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One of the goals of pump-probe spectroscopies is to determine how electrons relax after they have been
driven out of equilibrium. It is challenging to determine how close electrons are to a thermal state solely by
fitting their distribution to a Fermi-Dirac distribution. Instead, we propose that one compare the effective
temperatures of both fermions and collective bosonic modes (derived from the fermions) to determine the
distance from a thermal state. Measurements of effective fermionic and bosonic temperatures can be
achieved directly via photoemission and nonresonant Raman scattering. Their difference quantifies
the distance from thermal equilibrium.
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Time-resolved pump-probe experiments are commonly
used to examine the nonequilibrium dynamics of different
excitations in solids [1–6]. Two of the most common
spectroscopies measured in these experiments are optical
conductivity and photoemission spectroscopy. Here we
focus on how another spectroscopy—nonresonant elec-
tronic Raman scattering—can be combined with photo-
emission to determine proximity of the electrons to thermal
equilibrium. It is well known that thermometry of electrons
is challenging in ultrafast experiments and often is per-
formed by fitting to a Fermi-Dirac distribution function.
Experimentally, nonequilibrium Raman scattering has been
measured for phonons in graphite [7] and combined with
photoemission of electrons to study the thermal relaxation
of both. Here, we develop the theory for nonresonant
electronic Raman scattering in the B1g symmetry channel
[8] and combine it with the known methods for photo-
emission to compare the two different effective temper-
atures. We perform our calculations for the spinless
Falicov-Kimball model [9] within the nonequilibrium
extension [10] of dynamical mean-field theory (DMFT)
[11,12]. The model describes a strongly correlated metal-
Mott-insulator transition, which occurs at the critical
Coulomb interaction Uc ¼

ffiffiffi

2
p

when the system is at half
filling. Because the charge dynamics of the Mott insulator
phase is model independent, we expect similar behavior for
the Hubbard model at large U.
In a pump-probe setup with a nonequilibrium pump and

finite width probes, we adapt the formalism proposed by
Nozières and Abrahams [13] for resonant inelastic x-ray
scattering (RIXS) to nonresonant electronic Raman scatter-
ing. The quantum system evolves from t1 to t2 via the
evolution operator Uðt2; t1Þ ¼ T t exp f−i

R t2
t1 dt̃Hðt̃Þg.

Initially (t → −∞), the system is in an equilibrium state
jni, which is an eigenstate of the initial (electronic)
Hamiltonian H0 ¼ Hðt → −∞Þ. The system has two
electric fields applied to it. The pump, which is treated
semiclassically and the probe, which is treated quantum
mechanically and perturbatively. The full system at arbi-
trary time t is then

jψðtÞi ¼ Uðt;−∞Þjni⊗ a†ki;ei
j0i

¼ T t exp

�

−i
Z

t

−∞
dt̃½Hloc þHtðt̃Þ�

�

jni⊗ a†ki;ei
j0i;

ð1Þ

where a†ki;ei
creates an incident photon with momentum ki,

energy ωi, and polarization ei. The electronic Hamiltonian
has two parts—Hloc ¼

P

i½Unicnif − μnic þ Efnif�
includes the local interaction U between itinerant (c) and
localized (f) electrons (and their chemical potentials) and
the time-dependent part of the HamiltonianHtðtÞ describes
the interaction with the total electric field (via the Peierls’
substitution to the hopping term):

HtðtÞ ¼ −
X

hi;ji

t�

2
ffiffiffiffi

D
p e

−i
R

Rj
Ri

dr·Aðr;tÞ
c†i cj: ð2Þ

Here nic ¼ c†i ci is the itinerant electron number operator
and nif is the localized electron number operator; we work
in the infinite-dimensional limit, where D → ∞ with t�
remaining finite. The hopping is between nearest neighbor
sites i and j. We assume that the electric field is spatially
uniform, pointing along the diagonal, with Aðr; tÞ ¼ AðtÞ
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the component in each spatial direction, and we ignore
magnetic field and relativistic effects. The vector potential
in the Hamiltonian gauge then produces the total electric
field through EtotðtÞ ¼ −dAðtÞ=dt (we set ℏ ¼ c ¼ e ¼
a ¼ t� ¼ 1).
This vector potential has two terms AðtÞ ¼ ApumpðtÞ þ

