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Review of the Theoretical Description of Time-Resolved
Angle-Resolved Photoemission Spectroscopy in
Electron-Phonon Mediated Superconductors

A. F. Kemper, M. A. Sentef, B. Moritz, T. P. Devereaux, and J. K. Freericks*

We review recent work on the theory for pump/probe photoemission
spectroscopy of electron-phonon mediated superconductors in both the
normal and the superconducting states. We describe the formal developments
that allow one to solve the Migdal-Eliashberg theory in nonequilibrium for an
ultrashort laser pumping field, and explore the solutions which illustrate the
relaxation as energy is transferred from electrons to phonons. We focus on
exact results emanating from sum rules and approximate numerical results
which describe rules of thumb for relaxation processes. In addition, in the
superconducting state, we describe how Anderson-Higgs oscillations can be
excited due to the nonlinear coupling with the electric field and describe
mechanisms where pumping the system enhances superconductivity.

1. Introduction

The recent availability of ultrashort and ultraintense pho-
ton sources ranging from conventional lasers to free-electron
lasers and encompassing a wide range of the electromag-
netic spectrum has resulted in a blossoming of experiments in
pump/probe studies of nonequilibrium phenomena in solids.
In these experiments, an intense ultrashort electric field pulse
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excites the system into nonequilibrium,
which is later probed by a second (typi-
cally weaker) pulse with some time de-
lay with respect to the pump pulse. While
reflectivity experiments have been exam-
ined for decades, recently many new ex-
periments ranging from X-ray diffraction
to photoemission have been explored.
In this review, we focus on a summary
of time-resolved photoemission studies
on electron-phonon mediated systems
with an emphasis on the work of our
group. Additional work has been com-
pleted by the Eckstein, Oka and Werner
groups, with a focus on different aspects
of the problem than what we discuss
here, see Ref. [1] for an extensive review,

and other recent work.[2–4] A recent experimental review[5] has
also appeared.
Dynamical mean-field theory (DMFT) is now considered one

of the most accurate approaches for solving the many-body prob-
lem. In 2006, it was generalized from equilibrium problems to
nonequilibrium,[1,6] and since then has been used to examine a
wide range of different nonequilibrium systems. In this work, we
focus on Migdal-Eliashberg theory to describe electron-phonon
coupled systems.[7–9] While the original Migdal-Eliashberg the-
ory predates DMFT, it also works with a local self-energy, and can
be interpreted as the simplest example of DMFT. Generalized to
nonequilibrium, it continues to be able to be interpreted in this
DMFT context, but with differing forms of self-consistency de-
pending on how the problem is formulated and how the solution
is carried out. We describe these subtle issues in detail below.
Since the interpretation of Migdal-Eliashberg theory as the

simplest application of DMFT is not well known, we spell out the
connection in detail here. InMigdal-Eliashberg theory, one works
with a self-energy that modifies the electron properties only in a
narrow shell around the Fermi surface. Since most superconduc-
tors have isotropic behavior and s -wave gaps, it has become com-
mon to average the momentum dependence of the self-energy
over the momenta on the Fermi surface and work with a self-
energy that depends only on frequency. Such a self-energy is a
local one, which is the same as those employed within the DMFT
algorithm. The second approximation of Migdal-Eliashberg the-
ory is to assume the electronic density of states is a constant,
because the phonons modify the electronic properties only in
a thin shell about the Fermi surface. In DMFT, we calculate
the local Green’s function from the self-energy by performing
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a Hilbert transform of the local self-energy. Doing this for the
case of a constant density of states produces exactly the local
Green’s function employed inMigdal-Eliashberg theory (for both
the normal and the superconducting cases). The third approx-
imation of Migdal-Eliashberg theory is to employ Migdal’s the-
orem, which says one can neglect diagrams in the self-energy
that include vertex corrections. This replaces the equivalent im-
purity problem that is solved within the DMFT approach by a
self-consistent perturbative solution based on the Fock diagram
for the exchange of phonons. Finally, the Migdal-Eliashberg the-
ory works with dressed phonons extracted from a tunneling in-
version, and hence it does not renormalize the phonon proper-
ties. This is also consistent with the DMFT approach, as renor-
malizing the phonons is possible, but not required. What may
seem to be missing is the step in the DMFT where the effective
medium is extracted, but it turns out that when one has a con-
stant noninteracting density of states, the effective medium is
exactly given by the noninteracting Green’s function, which pro-
vides the final piece of the mapping. Because of this, there is no
self-consistency for the effective medium as in all other DMFT
calculations, but this is solely because of the constant density of
states choice. While the realization of Migdal-Eliashberg theory
being a simple case of DMFT occurred early on,[10] it was em-
ployed more extensively when Migdal-Eliashberg theory was cor-
rected to include vertex corrections[11] or sharp peak structures in
the density of states as is found in the A15 compounds.[12] While
we employ Migdal-Eliashberg theory throughout the remainder
of this review, it is important to note the connection with DMFT,
as this becomes more important for DMFT solutions that go be-
yond the standard Migdal-Eliashberg regime.

