an effective impurity problem, now in a non-
pendently by Kadanoff and Bayhrand Keldysf#in the  vanishing two-time field. In particular, for the Falicov-
early 19605(Baym'! and Keldysh? have each written short Kimball model, the action is quadratic in the Fermionic vari-
historical accounts of their discoverjeSThese approaches ables, so the Feynman path integral can be evaluated
include the effects of external fields to all orders and typi-explicitly as the determinant of a continuous matrix operator
cally use perturbation theory to determine the effects ofleven in the presence of the nonvanishing time-dependent
many-body interactions In the 1980s, Wilkins and field). There are many numerical issues associated with solv-
collaboratord’14-16spent much effort in developing these ing the resulting equations, but they appear to be control-
ideas further, and in examining nonlinear responses in finitéable. Here we focus on the noninteracting problem for three
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main reasons(i) the noninteracting solution provides an im- consider just a single-band model. In this case, the Hamil-
portant benchmark in the limit where the interactions vanishfonian of the noninteracting electrons coupled to an electro-
(i) the calculation of the determinant of a continuous matrixmagnetic field becomes

operator requires that operator to be discretized onto a finite (R

grid, with finite time cutoffs on the Kadanoff-Baym contdur, Ht) = 2 t; exp{— Ef A(r,1) -dr}cfc- -u2clc.

so it is important to understand the transient evolution of i : hclg, Y T
nonequilibrium solutiongwhich are simplest to examine for (4)

the noninteracting cageand (iii) the generalization of the

Hilbert transform from the equilibrium to the nonequilibrium The corresponding electric field becomes
problem is identical to the one used in the noninteracting 1IA(r 1)
case, since the self-energy is local. Hence the noninteracting Efrt)=—=———.
solutions and the formalism used to derive them will have a

many useful applications to the solution of the strongly core will choose the vector potential in such a way that either
related no.nequilibrium problgm.. We will present results forihe field is zero before=0 and is then turned on, or the field
that work in a separate publication. _ becomes asymptotically small &s>-o and it is adiabati-
The organization of this contribution is as follows: in Sec. cally switched on; in this way, the early time Hamiltonian is
II, we present the formalism f_or the nonlinear. response, i”always given by Eq(1). We put in by hand the condition of
Sec. lll, we present our numerical results, and in Sec. IV, Wehermal equilibrium(with no electrical currentin the distant
present our conclusions. past, since a noninteracting system can never establish ther-
mal equilibrium without being in contact with an interacting
thermal bath. The magnetic field has a complicated structure
Il. GREEN'S FUNCTIONS FOR BLOCH ELECTRONS IN in infinite dimensions, because it involves the curl of the
AN EXTERNAL ELECTRIC FIELD vector potential, which would need to be defined correctly

The Hamiltonian for tight-binding electrons hopping on afor the infinite-dimensional limit. Because we are interested

hypercubic latticgin the absence of any external fields in electric fields w ith weak sp.atie_ll de_pendence, we shall as-
sume the associated magnetic field is small enough that we

H=-> tijCiTCj _ ME CiTCiv (1) can neglect it, even though we will allow the electric field to
ij i

(5

vary in time. This is an approximation, because our electro-
) » ) ) magnetic fields no longer satisfy Maxwell's equations, unless
wheret; is the Hermitian hopping matrixchosen to b€ 0 %14 is uniform in space and constant in time. This con-
tj=t/2vd for nearest neighbors a$—), and w is the  ition can be relaxed, perhaps by using a gradient expansion
chemical potential. We shall consider the case when this sysg; the weak spatial dependence of the fidfibut such an
tem is cou.ple_d to an extemal electromagnetic field. An elecapproach is cumbersome in infinite dimensions. From now
tromagnetic field is described by a scalar potendhét,t)  on \ve neglect the spatial dependence of the vector potential
and a vector potentigh(r,t) via (i.e., we are considering only spatially uniform but time-
1A(r 1) varyi.ng electrip field)s_
E(r,t)=- Vo(r,t) - ——— (2) It is convenient to introduce a momentum-space represen-
c 4 tation for the Hamiltonian, which becomes

for the electric field, withc the speed of light. We will use eA(t)

the Landau gauge wherg=0 to perform our calculations, so H(N) =2 6<k - ﬁ—) - |che, (6)

the electric field is described solely by the vector potential. k ¢

This provides a significant simplification of the formalism yiih =3¢ exliR; k] and CE:EJCT ex-iR;-k]. Note

for spatially uniform (but possibly time-varying electric  h4t the Hamiltonian in Eq(6) is a s;J)eciaI time-dependent

fields. , o Hamiltonian, because it commutes with itself for all times
Unlike many time-dependent Hamiltonians, the effect of 14 (1) 7/(t')]=0, which greatly simplifies the analysis of the

the vector potential is not easily described by adding a t'mefime-dependent Green’s functions developed below.