AprobeðtÞ. We model the pump field by

EpumpðtÞ ¼ E0 cos ½ωpðt − tpÞ�e
−ðt−tpÞ2

σ2p ; ð3Þ
where E0 is the magnitude of the pump field at time t ¼ tp,
and ωp and σp define the frequency and width of the pump
pulse, respectively.
Electronic Raman scattering is a second-order process,

so we find resonant and nonresonant terms that are second
order in the probe vector potential AprobeðtÞ [14–18]. We
will only work with the nonresonant contribution here
(details of derivation are given in Ref. [19]). Summing over
all the quantum states between the start and the end of the
experiment (at texp → ∞ to collect all scattered light), we
end up with the final state in Eq. (1),

jψð∞Þi ¼ 1

2

Z

∞

−∞
dt̃Upumpð∞; t̃ÞAα

probeðt̃Þ

× γαβðt̃ÞAβ
probeðt̃ÞUpumpðt̃;−∞Þjni ⊗ a†ki;ei

j0i;
ð4Þ

where the stress tensor operator in the momentum repre-
sentation is γαβðtÞ ¼

P

k½∂2ϵðk; tÞ=∂kα∂kβ�c†kck, with a
time-dependent electronic band energy ϵðk; tÞ ¼
−ðt�= ffiffiffiffi

D
p ÞPD

α¼1 cos ½kα − Aα
pumpðtÞ� (the repeated indices

α and β are summed over). The probe field Aα
probeðtÞ ¼

sðtÞPk;eð2π=ωkÞ1=2eαðeiωkta†k;e þ e−iωktak;eÞ, which acts
in the photon space, describes the creation and annihilation
of photons with polarization e, and frequency ωk.
The time profile of the probe pulse is defined by an
envelope function sðtÞ, which we take to be sðtÞ ¼
exp ½−ðt − t0Þ2=σ2b�=ðσb

ffiffiffi

π
p Þ centered on time t0 (which

defines time delay of the probe). The width of the probe
pulse is σb. The operator Upumpðt2; t1Þ is the evolution
operator in Eq. (1), but without the probe pulse.
The scattering amplitude is defined by the probability to

find a photon with energy ωf and polarization ef in the
final state given in Eq. (4), see, e.g., Ref. [20]. This is then
weighted by the thermal factors and summed over all the
equilibrium states. The electronic Raman scattering prob-
ability becomes

Rðωi−ωf; t0Þ¼
X

n

e−βEn

Z
hψð∞Þja†kf;ef

akf;ef jψð∞Þi; ð5Þ

where Z ¼ Tr exp ð−βH0Þ is the partition function at the
initial temperature T ¼ 1=β, and one needs to calculate an

expectation value for the scattering probability over the
photon vacuum state j0i. Applying the Kadanoff-Baym-
Keldysh formalism [21,22], we introduce Green’s functions
that are built on two stress tensor operators Rc

γγðt; t0Þ ¼
−iTr exp ð−βH0ÞT cγðtÞγðt0Þ=Z with times t and t0 being
ordered on the contour. In the same way as it was done by
Nozières and Abrahams [13] for RIXS, one can show that
this greater Green’s function defines the electronic Raman
scattering probability RðΩ; t0Þ when the two times t and t0
are placed on different branches of the contour with t ahead
of t0:

