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We examine the problem of how excited populations of electrons relax after they have been excited by a
pump. We include three of the most important relaxation processes: (i) impurity scattering, (ii) Coulomb
scattering, and (iii) electron-phonon scattering. The relaxation of an excited population of electrons is one
of the most fundamental processes measured in pump-probe experiments, but its interpretation remains
under debate. We show how several common assumptions about nonequilibrium relaxation that are
pervasive in the field may not hold under quite general conditions. The analysis shows that nonequilibrium
relaxation is more complex than previously thought, but it yields to recently developed theoretical methods
in nonequilibrium theory. In this work, we show how one can use many-body theory to properly interpret
and analyze these complex systems. We focus much of the discussion on implications of these results for
experiment.

DOI: 10.1103/PhysRevX.8.041009 Subject Areas: Condensed Matter Physics,
Optics, Strongly Correlated Materials

I. INTRODUCTION

In the analysis of nonequilibrium theory and experi-
ments, it is common to lean on intuition developed from
equilibrium physics and from linear response, even in
circumstances where the system is driven far from equi-
librium. The experiments are typically performed with a
pump-probe setup, where the pump drives the system out of
equilibrium and out of the domain where our equilibrium
intuition applies. The measurement is made with a wide
variety of probes in a similar variety of contexts, and they
have been the subject of rapid development. Theory has
also improved beyond the Boltzmann equation and effec-
tive temperature approaches, with exact methods being
developed in one dimension (via density matrix renorm-
alization group [1]) and in infinite dimensions (via non-
equilibrium dynamical mean-field theory [2,3]). While
much work has been accomplished in both cases, there
are a number of assumptions that underlie a significant
fraction of the analysis in the field which do not always
hold. We describe four of these assumptions in detail here
and fully consider three of them, leaving the resolution of
the fourth to later work.
The four assumptions are as follows: (i) many-body

systems must relax after excitation, (ii) the self-energy

governs the relaxation rate, (iii) the time domain allows one
to separate the relaxation rates from different scattering
processes, and (iv) when electrons are coupled to phonons,
they rapidly scatter amongst themselves to create hot
thermal electrons that subsequently relax with the phonons
until they both reach a common final temperature.
The reasons why each of these assumptions may be

readily violated follow from a rather straightforward
analysis:

(i) Isolated electronic systems cannot relax back to the
state before the pump (equilibrium) because their
total energy (given by their initial energy plus the
energy imparted by the pump) is conserved. Hence,
while they can rearrange the energy amongst their
constituents, in many cases this does not evolve to a
thermal distribution. Recent work on the eigenstate
thermalization hypothesis says that systems without
additional conserved quantum numbers do evolve to
a thermal distribution, while those with additional
conserved quantities will evolve to generalized
Gibbs distributions which maintain the additional
conservation laws [4]. In addition, pumped systems
sometimes are excited into metastable states or novel
nonequilibrium phases, which may relax in un-
known ways (and not to the prepump state) because
these phases are not present in thermal equilibrium
[5]. We show that pure impurity scattering does not
cause relaxation to thermal equilibrium while pure
Coulomb scattering should. When electrons are
attached to a phonon bath with electron-phonon
coupling, they can relax in a way that removes
energy from the electronic system and eventually
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returns the system to the temperature of the pho-
non bath.

(ii) When the many-body system does relax, early work
in many-body physics suggested that it is the imagi-
nary part of the self-energy that governs the relax-
ation rate [6–9], similar to the situation in equilibrium
[10,11]. While one can show this suggestion holds
for inelastic scattering processes in nonequilibrium
when both the coupling and pump are weak, it is
violated by stronger interactions and higher pump
fluence [12]. An even more significant violation has
been reported in experiments [13,14], but a full
explanation of this effect does not exist yet. In
this work, we point towards a resolution of this
conundrum.

(iii) Matthiessen’s rule [15] governs the relaxation of
most systems in linear response. It says that one
adds the relaxation rates for different scattering
processes to yield one net relaxation rate (similar
to how resistors add as reciprocals when in a parallel
circuit). As with the electrical circuit analogy, one
should see only the net relaxation rate in the time
dynamics. Yet, in numerous experiments, one does
see a separation of relaxation rates for excited
populations. We show this naturally occurs in non-
equilibrium relaxation and leads to violations of
Matthiessen’s rule.

(iv) Finally, the hot-electron model, which has been
employed in many different contexts, can be easily
shown to be incorrect. An equation of motion for the
population shows that whenever one has a fluc-
tuation-dissipation-like relationship [A<ðωÞ ∝
fðωÞImARðωÞ], where the lesser quantities (propa-
gators and self-energies) are given by the imaginary
parts of retarded quantities multiplied by some
distribution function (it need not even be an equi-
librium distribution), then the population no longer
relaxes with time. In fact, one can easily show that it
is the deviations from the hot-electron model that
govern the nonequilibrium relaxation [16,17]. We
summarize the argument for why this must occur.
Given the wide application of hot-electron models to
analyzing pump-probe experiments, this failure is
our most important result. We discuss later under
what circumstances hot-electron model analyses
make sense (as good approximations) and under
what situations they fail.