dependent piece to the Hamiltonian in addition to the time- 11,4 expression for the time-ordered single-particle

independent piece in Eql). Instead, one uses the so-called Green’s function is defined to be

Peierls’ substitutiot® for the hopping matrix:

ie (Ri g'(k,t,t") =~ I—<T(ck(t)ci(t’))>- (7
tij — tjj exp| - %f A(r,t) -dr |, (3) h
Ri Because of the special time dependence of the Hamilton-
whereR; is the spatial lattice vector associated with latticeian, this Green’s function can be determined analytically.
site i (and similarly for sitej) and e is the electric charge. In Eg. (7), the operators are expressed in a Heisenberg
Note that the Peierls’ substitution is a simplified semiclassipicture, where the time dependenceGst) =exditH(t)]JO
cal treatment of the electromagnetic figtmlir vector poten-  Xexg —itH(t)] with H(t) determined from Eq(4), the time
tial is a classical, not quantum figldind we are ignoring ordering symbol7 orders earlier times to the rigltith a
dipole (and multipole transitions between bands because wechange of sign when two Fermionic operators are inter-
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changegl and the angle brackets indicate a thermal averag- - i

ing (O)=Trexp(-BH)O]/Tr[exp(-BH)], with B=1/T the Jioc(tt') =% f de[O(t-t") - f(e— w)]

inverse temperature and the Hamiltonian being the field free

(early-time Hamiltonian from Eq(1). We directly solve for ‘ _
the Green’s function by finding the time dependence of the Xp(f)expl— iflz f chosw]
momentum-dependent creation and annihilation operators, hd*, Jy hc
and then directly solve for the Green’s function by taking the

relevant expectation values and traée¥3’ The starting *2 t ]2
N . t 1 — eaAt)
point is to calculate the time dependence of the operators: X expm aE dt COST
a t’

d i[ ( eA(t)> ] :

—c ()=~ elk——— | — u|c(b), 8 — =

dt k() A € PR H () (8) ) EE thft & Cosea{Aa(t) -A,)}

d a t’ ! hC

d i eA(t)) }

—ct)=——|elk——| - t), 9

dtCk( ) ﬁ[€< he M Ck( ) ( ) y eiu(t-t’)/ﬁ, (13)

which can be integrated to give )
where @ denotes the component of the vector potential and

: it eA(t) R ple)=exd—€2/t"2]/at"ad is the noninteracting DOGanda
c(t) =ex %f elk=—c ) ~#|dtc (100 s the lattice spacing Note that in the limitA — 0, this re-
- duces to the well-known noninteracting Green’s function on
a hypercubic lattice.
i eA(t) While the results of Eq(13) are completely general, they
C(t) :exp[—%f [E<k B ?) _f“}dﬂ ¢ (1) gre quite cumbersome for calculations, and it is useful to
- consider some simpler limits. The easiest case to evaluate,
It is now easy to find the expression for the time-orderedwhich is what we consider for the remainder of this paper, is
Green’s function by inserting the time dependence from Eqsio examine the case where the vector potential lies along the
(10) and (11) into the definition of the Green’s function in (1, 1, 1,..) diagonal[A(t)=A(t)(1,1,1,..)]. This choice
Eq. (7) to yield simplifies the calculations significantly. In this case,
. the momentum-dependent Green’s function in Eij2)
! eA(t) depends on just two macroscopic objects—the band struc-
e\k- “he )M dt ture (k) and an additional energy functione(k)
=—t" limy_..2, sin(k,a)/ Vd:

T /__i_ 4! _i_
g'(k,t,t") = ﬁe(t t)expl ﬁJ;

X1 =1(elk) = )]+ 31t -1

—tt)=exd - [ eaAD)
xXexp| - I—ft { (k_eA_(t_)) - ]dt glleett )—exp[ ﬁft’ {f(k)COS e
h t ¢ hc ®

_eaAt) ot
X f(e(k) = w), (12) +Rk)s|n7}dﬂé (t=t' )/
since the averages satisfig]c,)=f(e(k)-x) and (c.c) i |
=[1-f(e(k)~ )] with f(x):"ll;[1+exp(lgx)] beingkt;e X(—%>[G(t—t)_f(€_ﬂ)]_ (14)

Fermi-Dirac distribution, and(k) the band structure.