R>
γγðt; t0Þ ¼ −i

1

Z
Tr e−βH0γðtÞγðt0Þ: ð6Þ

Diagrammatically, the greater function R>
γγðt; t0Þ

consists of the bare and renormalized bubbles,
which are constructed from the greater G>

k ðt; t0Þ ¼
−iTr exp ð−βH0ÞckðtÞc†kðt0Þ=Z and the lesser G<

k ðt; t0Þ ¼
iTr exp ð−βH0Þc†kðt0ÞckðtÞ=Z momentum-dependent sin-
gle-particle Green’s functions. The vertices of the
bubbles include the factor γ̄ðk; tÞ ¼ P

αβ eiαf∂2ϵ½k−
ApumpðtÞ�=∂kα∂kβgefβ. We consider B1g symmetry only,
so the polarization vectors in the (x − y) plane of the
tetragonal lattice of the incident and scattered photons are
equal to ei ¼ ð1; 1Þ and ef ¼ ð−1; 1Þ and can be general-
ized to the infinite-D limit by choosing [15,23] ei ¼
ð1; 1; 1;…Þ and ef ¼ ð−1; 1;−1;…Þ, respectively. In
the case of nearest neighbor hopping, we find
γ̄B1g

ðk; tÞ ¼ P

D
α¼1ð−1Þα cos ½kα − Aα

pumpðtÞ�=
ffiffiffiffi

D
p

. Because
of this form of the stress tensor and the local character
of the irreducible charge vertex [24], the renormalized
bubble vanishes [15,17,23] and we end up with the bare
bubble only.
We perform the summation over momenta k by

integrating over energy with the joint density of states
ρðϵÞρðϵ̄Þ, which is the product of the Gaussians given by
ρðϵÞ ¼ exp ð−ϵ2Þ= ffiffiffi

π
p

and ϵ̄ ¼ ϵ̄ðkÞ ¼ −
P

D
α¼1 sin kα=

ffiffiffiffi

D
p

[15,23]. Finally, following similar calculations for the
noninteracting case with U ¼ 0 [25], we perform the
Fourier transform from time to frequency and we obtain
[after suppressing the overall “scattering strength” prefactor
4π2=ðωiωfÞ]:

RN
B1g

ðΩ; t0Þ ¼
1

2
Re

Z

dt
Z

dt0s2ðtÞs2ðt0ÞeiΩðt−t0Þ

× cos ½ApumpðtÞ − Apumpðt0Þ�

×
Z

dϵ
Z

dϵ̄ρðϵÞρðϵ̄ÞG>
ϵ;ϵ̄ðt; t0ÞG<

ϵ;ϵ̄ðt0; tÞ;

ð7Þ
with Ω ¼ ωi − ωf being the frequency shift for the
scattered photons. Note that this is a general DMFT result,
independent of the choice of Hamiltonian.
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In equilibrium and for the monochromatic light beams
[sðtÞ → const], the Stokes and anti-Stokes lines of the
Raman cross section are connected by the relation
RN
B1g

ðΩÞ=RN
B1g

ð−ΩÞ ¼ eβΩ, for Ω > 0. When a probe pulse

is present, this relation is replaced by a similar one with a

displaced frequency Ω
∼ ¼ Ω − ðβ=σ2bÞ [25],

RN
B1g

ðΩ
∼
− β

σ2b
; t0Þ

RN
B1g

ð−Ω
∼
− β

σ2b
; t0Þ

¼ eβΩ
∼

: ð8Þ

In general, this ratio is not satisfied for all the frequencies in
nonequilibrium [25]. But as we approach the steady state, it
is satisfied for a reasonably wide frequency range and the
effective temperature can be accurately extracted. We have
found from our numerics, that in a wide enough region of

Ω
∼
≈ 0, the value of the ratio in Eq. (8) holds and can be used

to estimate the effective temperature βeff ¼ 1=Teff of the
two-particle excitations during the nonequilibrium process.
Motivated by Ref. [7], we can compare this “two-particle”
temperature, with an effective “single-particle” temperature
extracted from the time-resolved photoemission spectra (tr-
PES). The tr-PES spectral function is defined by the local
lesser Green’s function as follows [26]:

P<ðω; t0Þ¼−i
Z

dt
Z

dt0sðtÞsðt0Þe−iωðt−t0ÞG<
locðt; t0Þ; ð9Þ

the local Green’s function is found from the momentum-
dependent Green’s function by summing over all momenta
with equal weight. As an analogy to the equilibrium case,
we define the nonequilibrium density of states via the
probe-envelope-modified retarded response function:

Adðω; t0Þ ¼ i
Z

dt
Z

dt0sðtÞsðt0Þe−iωðt−t0Þ

× θðt − t0Þ½G>
locðt; t0Þ − G<

locðt; t0Þ�: ð10Þ

The ratio of the tr-PES spectral function to the density
of states is used to determine the nonequilibrium distri-
bution function for the fermionic states [27,28]
fsðω; t0Þ ¼ P<ðω; t0Þ=Adðω; t0Þ.
We present our results for the nonresonant Raman

scattering cross section in Fig. 1: panel (a) is a metal,
panel (b) is a near critical Mott insulator, and panel (c) is a
Mott insulator. For all three cases, we see some common
behavior; in equilibrium, the electronic Raman scattering
has a broad peak set by the bandwidth for the metal, which
evolves into a Mott peak centered at U for the Mott
insulator. At early times, there is one peak near Ω ¼ U
(Stokes line) which corresponds to the charge-transfer peak
in equilibrium. As the pump is applied (t0 ≈ 0), it com-
pletely suppresses this process due to strong Bloch oscil-
lations of the stress tensor γαβðtÞ [25]. After the pump is
gone the Raman scattering becomes different for different

FIG. 1. Nonresonant Raman scattering cross section for (a) U ¼ 0.5, (b) U ¼ 1.5, and (c) U ¼ 2.0. Different lines correspond to
different time delays t0 ∈ ½−14; 14� of the probe pulse with respect to the pump one. The pump pulse field is plotted in the upper inset in
panel (a) with the following parameters: E0 ¼ 30, tp ¼ 0; ωp ¼ 0.5, and σp ¼ 5. The probe pulse width is σb ¼ 12. The infinite-
temperature limit is shown with the blue dotted lines. The lower insets show the time dependence of the inverse temperature: the black
curve is from the Stokes–anti-Stokes ratio; the red curve is from the slope of the single-particle distribution function and the green curve
is from a least squares fit to the Fermi-Dirac distribution function; the initial temperature is T ¼ 0.1 (β ¼ 1=T ¼ 10), but the effective
temperature only approaches that value for earlier experimental times [25].
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U’s. At late times there is always a peak around Ω ¼ 0,
which is no longer Pauli blocked due to the excitation of
electrons from the pump and comes from hot electrons
generated by the pump pulse.
In the insets, we present the time evolution of the

effective inverse temperatures βeff ¼ 1=Teff for the sin-
gle-particle (red and green lines) and two-particle (black
line) excitations and one can see that at late times βeff
becomes very small. We also plot the T → ∞ equilibrium
Raman cross section with the blue dotted line, which is
close to the nonequilibrium one at late times. For large
U ¼ 2.0 [Fig. 1(c)] there are two more peaks after the
pump is gone: the charge-transfer Stokes and anti-Stokes
peaks at Ω ¼ �U. In the near-critical Mott insulator with
U ¼ 1.5 in Fig. 1(b), there are three peaks at late times that
correspond to the “zero peak” and to the restored charge-
transfer peaks at Ω ¼ U (Stokes) and at Ω ¼ −U (anti-
Stokes). Moreover, the anti-Stokes’ peak is higher than the
Stokes’ peak, which implies a negative temperature.
For comparison, we present our results for the tr-PES in