Quite generally, these assumptions break down due to
the fundamental difference between measurement time and
quasiparticle lifetime. By nature, equilibrium measure-
ments (through linewidth, for example) observe the quasi-
particle lifetime that arises from Fourier transformation
along relative time; these observations access the dephasing
or decay of the correlation functions. On the other hand,

nonequilibrium measurements see the energy transfer
between various subsystems rather than this dephasing.
Some of these assumptions have been previously treated

theoretically within Boltzmann equation approaches
[18,19], whose authors find similar results regarding the
limitations of the hot-electron model and the separation of
timescales. However, Boltzmann equation approaches by
nature do not capture the emergence of the history kernel,
and thus provide no description of the retarded nature of the
interactions and frequency dependence of the electron
Green’s functions. Nevertheless, these works find discrep-
ancies between the inherent dephasing time of a Fermi gas
and the population dynamics after the pump [18], and the
critical appearance of bottlenecks [19], which we further
elucidate here.
To demonstrate that these assumptions may be readily

violated for simple systems, we compare and contrast
relaxation from impurities, coupling of electrons to phonons,
electron-electron scattering, and various combinations.
Although these are relatively simple scattering processes
that are well understood in equilibrium, we show that their
characteristics in the time domain are not simple extensions
from equilibrium. Furthermore, we use them as counter-
examples to show that even in simple cases the assumptions
may be violated.We show how some of the examples behave
differently because they cannot fully relax, and how their
temporal dynamics shows clear violations of Matthiessen’s
rule, with the origin arising from details for how energy is
transferred from electrons to phonons. We also describe the
implications of this work for the interpretation of experi-
ments, in particular, emphasizing the different characteristic
behaviors of the different scattering processes.

II. MODEL AND METHOD

We investigate the aforementioned scattering channels:
electron-impurity, electron-phonon, and electron-electron
(Coulomb) scattering through the Hubbard-Holstein model
with local interactions

H ¼
X
k;σ

ϵðkÞc†k;σck;σ þ Ū
X
i

c†i↑ci↑c
†
i↓ci↓ þ

X
i;σ

V̄ic
†
i;σci;σ

þ Ω
X
i

b†i bi þ g
X
k;q;σ

c†kþq;σck;σðbq þ b†−qÞ; ð1Þ

where the individual terms represent the kinetic energy of
electrons with a dispersion ϵðkÞ, the energy of Einstein
phonons with a frequency Ω, and a coupling between them
whose strength is given by g. Here, c†αðcαÞ are the standard
creation (annihilation) operators for an electron in state α;
similarly, b†αðbαÞ creates (annihilates) a phonon in state α.
The Ū and V̄i terms represent the on-site Coulomb
interaction and random impurity scattering, respectively.
We study a square lattice dispersion with nearest- and next-
nearest-neighbor hopping (tNN and tNNN),
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ϵðkÞ ¼ −2tNN½cosðkxÞ þ cosðkyÞ�
þ 4tNNN cosðkxÞ cosðkyÞ − μ; ð2Þ

where μ is the chemical potential. We use the convention
that ℏ ¼ c ¼ e ¼ 1, which makes inverse energy the
unit of time. We choose tNN ¼ 0.25 eV, tNNN ¼ 0.075 eV,
and μ ¼ −0.255 eV, and use an inverse temperature
β ¼ 100=eV.
The self-energies for the three different scattering mech-

anisms are shown in the Feynman diagrams in Fig. 1. The
electron-phonon interaction is treated at the self-consistent
Born level [Fig. 1(a)], with the self-energy given by

ΣC
el-phðt; t0Þ ¼ ig2GC

locðt; t0ÞDC
0ðt; t0Þ: ð3Þ

Here, DC
0ðt; t0Þ is the noninteracting phonon propagator

[11], andGC
locðt; t0Þ ¼ N−1

k

P
k G

C
kðt; t0Þ is the local Green’s

function. The superscript C denotes that the quantity lives
on the two-time Keldysh contour [20]. In this formulation,
we assume the phonons have an infinite heat capacity, so
their temperature does not rise due to coupling with the
excited electrons. Hence, they maintain the same phonon
propagator for all times. This approximation is valid for
situations where the amount of energy put into the system is
not large enough to cause a notable change in the phonon
dynamics [21].
Similarly, the impurity scattering self-energy after aver-

aging [Fig. 1(b)] is given by

ΣC
el-impðt; t0Þ ¼ V2GC

locðt; t0Þ: ð4Þ

V is obtained from impurity averaging as V2 ¼ nimpV̄2,
where nimp is the density of impurities, and we neglect the
momentum dependence of the scattering matrix element.
The electron-electron interactions are included at the

level of self-consistent conserving second-order perturba-
tion theory [Fig. 1(c)] via

ΣC
el-elðt; t0Þ ¼ Ū2GC

locðt; t0ÞGC
locðt; t0ÞGC

locðt0; tÞ; ð5Þ

which is equivalent to a dynamical mean-field approxima-
tion with a conserving perturbative impurity solver. This

approximation neglects the momentum dependence of the
two-particle bubble, which increases the phase space for
electron-electron scattering but should produce accurate
results as long as the interaction is not too large. For local
interactions, the Hartree-Fock terms only shift the chemical
potential.
Note that we do not include any mixed self-energy

diagrams between the different scattering channels. This is
not a requirement, but it allows for a clear differentiation
between the different scattering mechanisms themselves,
and it is the lowest-order contribution in perturbation
theory for each scattering channel.
In all three cases, there exists a sum rule for the

interactions at this level of perturbation theory. As was
discussed previously [12,22], the frequency-integrated
electron-phonon interactions obey a sum rule. The impurity
and Coulomb-scattering self-energies also obey similar
sum rules. They are as follows:

ImΣR
el-phðt; tÞ ¼ −g2½hx2ðtÞi − hxðtÞi2� ð6aÞ

¼ −g2½2nBðΩ=TÞ þ 1�; ð6bÞ

ImΣR
el-impðt; tÞ ¼ −V2; ð6cÞ

ImΣR
el-elðt; tÞ ¼ −Ū2nð1 − nÞ≡ −U2; ð6dÞ

where n ¼ hn↑i ¼ hn↓i is the electron density per spin,
and nBðΩÞ is the Bose occupation of the phonon mode Ω.
These identities are true at all times and hold individually
even when all three types of interactions are present. To put
the parameter strength for the various interactions on an
equal footing, we define an interaction strength U2 ¼
Ū2nð1 − nÞ which takes into account the dependence of
the electron-electron scattering on the electron density.
The equations of motion for the Green’s functions are

solved on the contour by using the methods described in

(a) (b) (c)

FIG. 1. Self-energies used in this study. (a) Electron-phonon
self-energy in the Migdal approximation. (b) Impurity self-energy
in the Born approximation. (c) Second-order electron-electron
self-energy. All of these are treated self-consistently.