In infinite-dimensional calculations, it is important to also e e the ocal Green's function can be found by integrating
determine local properties, I|!<e the local Green’s funct|onover a joint density of statds
[dioc=2k0(k)], the local density of state€DOS), and the
local distribution function. Often these local quantities are
not examined in nonequilibrium calculations that focus on pale ) =2 de—ek)]de— k)], (15)
momentum space in order to make contact with Boltzmann- k
equation-like approachedut some previous work has fo-
cused on local propertigd. The Green’s function in Eq12)  which yields
depends on botl(k) and e(k—eA/#c). Hence, the summa-
tion over momentum cannot be performed simply by intro-
ducing an integral over the noninteracting DOS. Instead, the Joct,t") :fdef depy(€,6g(€,€1,t). (16)
method of Mueller-Hartmann must be us€d! to perform
the integrations over the Brillouin zone and to extract the
leading contributions asl— . The algebra is straightfor- Using the techniques of Mueller-Hartn#r*! again gives
ward, but lengthy. The final result is the following expression for the joint density of states:
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e & =-Ectd(t) is a linear function oft, and the current is sinu-
pa(€ €)= 220 exp — 2" t_z) (17 soidal, even though the field is time-independent. This is the
well-known Bloch oscillatiorf? with a frequency wgich
Substituting the joint density of states of Ed.7) into Eq.  =eaE/#. Since we have no scattering, the system is a perfect
(16) and integrating ovee gives the final expression for the conductor, but the periodicity of the lattice restricts the wave
local Green'’s function: vector to lie in the first Brillouin zone which causes the os-

cillatory current.
. One can investigate a current-current correlation function
gﬂ)c(t,t’)=—l—fde[ﬁ(t—t’)—f(e—,u)] to (_jetgrmine a.noise spectrum, bu.t because the curr_ent is
h periodic, the noise profile would be just two delta functions
for a constant field, and we will not learn anything interest-

et _  eaAd) ing from examining the noise.
Xple)expl = I—J dtcos 7 It is interesting to note that the current is nonzero for the
' ¢ caseA(t) =const, which corresponds to the case of zero elec-
. ., tric field. This is a consequence of the fact that the vector
wexpl 12 f dtsin eaAt) 452 potential results in a shifting of the Fermi surface. In the case
v hC of an interacting system this current will be destroyed by
interparticle scattering. In our case, a free-energy analysis
o will show that the lowest-energy state is the one without any
x g, (18)  current. There are a number of analogies of the response of
this system to the response of a supercondugiech as an
Of course, the result in E418) agrees with that of Eq13)  ac response to a dc field, the presence of current-carrying
when the vector potential lies along the diagonal. states that do not disappear over time, )etall of these
results are artifacts of the lack of scattering in the system.
To find the resistivity of the system, we consider the case
of a uniform static electric fieldalong the diagonalof mag-

IIl. NUMERICAL RESULTS nitude E\d, which is turned on att=0, so thatA(t)
A. Current density and Bloch oscillations =—Ecto(t) [A,()=-Ectg(t)], and the potential along a path

We begin by studying the current density of the system inb(l’l’l’ ~-)/\d is equal toV=—Ebvd (the lengthb is the

the presence of the electric field. The current operator iéj_lstance over Wh,'Ch we have a pOtfm'a(lj_?mﬁhe expres-
determined by the commutator of the polarization operatoP!?n forlt.thlt_a g)rgmtshlaw n tthe forv=jRd (gurretnht dfeT'
(defined byH:EiRici*ci) with the Hamiltonian of the system. ;5' y multipiied by fe resis ?nce—area proc)chJgn\t/.es € fol-
The expression for the-component of the current-density owing expression for resistance-area product.

operator has the following form:

q aA,(t
ja= e_aﬂ_ sin(kaa— e—““)clck. (19 Ra1= v_ AmhEdb Sin(_eaEt) (22)
Aind K hc i eaf?p(w) ho )

The expectation value of theth component of the current

can be easily calculated from the time-ordered Green'’s func_i_h istivity is defined to be b/ h .
tion in Eq. (12) in the limitt’ —t*: e resistivity is defined to be b/fimes the resistance-area

product, in the linear-response limit &— 0. Therefore,

t t
jo=-i"=3 sin(kaa—w)gﬁk,t,t*).
vd he 4rh?d 1
p|i|’1. resp.: ezazt*zp(ﬂ)z (23)
eaf? sin(ea'%(t)) fd df(e— ) ©, (20
= € ple),
Adwh hc de This result is proportional tal, as it should be because the