2. Method

2.1. Model

We primarily study the Hubbard-Holstein model here[13,14]

H =
∑
k,σ

ε(k)c†kσ ckσ +
∑

i

Uni↑ni↓ +
∑
q,γ

�q,γ b†
q,γ bq,γ

+
∑
q,γ,σ

gγ c†k+q,σ ck,σ

(
bq,γ + b†

−q,γ
)

, (1)

where the individual terms consecutively represent the kinetic
energy of the electrons with a band-structure ε(k), the on-
site electron-electron repulsion U, the total energy of Einstein
phonons in branches γ with a frequency �q,γ , and an electron-
phonon coupling term of strength gγ . Typically, we will integrate
over the phonon momenta and work with the Eliashberg func-
tion α2F (�). Furthermore, c†α(cα) are the standard creation (an-
nihilation) operators for an electron in state α (where α denotes
momentum and spin or lattice site and spin, as determined by
the context of the given operator); similarly, b†

q,γ (bq,γ ) creates (an-
nihilates) a phononwithmomentum q in branch γ . The electron-
phonon coupling is the conventional coupling between the elec-
tron charge and the phonon coordinate; for a harmonic oscillator,
this coupling is identical to that of the fluctuations of the charge
coupling to the phonon coordinate, since the two are related sim-

ply by a shift of the origin of the phonon coordinate. For concrete-
ness, we study this model on a 2D square lattice with a band-
structure given by nearest neighbor and next-nearest neighbor
hopping (tnn and tnnn),

ε(k) = − 2tnn

[
cos(kx)+ cos(ky )

]
+ 4tnnn cos(kx) cos(ky )− μ (2)

where μ is the chemical potential. We have used the convention
that � = c = e = 1, which makes the unit of time to be given by
the inverse energy.
Within a DMFT approach, we have to solve an impurity prob-

lem associated with the lattice. This impurity problem can be
solved in many different ways. Here, we choose to invoke per-
turbation theory as the solver of choice for the impurity problem.
This allows us to examine a range of different problems in the
weak-coupling realm (and even into the intermediate-coupling
realm when vertex corrections are small for the electronic self-
energy due to electron-phonon coupling). The issue that always
arises involves the level of self-consistency imposed. In the equi-
librium theory for electron-phonon mediated superconductors,
we work with the fully dressed phonons, extracted from experi-
ment, and hence we do not renormalize the phonons at all, only
the electrons are dressed self-consistently by the phonons. Such
an approach might begin to fail in nonequilibrium if a signif-
icant amount of energy is transferred to the phonon bath, be-
cause it will heat up and can change its properties. Nevertheless,
we continue to treat the phonons as fully dressed phonons, even
in nonequilibrium here, which is accurate for short times, and
likely to be a reasonably good approximation except for strong or
resonant THz pumping.[15] The reason why it remains accurate
for short times is that there is an energy bottleneck which causes
a delay between energy being transferred from the electrons to
the phonons (for more details, see below). As long as we remain
in a transient regime before the phonon properties are signifi-
cantly modified or the energy deposited by the pump is small,
this approximation remains good. The work we report here is al-
ways in the subpicosecond regime, where we expect the phonons
to remain close to their original equilibrium distribution.
Hence, the electron-phonon interaction part of the self-energy

is treated at the self-consistent Born level (first order in the
phonon propagator, which is second-order perturbation theory
with respect to g , or is a self-consistent Fock diagram as in the
original Migdal-Eliashberg theory), performed self-consistently
for the electrons where the self-energy satisfies

�̄c
el−ph(t, t ′) = ig 2τ̄3 Ḡc

loc(t, t ′)τ̄3 Dc
0(t, t ′). (3)

Here, τ̄3 is the z Pauli matrix in Nambu space, and Ḡc
loc(t, t ′) =

N−1
k

∑
k Ḡc

k(t, t ′) i.e. the nonequilibrium, two-time, contour-
ordered local Green’s function. Note that the phonon propagator
is not renormalized, just as is done for Migdal-Eliashberg theory.
Multiple phonon modes are taken into account via

Dc
0(t, t ′) =

∫
d�α2F (�)Dc

0(t, t ′;�). (4)

Dc
0(t, t ′;�) is the bare propagator for a phonon with a single

mode frequency �,[16]
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Dc
0(t, t ′;�) = − i

[
nB(�/T )+ 1− θ c (t, t ′)

]
ei�(t−t ′)