FIG. 2. Pump vector potential AðtÞ and probe profiles used in this
work. The probe profile is the envelope function for the probe pulse.

GENERAL PRINCIPLES FOR THE NONEQUILIBRIUM … PHYS. REV. X 8, 041009 (2018)

041009-3



Ref. [23]. The field is included via the Peierls substitution
[24] kðtÞ ¼ k −AðtÞ, where the vector potential AðtÞ is
treated in the Hamiltonian gauge. We use a pump of the
form AðtÞ ¼ Amax expð−t2=2σ2Þ sinðωtÞ in the diagonal
(11) direction with ω ¼ 0.5 eV. The field is illustrated
in Fig. 2. The full width at half maximum of the field is
approximately 24 fs, while the width of the probe is
approximately 94 fs (see below). The timescales for the
fields are chosen for computational reasons, as are the
interaction strengths and related timescales. However, since
we are focused on the postpump dynamics, the time- and
energy scales in the pump do not have an imprint on the
physics discussed below; rather, the pump is only a
mechanism to make an excitation.

A. Observables

The single-particle angle-resolved photoemission
spectral functions are obtained from the Green’s functions
via [25]

Pðk;ω; tdelayÞ

¼ Im
Z

dt1dt2pðt1; t2; tdelayÞeiωðt1−t2ÞG<
k̄ðt1;t2Þðt1; t2Þ; ð7Þ

where pðt1; t2; tdelayÞ is a two-dimensional normalized
Gaussian with isotropic width σp ¼ σ centered at
t1 ¼ t2 ¼ tdelay:

pðt1; t2; tdelayÞ

¼ 1

2πσ2
exp

�
−
ðt1 − tdelayÞ2 þ ðt2 − tdelayÞ2

2σ2

�
: ð8Þ

The Gaussian probe profile along tdelay is shown in Fig. 2.
The shift in momentum due to the Peierls substitution has
to be corrected to obtain gauge-invariant spectra through a
time-dependent shift of the momentum [26,27] via

k̄ðt; t0Þ ¼ kþ 1

t − t0

Z
t

t0
Aðt̄Þdt̄: ð9Þ

Below, we also consider the amount of excited electrons
by evaluating the electron density above kF:

nðk > kFÞ ¼ −i
X
k>kF

G<
k ðt; t0 ¼ tÞ: ð10Þ

III. RESULTS

To set the stage for the discussion, we outline the often-
used conceptual framework underlying the assumptions.
First, in equilibrium, one typically identifies the quasipar-
ticle lifetime with the self-energy through

1

τðνÞ ¼ −2 ImΣRðνÞ; ð11Þ

where we combine the quasiparticle quantum numbers into
a single index ν. This relation was suggested to hold in the
time domain within certain limits with τ as the population
decay rate rather than the single-particle lifetime [6–9], but
it was experimentally shown not to hold in at least a few
cases [13,14]. One of the consequences of this line of
thought is that since the self-energy is always present,
relaxation must always occur.
Next, in equilibrium, the scattering rates for each of the

relevant processes encoded in the self-energy add linearly
for weak coupling. Based on this concept, time- and
angle-resolved photoemission spectroscopy (tr-ARPES)
experiments are commonly analyzed by considering the
contributions of various scattering processes to the pop-
ulation decay rate based on estimates from equilibrium
experiments. Although the addition of the scattering rates
should give rise to a single exponential decay rate, this is
often not observed—a multiexponential type of behavior is
seen instead. This agrees with the mode of thinking that the
processes in the time domain should separate according to
their fundamental timescales. Based on converting the
characteristic energy scales into timescales and ranking
them, the strong interaction (often electron-electron) is
thought to occur first, followed by the weaker interactions
(e.g., electron-phonon scattering).
Below, we show that these concepts are erroneous. The

population decay rate is not simply connected to the self-
energy, and the scattering rates do not always separate.
Rather, the population decay rate is set by a difference
between effective distributions of the populations and the
self-energy, and any separation of scattering rates arises
from energy bottlenecks.
We begin by considering the effects of individual

electron-phonon, electron-impurity, and electron-electron
(Coulomb) scattering in a pump-probe setup. Figure 3
shows snapshots of the tr-ARPES spectra for the three
individual interactions under consideration (videos of the
three processes are available in the Supplemental Material).
To make a proper comparison, the interaction strengths, as
defined through the sum rules in Eq. (6d), are kept constant.
The equilibrium spectra at tdelay ¼ −86 fs show the typical
hallmarks of a band of electrons interacting with phonons,
impurities, and internally through Coulomb scattering.
The system with phonon scattering shows a kink in the

spectra at the phonon frequency together with a sharpening
of the spectra within the phonon window (defined as
jωj < Ω). This window plays a key role in determining
the population dynamics at low energies due to phase-space
restrictions for phonon emission [9,12,28].
The system with impurity scattering has a more or less

homogenous scattering rate proportional to the density of
states. Coulomb scattering, within second-order perturba-
tion theory, gives rise to a self-energy (and, thus, a
scattering rate) that is given by Im Σ ∼ −ðω2 þ π2T2Þ.
The temperature here is sufficiently low that the ω2 term
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dominates, which is reflected in the spectra in the increase
in the linewidth at high energies.
The spectra at tdelay ¼ 0 fs are at the point where the

pump and probe overlap. In all three cases, there is excited
spectral weight above the Fermi level; there are some
qualitative distinctions between the spectra that originate
from the particular interactions (e.g., the weakening of the
kink in the phonon-scattering case), but the excitation is
present in all cases. This scenario is also similar to what one
would envision from the hot-electron approach. But, if the
electronic system fully relaxes to a hot temperature, we
show below that it never subsequently relaxes to a lower
temperature.