where the summation over momentum is performed the sarfgPnductivity is proportional to I in infinite dimensions.
way as before. The total magnitude of the current density id he correct reilsnvrl]ty II'S zero for a noninteracting system.
just \d times this result, since each component along thd €€ We see that the linear-response resistivity in @g)

diagonal is the same. In the limit of low temperature, weJoes to Z€ro In the I'm't, of large time-ce. .
perform a Sommerfeld expansion, which gives Let us estimate the linear response resistance of the bal-

listic metal from the expression in Eq23), which can be
. eaf?p(u) . (eaAt) finite because the linear-response resistance has a factor of
()= Adah S'“( PR ) (21 b/tin it. For the ballistic metal the length over which the
‘ electrons have moved in the tinhshould beb=uv¢t, with vg
[with A(t) the value of the vector potential for each compo-a suitable average of the Fermi velocity. This gives the resis-
nenf. Note that in the case of a constant field(t) tance
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Arh?ved Green'’s function: first one introduces the time dependence of
Riin. resp.= _ezad+-1t*2p(lu)' (24 the Heisenberg operators, then one evaluates the operator
averages. Since the anticommutator of two local creation and

This expression corresponds to the Sharvin resistarfteor annihilation operatorgor two operators in the momentum
basig is equal to one, we get

a single-band model in infinite dimensions. In three dimen-
sions, the Sharvin resistancehit2e? divided by the number i
of channels, which is a Fermi surface factor multiplied by Rk, t,t') = — — ot —t/)ert-t)n
47/k2Area To compare with our formula, we must first note h

that we map the hopping integral onto the effective niéms _

- . k) [t (t)
low electron filling via wexp — | e(k) gt coseaA( )
. i) hc
. hod | t
t=—> (25)
mat - . _
. ce(k) [ — . eaAt)
and thata’t”p(u)=C is a constant of order orf@roportional Xexp| - l_ﬁ dtsin “he (29
t!

to (kea)®? for low filling]. Therefore, -
for the momentum-dependent Green'’s function and
B 47vaFav’,a h 4\"E

. = — i Lo

Rinesn™ 20 “ (a0 GRe(tt) == ot t) f dep(e)eH -t

which has a Sharvin-like form{but appears to have the € td_ eaAt)
wrong dependence ok:a for d=3; this most likely is an xexp -l y teos— -

artifact of the problems with assuming a spherical Fermi sur- -
face in large dimensions, which is valid only for vanishing ” ' eaAl) 2 5
xXexpl —t dtsin P ah° |,
t!

electron densities
We can also investigate the heat current carried when
there is an electrical field presefitut no temperature gradi- (30)

eny, and we find that its average value vanishes at half fill-

ing, as expected, because the thermopower vanishes at hilf the local Green's functiofusing thet andt” coordinate
filing, and we have no thermal gradients to directly drive a/\Ot€ that these Green's functions have no temperature de-

thermal currentin the general case, the energy part of thePendence, hence the spectral function and the DOS are inde-
current vanishes, and the chemical potential piece will give £Endent of temperature. This is characteristic of a noninter-
contribution of j to the heat current So heat transport is acting system. o o
trivial unless one introduces a thermal gradient to the tem. 1€ Spectral function, in the absence of a field, is a delta
perature, which we do not do here. function _[A(k,w):5(w—e(k_)+,u)]. When a field is turngd

on, the time dependence is no longer a pure exponential, so

B. Local density of states the spectral function deviates from the delta function, be-

Next we examine the spectral function and the density mcoming a peaked function of non_vanishing width. In the limit
states in the presence of a field. The time-dependent spect?ﬁ(heretave_’oo’ the steady state is approached and the spec-

function can be calculated from the retarded Green’s functiofi & function becomes a set of evenly spaced delta functions,
oR(t,t)=—(i/h) 6t —t"){c(t),c'(t)}) (with the operators ex- SMNCe the Green’s function becomes a periodic function in

pressed in a Heisenberg pictyreusing the Wigner brel
coordinate® by introducing the average tintg = (t+t')/2
and the relative time,,=t—t’ variables. In this case, the
spectral function as a function of the average timed Fou-
rier transformed over the relative tilis equal to

The analysis for the local DOS is more complicated.
Since thee dependence in Eq30) is so simple, the integral
can be performed directly, with the result

i . t2
g:?)c(taveatrel) == %a(trel)el'ut'e'/ﬁexf{_ W“(tavertrelﬂz] )

1 * :
Altge K, @) == 7_T ImJ dtrelelthEIQR(kataveitrel)1 (27) (31
° where
and the DOS is equal to twttel2 ealD
1 o _ [ (taetre) = dtex I? . (32
Altgew) == — |mf dte€ wtrelggc(taveatrel)- (28) tave™trel/2
m 0