Fig. 2. Similar to the Raman scattering in Fig. 1, the three
different panels correspond to different U values, and
different curves correspond to different delay times t0. In
the insets, we show the nonequilibrium distribution func-
tion at times t0 ¼ −14 (black curve), t0 ¼ 0 (red curve),
and t0 ¼ 14 (green curve). We can distinguish two major
effects of the pump. When the pump is on, we observe a
narrowing and sharpening of the bands with the simulta-
neous appearance of Floquet-like subbands filling the Mott
gap. These subbands slowly relax back to a fully gapped
state at long times. On the other hand, the pump field
excites electrons to the upper band, and after the pump is

gone they deexcite back to the lower band in the cases of
U ¼ 0.5 and U ¼ 2.0 in Figs. 2(a) and 2(c), respectively.
But in the case of the near-critical Mott insulator atU ¼ 1.5
in Fig. 2(b) it is the opposite: the magnitude of the tr-PES
response from the upper band is larger than from the lower
one at late times. This means that we observe an inverse
occupation of the single-particle electron states character-
ized by a negative temperature. This is also seen from the
plots for the nonequilibrium distribution function: the slope
of the green curve that corresponds to late time t ¼ 14 at
zero frequency in Fig. 2(b) has an opposite sign with
respect to other curves on this inset as well as to those in
panels (a) and (c).
In the bottom insets in Fig. 1, we show the effective

inverse temperature calculated from the Stokes to anti-
Stokes ratio in Eq. (8) (black curve) and from the slope of
the nonequilibrium distribution function fsðω; t0Þ at the
Fermi level, which we extracted from the tr-PES results
using Eqs. (9) and (10) (red curve) and by least squares
interpolation of the Fermi-Dirac distribution (green curve).
Exploring the behavior of the inverse temperature during
the pump, one may speculate on the sensitivity of the
single-particle excitations measured by tr-PES and the two-
particle excitations measured by Raman scattering to
nonequilibrium pumping. The population of the single-
particle states is changed very rapidly with the pump for
small values of the Coulomb interaction U ¼ 0.5 and
changes very slowly for the large gap Mott insulator at
U ¼ 2, whereas for the near-critical Mott insulatorU ¼ 1.5
the gap is small enough to allow fast population of the
upper band but large enough to prevent back deexcitation,
leading to an inverse occupation and negative temperatures.

FIG. 2. tr-PES: (a),(b), and (c) correspond to U ¼ 0.5, U ¼ 1.5, and U ¼ 2.0. Different lines correspond to different time delays
t0 ∈ ½−14; 14�. The inset shows the fermionic distribution function at t0 ¼ −14 (black), t0 ¼ 0 (red), and t0 ¼ 14 (green).
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At later times the effective temperatures are high, leading to
the creation of hot electrons as manifested by the flattened
electronic distribution function and by the central peak in
the Raman cross section. The two-particle excitations are a
signature of the creation of bound states, which behave like
a heavy subsystem with a different effective temperature
and relaxation time than the single-particle one.
Note how the effective temperature of the two-particle

excitations initially increases with the pump, but then starts
to decrease, reaching its minimum at the pump maximum,
after which it starts to increase again. Such behavior can be
explained by two effects. First, it is the consequence of a
suppression of Raman scattering by Bloch oscillations and,
second, the hot electrons destroy the bound states, decreas-
ing their density which, together with rapid heating of light
single-particle excitations, leads to adiabatic cooling of the
heavy (two-particle) subsystem. Of course, because the
isolated Falicov-Kimball model does not thermalize, the
green and black curves never agree at long times, but they
can become close when one is near infinite temperature.
In conclusion, we employed the theory for nonresonant

electronic Raman scattering in the B1g symmetry channel to
show how one can measure both fermionic and collective
bosonic temperatures stroboscopically in a pump-probe
experiment. By comparing these effective temperatures to
each other, we can determine how far from equilibrium the
electrons are (since these two temperatures must agree in
equilibrium). Given the fact that a good fit to a Fermi-Dirac
distribution may still involve nonequilibrium electrons, this
consistency test across fermions and collective bosonic
excitations provides a stringent test for the approach to
thermal equilibrium.
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