A. tr-ARPES for individual scattering channels

The final snapshot at tdelay ¼ þ86 fs is taken long after
the pump. At this point, the system with phonon scattering
has partially completed its return to equilibrium, as has
been studied in some detail previously [8,9,12]. This is
clearly reflected in the partial disappearance of the excited
spectral weight above the Fermi level (see, also, Fig. 4).
The systems where only impurity or Coulomb scattering
are present are in stark contrast to the former case—after
the pump, they essentially do not return to the equilibrium
state before the pump. However, although these two share

the characteristic of a new steady state after the pump, the
appearance of the spectra is quite different. For impurity
scattering, there is essentially no change in the spectra
immediately after the pump, which agrees with previous
analytic work [16] showing a steady state once momentum
equilibration is achieved. This is expected because the final
state should be a generalized Gibbs [4] state which will not
look thermal. On the other hand, the system with Coulomb

FIG. 3. False-color images of time-resolved single-particle spectral functions at the start of (left), during (middle), and after (right) the
pump for the individual electron-phonon, electron-impurity, and electron-electron interactions. Here, the interaction strengths are
g2 ¼ V2 ¼ U2 ¼ 0.02 eV. The dotted line indicates the phonon frequency Ω ¼ �0.1 eV.

FIG. 4. Quasiparticle weight above the Fermi level for the
individual electron-phonon, electron-impurity, and electron-electron
interactions. The shaded region indicates �2σ of the pump field.
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scattering exhibits some short-time dynamics and quickly
settles into the state seen in the figure. The short-time
dynamics is caused by internal thermalization of the
electrons, and the steady state is an elevated temperature
state, as expected by the eigenstate thermalization
hypothesis.
Figure 4 illustrates the difference between the three

scattering processes through the excited population above
the Fermi level [see Eq. (10)]. The electron-phonon
interactions behave as expected, with an excitation fol-
lowed by a return to equilibrium. On the other hand, the
impurity and Coulomb-scattering cases end up in a state
with a sizable persistent increase in the population above
the Fermi level, although the Coulomb-scattering system
takes some time to get there as it scatters electrons from
below EF.
These observations immediately demonstrate a violation

of two of the assumptions: Many-body systems do not
always relax to the equilibrium state before the pump even
long after the pulse ends [assumption (i)], nor does the self-
energy directly govern the relaxation rate [assumption (ii)].

B. Impurity and phonon scattering

Figures 3 and 4 show that the different interactions
exhibit qualitatively different temporal dynamics beyond
the quantitative aspect that is expected due to their different
nature. Here, we show the error in assumption (ii), the self-
energy governs the relaxation rate, by considering the
combination of impurity and phonon scattering in some
detail. Figure 5 shows the equilibrium effect of increasing
impurity scattering on top of a constant phonon-scattering
strength. The impurity scattering self-energy is propor-
tional to the density of states, which adds (according to
Matthiessen’s rule) to the existing phonon self-energy,
increasing the overall single-particle scattering rate and
filling in the phonon window. This increase is reflected in
the spectra, in which the phonon kink can be seen when
V2 ¼ 0, but it is rapidly obscured as impurity scattering
increases. This can be further analyzed by fitting the
spectral momentum distribution cuts (MDCs), which yield
the dispersion ϵðkÞ and MDC linewidths. The dispersion
shows the kink gradually disappearing, and the MDC
widths show a monotonic increase as well as the disap-
pearance of the step in the single-particle scattering
rate. At the highest impurity scattering strength, where
V2 ¼ 2.5 × g2, the phonon window and kink are effec-
tively gone.
If the self-energy were to control the relaxation rate of

the population, then the relaxation rate should increase as
the impurity scattering increases. Figure 6(a) plots the
decay rates as a function of quasiparticle energy ϵðkÞ, as the
impurity scattering is increased from V2 ¼ 0. The figure
clearly shows that the dramatic effect on the equilibrium
measures (MDC linewidth, self-energy) are wholly
absent in the nonequilibrium population decay rates.

This demonstrates a violation of assumption (ii): The
self-energy governs the relaxation rate by contradiction;
there are substantial changes in the self-energy due to the
presence and strength of the impurity scattering that are not
observed in the nonequilibrium population dynamics where
the changes are minor. As we see, aside from the weak-
coupling limit of pure electron-phonon scattering [9],
this result turns out to be the generic behavior of non-
equilibrium systems with a range of different scattering
mechanisms.
For this mixed-interaction case, it appears that the

electron-phonon scattering is the dominant mechanism in
the return to equilibrium. We have previously argued that
this is because phonons can draw energy out of the system
[28]. Indeed, an isolated electronic system must conserve
its total energy, and, hence, it cannot dissipate its excess
energy. Impurities scatter quasiparticles throughout the
Brillouin zone but do so while conserving energy and,
thus, cannot drive the system back to equilibrium with a
lower temperature. In this case, assumption (iii), which
says Matthiessen’s rule is violated, does hold, but in an
overstated way; since the impurities are inefficient in
relaxing the electrons, we see much too mild of a
dependence of the scattering rate on the impurity scattering

(a) (b)

(c) (d)

FIG. 5. Effect of combined electron-impurity and electron-
phonon scattering in equilibrium. (a),(b) Equilibrium ARPES
spectra and self-energies ½−Im ΣðωÞ� for various impurity scat-
tering strengths V. The phonon-scattering strength is kept
constant at g2 ¼ 0.02 eV. (c),(d) Extracted dispersion ϵðkÞ
and MDC widths from the ARPES spectra.
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strength. Hence, we do not see a separation of the scattering
into an impurity-based scattering and an electron-phonon-
based scattering.
This is further highlighted in Fig. 6(b), which shows the

population above the Fermi level evaluated according to
Eq. (10). If assumption (iii) were to hold, then there should
be a double exponential decay with a time constant for each
process. To illustrate that this is not the case, we show that
the curves can be reasonably fit using a single exponential
(although some deviations are visible). Thus, the timescales
clearly do not separate simply based on the presence
of multiple scattering channels with different coupling
constants.