In order to evaluate some numerical results, we first con-
In general, the retarded Green’s function can be foundider the case of a constant electric field turned a8t In
from the same technique used to calculate the time-ordereithis case, we get
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i(eaHh)(ty,e~trel/2) h
I (taveitrel) = 0(_ taye - treI/2) 6(_ taue + treI/Z)treI + 0(_ taue - treI/2) e(taue - trellz) tave + treI/2 + (1 -€ averel ) ieaE

) fi
+ a(taue +te/2) 0(— tyye + Ll 2) (el(eaEh)(tave+tre|/2) - ]-)aE —taet trellz] + 0(taue +10/2) H(taye —tel2)

i:;E(ei(eaaﬁ)(taveﬂre,/z) — g€ (taete/2) (33

This result has some interesting propertiesE -0, thenl R i
=t,¢ for all t,e andgy. is a Gaussian i, which Fourier Gioc(tave — %, trel) = = gﬁ(treﬂ
transforms to a Gaussian in frequency, i.e., it becomes the

noninteracting DOS. There is an interesting scaling behavior. xex t2 (cos(iEt ) B 1)
If we define tye=tyablfi, te=teeabls, and o 2e%a’E? nore '
=wh/eaF then (37)
[t t.) = il_t_ T 34 The Fourier transform of this is a set of delta functions, with
( aver rel) ( aver rel)a ( ) . . .
eaE different amplitudes, that are equally spaced in frequency,
= o with a spacingealE/ % (since the Green'’s function is periodic
with | a function independent df. Hence in t,e). This is the famous Wannier-Stark laddéexpected
i B for systems placed in an external electric field. In the results
O cltavertre) = = Eﬁ(t_ra)e”’“trel’eaE plotted in Fig. 1, the fact that the peaks at multiples of this
frequency get larger, and grow in heighttgg grows, indi-
2 ) cates our results are showing the correct buildup to the
xexp = ——55[(taete)?|, (35 steady state, but they will never get there utgj— . It is
4e’’E Y = ) :
no coincidence that this frequency is the same as the Bloch
and the DOS becomes oscillation frequency. This discussion was first described in
detail from the Green’s function approach by Davies and
— 1 Y o R T Wilkins.'® Note that the DOS is non-negative in the stead
Altaye ) == — Im f dtee”egtaete),  (36) 0 | gatve ! Y
0 .

o We can calculate the weight of the delta functions by
with the normalization chosen sfdwA(w)=1 (for easier performing the Fourier series integral. The frequencies are
comparison of curves for differeiif). Hence we expect the NeaH+#, and the Fourier coefficient is
DOS to have the same shape as a functiorwofwith a -
possible shift due to the chemical potential fagtdout the We =~ dt.co Et
amplitude of the oscillations grows &sincreasegbecause N ea 0 rel pore
of the minus sign in the exponent in E@5)]. But that turns v
out only to be true nea®=0. At other frequencies, the evo- ex t (c s(ﬁEt ) _ 1)
lution with E is not always monotonic, because the DOS 2e?a’E? i

conserves total spectral weight, so there cannot be a mono- o *2
tonic evolution of the peaks at all frequencies. = ﬂj ducos(Nu)exp(t—[cosu— 1]>

Note that the DOS satisfies two properties in equilibrium. ea’E? ) 26’a’E? '
The first is that the integral over frequency equals 1. The (38)
second is that the DOS is always positive. The proof for the
integral yielding 1 holds even in the nonequilibrium case, For our numerical results, we examine how the system
because the anticommutator of two Fermionic creation an@pproaches the steady state as the field is turned on. We work
annihilation operators at the same time is still one. The posiat half filling (w=0), where the DOS is symmetric; hence,
tivity does not hold, because the standard derivation, usingre plot only the results for positive frequencies. The field
the spectral representation, requires the Hamiltonian to baeeds to be large enough for our calculations to be able to
independent of time in order to be able to be used, andee the nonlinear effects of the field on the DOS. For us, the
thereby prove the positivity. Indeed, the DOS in the presencaumerical results can easily see effects on the DOS when
of a field has regions where it is negative. eaE/A>0.1. In Fig. 1, we plot results faraE/2=1. While it

It is interesting to consider the limit of largg,. i.e., is true that the Green’s functions forandt’ both less than
tawe— ©, then we get the steady-state solution. We take onlygero are equal to their equilibriuntfield-free limit, the
the last term ofl (t,,e,te) in EQ. (33) because,,. is always  Wigner DOS feels the effect of the fields for all finitg,,
larger thart, in this limit. The Green’s function becomes because the integral ovég, always includes some Green'’s
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T _9 e 0.9 0.95 1 1.05 1.1
IT10E I|t=|15o|- Frequency [t']

v ave 3

3 O 3 FIG. 2. Close up of the density of staté§,, ., w) nearo=1 for
%':’, 0 J f noninteracting electrons witkaE/#=1. Note how the DOS ap-

NS N PP R e proaches a steady state for large time by developing a sharp peak,
0O 05 1 1.5 2 25 3 35 but that there are significant oscillations near the sharp peak that
) ’ ’ : decay slowly in time.