− i
[
nB(�/T )+ θ c (t, t ′)

]
e−i�(t−t ′), (5)

nB(x) is the Bose distribution function, and θ c (t, t ′) is the
contour-ordered Heaviside function. Here, α2F (�) is the
electron-phonon spectral function (Eliashberg function), which
determines how an electron near the Fermi surface is scattered
by a phonon and can be obtained either from a first-principles cal-
culation or an experimental tunneling inversion.[16] It includes all
of the phonon renormalization effects for the dressed phonons.
When electron-electron interactions are included, the corre-

sponding self-energy is evaluated at the level of a self-consistent
second-order perturbation theory in U,

�̄c
el−el (t, t ′) =U2τ̄3 Ḡc

loc(t, t ′)τ̄3 ×
Tr

{
Ḡc

loc(t, t ′)τ̄3Ḡc
loc(t

′, t)τ̄3
}
, (6)

which is required in order to have the lowest order dynamical ef-
fects of the electron-electron scattering. There are many different
ways that one can perform the second-order perturbation theory.
We note in particular that we are employing a second-order con-
serving approximation[17], as opposed to the more commonly used
iterated perturbation theory approximation.
Note that we are explicitly neglecting cross terms between

the electron-electron interaction and the electron-phonon inter-
action. These terms can be incorporated into a vertex correction
for the electron-phonon scattering diagram, and in the spirit of
Migdal-Eliashberg, these terms are also dropped. They would
need to be included if one wants to perform a systematic per-
turbation theory to a fixed order in the different couplings.
We employ the standard two-time Keldysh formalism. The

contour-order Green’s functions (denoted with a c superscript)
are either 1× 1 or 2× 2 matrices in Nambu space,[20,21] depend-
ing on whether the solution to an ordered state is being sought.
For the superconducting case, where we have 2× 2 matrices, we
find

Ḡc
k(t, t ′) = −i

〈
Tc

(
ck↑(t)c

†
k↑(t

′) ck↑(t)c−k↓(t
′)

c†−k↓(t)c
†
k↑(t

′) c†−k↓(t)c−k↓(t
′)

)〉
(7)

≡
(

Gc
k(t, t ′) F c

k (t, t ′)
F †c
k (t, t ′) −Gc

−k(t
′, t)

)
. (8)

Here, the angle brackets denote a trace over all states weighted by
the initial equilibrium density matrix at an initial temperature T :
ρ(T ) = exp(−βH )/Z with β = 1/T and Z = Tr exp(−βH ) is
the partition function (we set kB = 1). In the normal state, the off-
diagonal elements are zero and the two remaining components
are redundant: thus only the (1, 1) component is kept. Here, t and
t ′ lie on the Keldysh contour, and Tc denotes time-ordering along
the Kadanoff-Baym-Keldysh contour.

2.2. Numerical Approach

We solve the equations of motion (on the contour, shown in
Figure 1):

Figure 1. Kadanoff-Baym-Keldysh contour[18,19] used in the calculations. It
starts from an initial time tmin, runs to a maximum time tmax, returns back
to the initial time, and then runs parallel to the imaginary axis a length β

given by the inverse of the initial equilibrium temperature of the system
before it is pumped tmin − iβ.

(
i∂t τ̄0 − ε̄k(t)

)
Ḡc

k(t, t ′) = δc (t, t ′)τ̄0

+
∫

c
d t̄ �̄c (t, t̄)Ḡc

k(t̄, t ′)
(9)

with the Nambu bandstructure given by the Peierls’ substitution

ε̄k(t) =
(

ε↑(k− A(t)) 0
0 −ε↓(−k− A(t))

)
(10)

where τ̄0 is the identity matrix, ε↑(k) = ε↓(k) = ε(k) is the bare
bandstructure for a spin up/down electron, and A(t) is the vector
potential in the Hamiltonian gauge.
The contour equation of motion can be separated intoMatsub-

ara (M), lesser (<), and greater (>) Green’s functions, as well as
the mixed real-imaginary �/� types. These each have an equation
of motion, which we list here for completeness. The equations
are solved using a large-scale parallel computational approach,
as described in Ref. [22].