C. Coulomb and phonon scattering

Coulomb, or electron-electron scattering, is critically
different from impurity scattering in that it is inelastic; it
can redistribute energy among quasiparticles (although the
total energy in the quasiparticle system is conserved). This
can be seen in Fig. 3 as a difference between the spectra at
tdelay ¼ 0 fs and tdelay ¼ 86 fs. Shortly after the pump, the
electrons rearrange to form a steady state that is different
from equilibrium (although it is thermal). When phonon
scattering is also present, a complex interplay between the
two scattering channels emerges, which we use to dem-
onstrate a violation of assumption (iii), the time domain
allows one to separate the relaxation rates from different
scattering processes. In addition, violation of assumption
(ii) is illustrated once again.
We consider the dynamics of a system subject to both

Coulomb and phonon scattering. Figure 7 shows the same
analysis as that performed for the impurity scattering: the
effects of increasing Coulomb scattering on the equilibrium
spectra. Here, since the Coulomb-scattering self-energy is
proportional to ω2 at low temperatures, the main effect on
the self-energy occurs at high energies, and the phonon
window remains intact [Fig. 7(b)]. These changes in the

4 pump

(a)

(b)

FIG. 6. (a) Population decay rates after excitation showing a
weak dependence on the impurity scattering rate V (values for V2

are in eV2). (b) Normalized quasiparticle weight above the Fermi
level for phonon and impurity scattering (offset for clarity). The
solid lines are single exponential fits to the region where the solid
line is shown, which should not work if timescales separate. The
shaded region indicates �2σ of the pump field. Inset: Semilog-
arithmic plot of the same data.

(a) (b)

(c) (d)

FIG. 7. Effect of combined electron-electron and electron-
phonon scattering in equilibrium. (a),(b) Equilibrium ARPES
spectra and self-energies ½−Im ΣðωÞ� for various Coulomb-
scattering strengths U. The phonon-scattering strength is kept
constant at g2 ¼ 0.02 eV. (c),(d) Extracted dispersion ϵðkÞ and
MDC widths from the ARPES spectra.
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self-energy are reflected in the spectra [Fig. 7(a)], which
continue to show the phonon kink but gain an increased
linewidth at higher energies. This is further confirmed
quantitatively through the MDC fits in both the dispersion
and linewidth analysis [Figs. 7(c) and 7(d)].
Turning now to the population dynamics in the time

domain, we observe a very different situation from impurity
scattering, as is clear from Fig. 8(a). There is a notable
effect with increasing Coulomb scattering, but the effect
is not the linear increase one would expect from
Matthiessen’s rule. While a linear increase is observed in

the self-energies, which increase with the addition of
Coulomb scattering [cf. Fig. 7(b)], the population decay
rates initially show a modest increase, which subsequently
reverses with a stronger Coulomb-scattering strength, in
particular at high energies above the phonon window. The
phonon window itself remains essentially visible, although
the size of the step in 1=2τ decreases. We can clearly see a
violation of Matthiessen’s rule and that the self-energy does
not directly govern the relaxation rate. Furthermore, just as
for the case of combined phonon and impurity scattering,
the population decay in time [Fig. 8(b)] does not show two
distinct relaxation times with a double exponential form
nor is there a marked increase in the decay rate with
increasing U. It is dominated by the electron-phonon
relaxation time, with a small increase in the rate due to
Coulomb rearrangement of the quasiparticles enabling
slightly more efficient phonon emission. The decay is
controlled by the phonons because they provide the
effective path and, thus, a bottleneck of sorts for the
electrons to lose their excess energy.

IV. DISCUSSION

A. What does Mathiessen’s rule suggest?

Is it instructive to reiterate the conclusions one would
draw from a simple Mathiessen’s rule analysis. If the decay
rates are to be proportional to the excited density to arrive at
an exponential decay, we may expect the populations to
obey a simple differential equation:

dn
dt

¼ −
1

τ1
n −

1

τ2
nþ � � � ¼ −

1

τeff
n: ð12Þ

Regardless of the number of channels, one would arrive at
a single exponential decay rate. Moving beyond that, to
arrive at a double exponential (with decay constants γ1
and γ2), one would need a second-order differential
equation of the form

d2n
dt2

¼ −ðγ1 þ γ2Þ
dn
dt

− γ1γ2n: ð13Þ

The exact equations of motion may, in limited cases, be
reduced to Eqs. (12) or (13) but generally do not fit either of
these [16]. Hence, one should not expect these simple
behaviors to occur. In no circumstances is there any simple
explanation for multiple relaxation times in terms of the
equations of motion for the population.

B. Origin of the breakdown of the assumptions

The contrast between Figs. 5 and 7 (equilibrium) and
Figs. 3, 4, 6, and 8 (nonequilibrium) are the central results
that demonstrate violation of the assumptions:
(1) Assumption (i)—many-body states relax after ex-

citation—is contradicted by the simple examples of

4 pump

(a)

(b)

FIG. 8. (a) Population decay rates after excitation showing a
nonmonotonic dependence on the Coulomb-scattering strengthU
(values of U2 are in eV2). Outside the phonon window, after an
initial increase, the decay rates decrease. Some of the data are
reproduced from Ref. [28]. (b) Quasiparticle weight above the
Fermi level for phonon and Coulomb scattering (offset for
clarity). The solid lines are single exponential fits to the region
where the solid line is shown, which should not work if time-
scales separate. The shaded region indicates �2σ of the pump
field. Inset: Semilogarithmic plot of the same data.
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single-channel scattering through either impurities
or Coulomb scattering, neither of which decay but
both of which are interacting many-body systems.