Frequency [t]
function, but the distribution function can change for non-
FIG. 1. Density of stated\(tae, @) (in units 1/a%" with a the  equilibrium cases. In order to discuss distribution functions,
lattice spacing and— < the spatial dimensiorfor noninteracting  we need to define two more Green'’s functions—the so-called
electrons witheaE/71=1. Note how the DOS is essentially a Gauss- lesser and greater Green's functions. They are defined as
ian for t;,e<-2, but then develops large oscillations &g in- %>(t,t’):—(i/h)(c(t)c*(t’)) and g=(t,t")=(i/A){c(t")c(t))
creases. The DOS approaches a steady state for large time given by
a set of delta functions, equally spaced by the Bloch oscillation LN L L I BB B LB R LB
frequency. The DOS is no longer positive once the field is turned

on, but the integral does always equal 1. 75 E=0.1
— E=0.3
functions with eithet or t’ larger than zero. We can see that — E=1

significant “precursor” effects occur only fag.>-2 here,
and the DOS develops significant oscillations before one car S0
see the delta functions start to build up at the integer frequen |’§
cies. -
We plot a close up of the region aroumd=1 in Fig. 2. %’
Note how a sharp peak develops as the average time in
creases, but there are significant oscillations eat whose
amplitude decreases slowly gs, increases.

In Fig. 3, we plot the DOS in the variable neaw=0 for 0
t,,=100 and for five values afaE/% (0.1, 0.3, 1.0, 3.0, and
10.0. This shows how the oscillations grow Esincreases.
For other integer values @, the evolution is not monotonic
in the field strengtte (for example, aiw=1 the peak values —o5 Lo Lo b
increase withe for 0.1<eaE/ A <0.7 and then decrease for -0.1 -=0.05 0] 0.05 0.1
0.7<eaE#<10).

E=3

25

Reduced Frequency w

C. Distribution functions -
FIG. 3. Close up of the dimensionless density of stAlgs,c, »)

In addition to the spectral function and the DOS, it iSnearw=0 for noninteracting electrons witeaE/%=0.1, 0.3, 1.0,
interesting to examine the distribution function. In equilib- 3.0, and 10.0. Note how the peak in the DOS evolves as a function
rium, the distribution function is a Fermi-Dirac distribution of the electric field.
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(with the operators expressed in a Heisenberg pittliteese
Green’s functions can also be determined for Bloch elec-’é\
trons, and their expressions are the same as those for th™~.
retarded Green'’s function in Eq&29) and (30), except the

A(t—t’) factor is replaced by fe(k)—u) for g= and by

[1-f(e(k)—w)] for g~. There are three cases for the distri-
bution function that we can considéhe Wigner distribu-

tion, the quasiparticle distribution, and the local quasiparticle
distribution. The most often used distribution function is the -
Wigner distribution function, defined to be

fWignet(taue’k) == iﬁg<(k,t = tavevt, = tave)- (39)

The Wigner distribution function is always equal to the field-
free Fermi-Dirac resulfyygne(taye, K)=f(e(k) - ) for Bloch
electrons. The quasiparticle distribution function is defined in
analogy with the equilibrium result [g=(k,w)
=27if (w)A(k ,w)] via

1 Im g™ (tyek, »)

- 27 Altyek,») (40)

fquas(tavev k)

(note that the name quasiparticle distribution does not nece
sarily imply that there must be an underlying Fermi liquid in
the system Since the only difference between the retarded
Green’s function and the lesser Green'’s function is the re-“=
placement of the theta function by the Fermi-Dirac distribu-
tion (which does not depend on the time variabléise ratio

of the two terms in Eq.(40) has an explicit factor of
f(e(k)—w). The Fourier transform of the numerator is over
all t,o, while the denominator is only over all posititg,.