(2) Assumption (ii)—the self-energy governs the relax-
ation rate—is contradicted by a comparison between
the equilibrium self-energy (Figs. 5 and 7) and the
population dynamics (Figs. 3, 4, 6, 8). The self-
energies monotonically increase as the second scat-
tering channel is added, whereas the population
decay rates show entirely different behavior. This
explains the experimental results which show
large differences between equilibrium linewidths
and nonequilibrium decay rates [13,14].

(3) Assumption (iii)—the time domain allows one to
separate the relaxation rates from different scattering
processes—is contradicted by Figs. 6 and 8. As
evidenced from Fig. 6, impurity scattering (in the
Born approximation) can be removed entirely from
the consideration of energy-resolved decay rates
since it plays no role in the return to equilibrium.
Electron-electron scattering plays a more intricate
rolewhen it is added to phonon scattering (cf. Fig. 8),
but it does not appear that electron-electron scatter-
ing always happens first, followed by phonon
scattering, even though the energy scales are quite
different. In either case, going to the time domain
does not separate out the timescales for scattering. In
fact, in situations where Matthiessen’s rule holds,
there is only one effective relaxation time deter-
mined by the different scattering mechanisms. In
situations where Matthiessen’s rule is violated and
the different timescales do emerge in nonequilbrium,
separation of timescales occurs due to other reasons
such as bottlenecks associated with the transfer of
energy from the electrons to the phonons. Indeed,
such a bottleneck is the only clear way one can
obtain such a separation.

Given that these assumptions are readily violated, what is
the reason for their violation? The answer partly lies in the
distinction between relative time dynamics (trel ¼ t − t0)
and average (measurement) time dynamics [tave ¼
1
2
ðtþ t0Þ], also known as the delay time tdelay. In equilib-

rium, the quasiparticle lifetime arises from the decay of the
quasiparticle propagator in relative time; through Fourier
transformation, this decay gives rise to a linewidth. Once
one goes into the measurement time domain, the tave time
axis becomes relevant. As a function of average time, the
dynamics along relative time for the Green’s function G
and the self-energy Σ may be different. It is precisely this
difference that gives rise to the (measurement) average time
dependence as we discuss in the next section.
This fundamental difference between the quasiparticle

lifetime and the measurement time dependence is the
primary source of the breakdown of the assumptions.
Equilibrium measurements by nature measure in the

Fourier domain that comes from the transform along trel,
e.g., the equilibrium quantities (self-energy, MDC line-
width) illustrated in Figs. 5 and 7. Out of equilibrium, these
quantities may change as functions of measurement time in
addition to the changes in the quasiparticle distribution.
However, the dynamics along the average time direction is
controlled by energy transfer rather than the dephasing of
the correlation functions along trel, and time-domain
experiments principally access the former aspect of the
physics.

C. What determines the population decay rate?

Given that the self-energy alone does not directly govern
the decay rate, the question arises: “What does?” We can
gain some insight into this question by making a con-
nection to the equilibrium situation. For a system at long
enough times after the pump such that tdelay ≡ tave −
tpump ≫ τC (where τC is the characteristic dephasing time
for the Green’s functions and self-energies), the equation of
motion for the populations reads

dnkðtaveÞ
dtave

≡ −i
dG<

k ðt; tÞ
dt

����
t→tave

ð14Þ

¼
Z

t

−∞
dt̄fΣRðt; t̄ÞG<

k ðt̄; tÞ þ Σ<ðt; t̄ÞGA
kðt̄; tÞ

−G<
k ðt; t̄ÞΣAðt̄; tÞ − GR

kðt; t̄ÞΣ<ðt̄; tÞg: ð15Þ

The long-time assumption is required for there to be no
explicit dependence on the vector potential (which has
decayed to zero by this time).
If the dynamics along tave is sufficiently slow that the G

and Σ are constants as a function of tave on the scale of τC,
we can perform aWigner transformation ðt; t0Þ → ðtave; trelÞ
and Fourier transform along trel to find

dnkðtaveÞ
dtave

¼
Z

∞

−∞
dωf2iIm½ΣRðtave;ωÞ�G<

k ðtave;ωÞ

−2iIm½GR
kðtave;ωÞ�Σ<ðtave;ωÞg: ð16Þ

We are now in a position to define the electron and
interaction distribution functions for the Green’s function
via

fGðtave;ωÞ≡ iG<
k ðtave;ωÞ=2ImGR

kðtave;ωÞ; ð17Þ

and similar for the self-energy Σðtave;ωÞ. This definition is
motivated by the fluctuation-dissipation theorem, which
holds identically in equilibrium with the distribution
functions fGðtave;ωÞ ¼ fΣðtave;ωÞ ¼ nFðω; TÞ, where
nFðω; TÞ is the Fermi distribution function at the system
temperature T.
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Using these distribution functions, we can obtain

dnkðtaveÞ
dtave

¼ j2ij2
Z

∞

−∞
dωIm½ΣRðtave;ωÞ�Im½GR

kðtave;ωÞ�

× ½fGðtave;ωÞ − fΣðtave;ωÞ�: ð18Þ

For sufficiently well-defined quasiparticles, this can be
further simplified to

dnkðtaveÞ
dtave

¼ j2ij2Im½ΣRðtave; ϵkÞ�Im½GR
kðtave; ϵkÞ�

× ½fGðtave; ϵkÞ − fΣðtave; ϵkÞ�: ð19Þ

The decay rate of the population at a momentum k is
thus obtained from the difference in distributions for the
self-energy Σ and the populations themselves (through
G<

k ). From this relation, we can conclude the following:
(1) We can immediately observe the necessity for

allowing different distribution functions for G and

Σ: If they were equal, then no dynamics would occur
because the right-hand side would be identically 0.

(2) Although the self-energy is involved, the return to
equilibrium is determined by a combination of
ImΣRðtave;ωÞ and the distributions.