The Integral!(taug,trd) is an odd fuhctlon Of[,fe' [see Eq. noninteracting electrons witkaE/4=1 andT=0.1. Note how the
(32)], which implies the numerator in E¢40) is 27f(e(k)  |ocal quasiparticle distribution function varies significantly from the
= m)A(tae K, ), and we find the quasiparticle distribution equilibrium values as,,. increasesthe lowest panel is foi,,=2).
function is equal to the Fermi-Dirac distribution once again.This is because thg~ Green’s function has high frequency oscil-
The final distribution function to be defined is the local qua-lations, which are not as strong in the DOS. The oscillations con-

—5-4-3-2—1

2 3 4 5

0
Frequency [t*]

1

FIG. 4. Local quasiparticle distribution functidip.(ty,e, @) for

siparticle distribution function. This is

ilm glf)c(tavea w)
27 Altge )

This distribution function is nontrivial in a field, because the
DOS and the lesser Green’s function both have oscillation
but the zeros occur at different locations on the frequenc
axis, so the ratio in Eq41) can have significant oscillations.
The calculation of the local quasiparticle distribution
function is difficult because the presence offée u) factor
precludes us from performing the integral overanalyti-

A (41

cally; hence the numerical computations are more involved.l_

We need to evaluate the integral

% f dep(e)f(e~ )

X exp{
(42)

numerically, withx=Rel, y=Im|, and| being the integral
in Eq. (32). If eaE/A=0, then this is just the Fourier trans-
form of 2#if (w)p(w), which gives the correct lesser func-

g< (tape tre) =

*2
. €
- |%X(taueatrel) - Eyz(taueatrel)

tinue ast,, ¢ increases, but they become difficult to plot.

tion. If eal/A # 0, then the Green’s function has to be cal-
culated numerically. Because the real part of the lesser
Green'’s function is nonzero for a longer range in time than

ghe imaginary part, the functiog=~ will have more oscilla-
>;’|ons than theg® function. The results for a local quasiparti-

cle distribution function are plotted in Fig. 4. As it follows
from this figure, the local quasiparticle distribution function
varies significantly from the equilibrium values 8g, in-
creases. This is because the Green’s function has high
frequency oscillations, which are not as strong in the DOS.
he oscillations continue &g, increases, but they become
difficult to plot. Of course the momentum-dependent quasi-
particle distribution function is equal to the Fermi-Dirac dis-
tribution function for this problem.

Finally, we study the time dependence of the DOS for the
case of a sharp pulse during the period of timet3<tg. The
second derivative of the vector potential is proportional to
the strength of the magnetic fie{dhich we are neglecting
so we want to keep the second derivative small for the cal-
culations to make sense. We choose the electric field to have
the following time dependenceE(t)=E6f(tg—t)A(t), which
corresponds to a vector potential
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:{ O ;.1 e | [l Il i < O
3 5 > 0.6 & T T THHT _r T —
\</ 0 Lt L | -_ 1 il 1 1 i 1 ..q)
0 05 1 15 2 25 3 35 0 05 1t 15 2 25 3 35 s 1
Frequency [t'] Frequency [t'] t/
< 0
FIG. 5. Local DOS(in units 1/a%") for the case of a sharp flat ~—~ 1
pulse witheaE/2=1.0, t=10.0, and various average times. The 3.
horizontal scale is the same in every panel, but the vertical scale 4 0.5
changes in the different panels. By comparing figi@ewith figure \-o-_f
(b), one can see that the response is identical for tigggsandt; . <C 0
that satisfytyetty o=t — T
3 06 F
v 0.4
A(t) = — cEtA(tz — 1) 6(t) — CEt0(t — t). (43 3 -
£ 02r
Note that these results are “singular” for the noninteracting <C O b il T T T

case, because the final vector potential is a constant that ca

correspond to a current carrying state if the Fermi surface is 0 05 1 15 2 2*'5 5 3.5

shifted from the zone center. Because there is no scattering Frequency [t ]

such a current lives forevébut would decay in the presence

of any scattering Numerical calculations show that the DOS  FIG. 6. Local DOS(in units 1/a%") for the case of a smooth

deviates visibly from its equilibrium value during the times Gaussian pulse witeaE/2=10.0, tz=1.0, and various average

[t| <telax When the amplitude of the field is larger or on the times. The results are completely symmetric between negative and

order oft"; the relaxation time, 4 iS On the order of the positive average times, so we plot only the positive times here. Note

pulse timetg. how the oscillations are already strong tgje=0, first increase
The results of the calculations are presented in Fig. 5 foplightly, then fade away as the average time increases.

eaBE/7i=1 (wheneaE/% is much smaller than 1, the oscilla-

tlon§ b.eCOme hafd to s)geThe nonequilibrium I.:)OS. shows otential that is odd in time. The shift of the vector potential

oscillating behavior, which then decays as time increase

The results satisfy a symmetry relation, where the Wi ner.as no effect on the modulus bfsince it contributes only a
oo . y p y T 9 phase, while the shift in the time axis is precisely what is
DOS is identical fort,,e andt] . whenty.+t; =te.