(3) If we use the hot-electron model, where the fG=fΣ

functions are thermal functions with the same
temperature, then there is no dynamics at all except
if a different “temperature” is assumed for Σ and G.
In this sense, it is the deviations from the hot-
electron model that arise when fG ≠ fΣ that control
the dynamics.

(4) For (elastic) electron-impurity scattering within the
self-consistent Born approximation, the right-hand
side of the equation vanishes identically [16]. This is
generically the case for any self-energy which has
the form

ΣC ∝
X
k

GC
k; ð20Þ

( ) ( ) ( )

FIG. 9. Top: Population and interaction distribution functions fGðω; taveÞ and fΣðω; taveÞ for three of the cases considered. The line
color indicates the temperature obtained from a Fermi function fit. Bottom:

ffiffiffiffiffi
χ2

p
corresponding to the Fermi function fits for the three

cases above it.
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where the sum may be over the entire or a restricted
Brillouin zone. This is due to the fact that the
distributions fG and fΣ must be identical in
this case.

The dynamical variable that controls the population
dynamics is thus not just the population itself (encoded
through fG) but rather the difference between the distri-
butions for the Green’s function G and the self-energy Σ.
These distributions fGðtave;ωÞ and fΣðtave;ωÞ depend on
both frequency and average (measurement) time.
We perform the change to Wigner coordinates followed

by the Fourier transformation of the full two-time numeri-
cal results. Figure 9 shows the distribution functions fG=fΣ

for phonon scattering, Coulomb scattering, and the combi-
nation as a function of measurement time and frequency.
The unusual shapes at early times arise due to the Fourier
transform overlapping with the pump for early measure-
ment times. As time progresses, the sharp step in the
distributions (whose origin is the sharp step in the Fermi
function at low temperatures) smoothes out in both the
population and interaction distributions. The subsequent
dynamics then depends on the particular scattering mecha-
nism. In the case of simple phonon scattering, the distri-
butions quickly return to a low temperature and have sharp
features due to the phase-space restrictions on the phonon
scattering. On the other hand, pure Coulomb scattering
produces smooth, high-temperature-like distributions
quickly after the pump. The mixed case interpolates
between the two—it does return to the low-temperature
(prepump) state but does so in a smoother way than pure
phonon scattering does.
As noted above, the dynamics of the populations is

determined by the difference of the population and inter-
action distribution functions. To illustrate this and to make
a connection to the concept of quasitemperature, we
perform Fermi function fits of the distribution functions
fG=fΣ and plot the resulting quasitemperatures TG=TΣ as a
function of time (Fig. 10). Note that the Fermi function
fitting is not perfect and that there is some deviation from
the functional form. This is illustrated in Fig. 9, where the
fit quality (through a χ2 measure) is shown. The approach
to perfect Fermi-Dirac form varies from case to case (and is
best for pure Coulomb scattering). In particular, when
phonon scattering is present, a finite offset to the long-time
population remains for long times due to phonon window
effects. The situation with pure impurity scattering is
sufficiently far from Fermi functions whose fits were not
even attempted.
In all cases, the dynamics in Fig. 10 shows that the two

fitted quasitemperatures approach each other at long times.
The case of pure Coulomb scattering is qualitatively differ-
ent because of its approach to a high-temperature state, aswe
discuss above. The cases where some phonon scattering is
present all approach the phonon bath temperature, although
the pathway varies somewhat depending on the types of

interactions. Since the dynamical variable is not the pop-
ulation distribution function fG or the extracted temperature
TG but rather the difference ðfG − fΣÞ or ðTG − TΣÞ, we
show the temperature difference in the insets. The difference
approaches zero in all cases but with varying dynamics and
even with apparently time-dependent rates.
In view of these results, it should be noted that the hot-

electron model is often applied successfully to exper-
imental data [29]. This is not surprising—the hot-electron
model typically produces a decaying exponential-like
curve, possibly with a final state that is at some elevated
temperature. This behavior certainly mirrors some of the
experimental results, although it has been previously
pointed out that the hot-electron model arises only from
the limiting case where electron-electron collisions are
faster than the electron-phonon ones [19]. Theoretical
work also tends towards thermal solutions because of the
typical use of Boltzmann equation approaches which
have thermal states as their fixed point and do not allow
for separate distributions in the population and inter-
actions unless the phonon distribution is explicitly
included [18,19].
Although this is an exact proof that the assumptions for

the hot-electron model do not hold in any many-body
system, we cannot easily quantify how close a hot-electron
analysis may be to the exact result. It may, in fact, be an
accurate approximation, in particular if the long-time
dynamics in the self-energy is slow. However, it is never
exact.

FIG. 10. Effective temperatures extracted from fits to Fermi-
Dirac functions for the Green’s function (populations) and self-
energy. The horizontal line indicates the equilibrium temperature
before the pump. The insets show the difference between the
population and interaction effective temperatures.
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D. Implications for experiments

Although the dynamics are determined by a difference
between the two distributions fG and fΣ, typical experi-
ments such as tr-ARPES have ready access to observe only
one of these: fG, as measured by the populations. As such,
it is not immediately possible to determine the entire right-
hand side of the equation of motion which would be
necessary to extract any information about the self-energy
Σ. The question is then: Given that only part of the equation
(fG) can be observed, what does its analysis show?
The answer may be found in Figs. 6 and 8, where such an

analysis is performed. In discussing these figures and
results, we note that although the self-energy may have
multiple components, the energy-dependent rates are
mainly determined by the phonon scattering. As shown
previously, the contribution from the impurity self-energy
typically cancels [16]. To understand the remainder after
the removal of the impurity scattering within the context of
the distribution functions, we can rewrite the equation of
motion in terms of the change in the distributions δfG=δfΣ:

d½δnkðtaveÞ�
dtave

¼ j2ij2
Z

∞

−∞
dωIm½ΣRðtave;ωÞ�Im½GR

kðtave;ωÞ�

× ½δfGðtave;ωÞ − δfΣðtave;ωÞ�; ð21Þ
where we subtract a term proportional to fGeqðωÞ−
fΣeqðωÞ ¼ 0. This modification to the equation defines

δfGðtave;ωÞ≡ fGðtave;ωÞ − fGeqðωÞ; ð22Þ

δfΣðtave;ωÞ≡ fΣðtave;ωÞ − fΣeqðωÞ; ð23Þ

since the equilibrium distributions are equal for G and Σ.
For simple electron-phonon scattering, at high energies and
for weak pumping, the change in the self-energy Σðtave;ωÞ
from equilibrium is typically not large, and we may
approximate δfΣðtave;ωÞ ≈ 0. We can combine the remain-
ing factors through the definition of fG, and for quasipar-
ticles that are sufficiently well defined, find

d½δnkðtaveÞ�
dtave

¼ 2i
Z

∞

−∞
dωIm½ΣRðtave;ωÞ�δG<

k ðtave;ωÞ ð24Þ

≈ 2iIm½ΣRðtave; ϵkÞ�
Z

∞

−∞
dωδG<

k ðtave;ωÞ

ð25Þ

¼ −2Im½ΣRðtave; ϵkÞ�δnkðtaveÞ: ð26Þ
Equation (25) follows from the well-defined quasiparticle
approximation because G<

k ðωÞ is sharply peaked at
ω ¼ ϵk.
This expression suggests that within this approximation,

a relatively simple exponential decay may occur, with
2ImΣRðtave; ϵkÞ as the time constant. Note that this result is

different from the hot-electron model because we explicitly
assume a difference between the distribution functions for
G and Σ.
This analysis may be extended to any situation where the

change in the populations is in a sense larger than that in
the interactions. Within this limit, the simple picture may
also be applied. The full solution requires the relaxation of
the assumptions made in this section, and the result is the
modification of the simple decay picture with the compli-
cations discussed in this paper and elsewhere [12,28]. This
point is clearly seen in Fig. 10, where TΣðtaveÞ is not
negligible. In addition, inclusion of the phonon degrees of
freedom will further make changes to the equations of
motion that will strongly modify fΣ, in particular at later
times. We reserve a study of this phenomenon for future
work. However, we do know that in the long-time limit, the
first correction for the case where the time evolution is
slow results in a large number of difference terms that do
not seem to have any simple form; no one term dominates
over another [17].

1. When are the assumptions valid?

As we discuss throughout this manuscript, there are
situations where the assumptions—although not generally
true—may nevertheless hold. These may include the
following:

(i) Assumption (i) that many-body systems must relax
after excitation is often not at issue—empirically, all
photoexcited systems eventually return to their
prepump equilibrium state. Our point here is that
for the return to equilibrium, there must be an energy
reservoir and energy transfer—in contrast to a line-
width which is always present when the self-energy
is nonzero.

(ii) Assumption (ii) that the self-energy governs the
decay is true in limited cases. In particular, when the
interactions are dominated by a single-scattering
process between the excited electrons and some bath
(e.g., phonons), the decay is determined by the self-
energy [28]. However, going beyond this simple
situation breaks down this assumption.

(iii) Assumption (iii) that relaxation rates separate in the
time domain holds when each process is associated
with a bottleneck of some sort. If both scattering
processes can happen at the same time, no separation
occurs.

(iv) Assumption (iv) that electrons thermalize among
themselves never holds in the strict sense where both
of the distributions are determined by the same
thermal distribution function. However, functionally
it appears that at least the distribution function for
the populations fG is often reasonably thermal [29].
As we show, however, fΣ cannot be the same
thermal distribution or no dynamics will occur.
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V. CONCLUSIONS AND OUTLOOK

In this work, we show by contradiction that several
assumptions which are pervasive in nonequilibrium experi-
ments may be violated in certain circumstances. To whit,
these assumptions are as follows: (i) many-body systems
relax after excitation; (ii) the self-energy governs the
relaxation rate; (iii) the time domain allows one to separate
the relaxation rates from different scattering processes;
(iv) electrons rapidly scatter amongst themselves to create
hot thermal electrons before subsequently scattering with
phonons to obtain a common final temperature. Although
this work is by no means an exhaustive inclusion of all the
possible scattering processes, we present counterexamples
for each of these assumptions through a system of electrons
interacting variously with impurities, phonons, and inter-
nally (Coulomb). We discuss the origin of these violations
as lying in the difference between relative and average
(measurement) time dynamics.
We further show that the hot-electron model, which is

used widely in the literature, is not to be taken at face value
since a system where a temperature can be defined through
the fluctuation-dissipation theorem will not have any
dynamics at all. Rather, the dynamics is determined by
the difference between two distribution functions—one
each for the populations and one for the interactions.
These observations then raise the question: “How should

one interpret nonequilibrium experiments, and what leads
to the observed dynamics?” The answer, which we start to
address here and in previous work [28], is that the dynamics
of energy transfer between various subsystems controls the
dynamics, but internal scattering within the subsystem can
cause substantial modifications. For the situations that we
study here, a return to equilibrium occurs only when a path
(through the phonons) is provided for the excess energy in
the electrons to dissipate. There are similarities between the
energy dissipation characteristics and some of the equilib-
rium quantities since they share some of the underlying
physical principles such as phase-space restrictions, leading
to, e.g., the phonon window effect, although we should
understand this effect as a phase-space restriction on the
excess energy leaving the electrons rather than the single-
quasiparticle lifetime.
When it comes to the interpretation of the obtained

lifetimes, they should be taken as direct quantitative
measures only if it can be shown that a single process is
responsible for the decay and any internal scattering is
absent, otherwise, the rate may contain many contributions,
and it is not clear how to separate these. Nevertheless,
progress may be made by varying the other external control
parameters of the experiment and observing how the decay
rates change as a function of said parameters; this approach
is already used in the field but should be more strongly
considered as a method of investigation using time-
resolved techniques.
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