We also consider the case of a smooth pulse with E?eeded to give the symmetry relation described above. For
smooth turnon and turnoff of the electric fieldA(t) he Gaussian pulse, the vector potential is already an even

. N function, and th t lation foll directly.
=Ectc exp(—tzlt'é)lz [which corresponds to an electric field unction, and the Symmetry relation Totows directly

T 912 L _ Note that we do not calculate the experimental probe of
E()=Et/tg exp(-t*/tg)]. This field changes sign a0 and ¢ reflectivity as a function of time after the initial pulse,

has it maximum amplitude at +y0.5. The Wigner DOS is  pecause this system has no intrinsic scattering, so the optical
symmetric int,,e, SO we only plot results for positive times in conductivity is always a delta function peak at zero fre-
Fig. 6. Note that at,,=0 the field has been on for a long quency, hence we would not learn anything interesting from
time, so the result is far from a Gaussian. The amplitude ofch an exercise here. It would be interesting to probe such
the peak in the DOS ab=0 is largest at,e=*10.5, and  pehavior in systems with intrinsic scattering mechanisms, to

decays rapidly for larger times. . _ understand how the different relaxation mechanisms can be
The proof of the symmetry relation for the Wigner DOS is getected.
rather straightforward to do. If the vector potentfgk) has We end with a discussion about gauge invariance. Our

definite parity, A(-t)=+A(t), then it is easy to see from Eq. calculations have been performed in a specific gaioge

(32) that I(~taye trel)=I(tae tre) for even functions and with the scalar potential vanishingOne can construct re-
|(~tape, tre)) =1 (tae. tre)” for odd functions. Since it is the tarded Green's functions that are gauge invaffaby trans-
modulus ofl that enters into the calculation 8{t,,e, »), the  forming away the scalar and vector potentials. Since we have
DOS will satisfy the given symmetry rules. For the case ofspatially uniform fields, the gauge-invariant Green'’s function
the constant-field pulse, we need to shift the time axis bys related to our Green’s function via the following transfor-
te/2 and shift the vector potential lytz/2 to have a vector mation
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trell2 and then decay. The amplitude of the oscillations was pro-

eA(tave+t)dt!tave1trel>v portional to the amplitude of the electric fiele for a wide
range of field strengths, and we needed the field to be suffi-
(44)  ciently large(eaE/% ~t") before they could be easily seen.
Of course, the oscillations decay at times larger than the

TRk, tyete) =07 k -
g( ave! rel) g ( ﬁCtrel o2

where QR is the gauge-invariant retarded Green’s function. Ulse time
This transformation amounts totg,-dependent shift of the P '

momentum wavevector. If we have a constant electric field Fmal_ly, we discuss the relatlor}smp of this work to the
_ . . Interacting case of the Falicov-Kimball modékhere one
turned on at=0, and the average time is large, then the shift

becomes independent @, so all of our local quantities can examine nonequilibrium properties of a Mott insulator

become gauge invariant wheg, is large enough. In other In this case, we map the lattice problem onto an effective

cases, one has to first shift the momentum, and then Fourit'empur"[y problem in a time-dependent field that depends in-

transform the relative time to a frequency, which is quiteJependently on two time _varlab_les. Working in a real-time
complicated for the general case. representation, th_e impurity action on '_[he Kadanoff-Baym
contour is quadratic in the fermionic variables, and hence is

equal to the determinant of a continuous matrix operator.

After introducing a discretized version of that operator, the
We have studied the nonlinear response of Bloch elechonequilibrium impurity problem can be solved in exactly

trons to an external time varyingout spatially homoge- the same way as the equilibrium problem, but now in a real-

neous electric field by employing a nonequi”brium formal- time basis. Fina”y, the genera“zation of the Hilbert trans-

ism on an infinite dimensional hypercubic lattice. We foundform, via the joint DOS in Eq(17), is employed to complete

that the current showed Bloch oscillations, even when thédhe DMFT self-consistency loop. We will present details of

electric field was constant in time, and we derived a form forthis algorithm, numerical strategies for solving the self-

the Sharvin-like resistance of the system. consistency problem, and numerical results for the nonlinear
The time dependence of the DOS was calculated. W&esponse of Mott insulators in another publication.

showed that it becomes a Wannier-Stark ladder for long

times, but the transient evolution toward those discrete delta
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