[ − ∂τ τ̄0 − ε̄k(tmin)
]
ḠM

k (τ ) = iδ(τ )τ̄0

−i
∫ β

0
d τ̄ �̄M(τ − τ̄ )ḠM

k (τ̄ ), (11a)

[
i∂t τ̄0 − ε̄k(t)

]
G�

k(t,−iτ ) =∫ t

tmin

dt̄ �̄R(t, t̄)Ḡ�
k(t̄, −iτ )

− i
∫ β

0
d τ̄ �̄�(t,−i τ̄ )ḠM

k (τ̄ − τ ), (11b)

[
i∂t τ̄0 − ε̄k(t)

]
Ḡ≷

k (t, t ′) =∫ t

tmin

dt̄ �̄R(t, t̄)Ḡ≷
k (t̄, t ′)

+
∫ t ′

tmin

dt̄ �̄≷(t, t̄)Ḡ A
k (t̄, t ′)

− i
∫ β

0
d τ̄ �̄�(t,−i τ̄ )Ḡ�

k(−i τ̄ , t ′), (11c)

Here,we typically use tmin = 0without loss of generality. Once the
full set of time-dependent equations are solved self-consistently,
we have the time-dependent Green’s functions and self-energies,
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which are employed to calculate observables. We test for the nu-
merical accuracy by typically reducing the step size in time and
verifying that the results are not changing. We also check exact
moment sum rules for the Green’s functions. The results pre-
sented here are accurate out to the times we show data. While
in principle there is no theoretical limit to how far out in time a
calculation can be pushed, in practice, memory or compute-time
limitations determine how far out in time we can go.
The derivation of the tr-ARPES spectra is complicated, in gen-

eral, but simplifies when one restricts to a single-bandmodel and
employs the constantmatrix element approximation. In this case,
the tr-ARPES spectra can be computed from the probe-pulse-
weighted relative-time Fourier transform of the occupied (lesser)
Green’s function[23]

I(k, ω, t0) = Im
∫

dtdt ′ p(t, t ′, t0)eiω(t−t ′)G<

k̃(t,t ′)(t, t ′). (14)

Here, p(t, t ′, t0) denotes a two-dimensional Gaussian probe with
a probe width of σp in each dimension and centered at (t, t ′) =
(t0, t0). One needs to convert the lesser Green’s function calcu-
lated in a particular gauge into a gauge-invariant lesser Green’s
function to properly determine the tr-ARPES results. In order to
do this, the (Peierls’ substitution) shift in the momentum k due
to the vector potential A(t) has to be corrected via the following
unique transformation in G<

k as[24,25]:

k̃(t, t ′) = k+ 1
t − t ′

∫ t

t ′
dt̄ A(t̄). (15)

Note that one might question whether the constant matrix ele-
ment approximation is valid for these systems. This has been a
source of significant inquiry for equilibrium ARPES. Since we
are just beginning to examine tr-ARPES, we choose to employ
the constant matrix approximation because it provides a simple
strategy for how to solve these problems, and is an important first
step towards a more general solution, especially since determin-
ing the matrix elements for strongly correlated materials is ex-
tremely difficult.
The current is computed from the electron populations via

j(t) = N−1
k

∑
k

∇ε(k− A(t)) Im G<
k (t, t) (16)

where the derivative is taken along the field (11) direction. Even
in the superconducting phase, the (1,1) component of theNambu
matrix is used— this gives the supercurrent as well as the normal
current.

3. Time-Resolved Dynamics of the Normal State

When Green’s functions were first introduced into many-body
physics, it was rapidly recognized that the relaxation time to a
perturbation of the retarded Green’s function was given by the
inverse of the imaginary part of the self-energy evaluated at the
pole of the retarded Green’s function that lay closest to the real
axis but below it.[26] For systems described by Fermi liquids, this
was well approximated by the equilibrium self-energy evaluated
at the given frequency. Since then, it has been generally believed

Figure 2. Phase space restrictions on the scattering of a single excited
quasiparticle in equilibrium (left) and after the excitation by a pump laser
pulse (right). Figure reprinted with permission from[31] C© American Phys-
ical Society.

that the imaginary part of the retarded self energy will continue to
govern the relaxation processes, even in nonequilibrium. In fact,
for the simplest version of an electron-phonon coupled system,
one can prove that this is the case.[27,28]

It has recently come to light, that the situation in nonequilib-
rium often is different from this simple behavior. This arises,
from amathematical standpoint, due to the fact that one needs to
examine the evolution of the electron population 〈nk〉 as a func-
tion of time, which necessarily brings in the average time de-
pendence of the lesser self-energy, which may not behave the
same way as the relative time dependence of the retarded self-
energy.[28,29] Experimentally, this has already been seen clearly,
as the decay of populations is governed by different time scales
than the widths of ARPES peaks in equilibrium.[30] That work
shows that there is a marked contrast between the lifetime of a
singly-excited electron and the decay rates of the population. As
noted above, these quantities in principle arise from orthogonal
directions in the time domain—along tave = (t + t ′)/2 and along
trel = t − t ′. We shall illustrate this by first focusing on the sim-
ple case of electron-phonon (el-ph) coupling for an Einsteinmode
with energy �, and then including electron-electron (el-el) inter-
actions.

3.1. Electron-Phonon Interactions

Let us begin by discussing the origin of the quasiparticle life-
time in equilibrium, as given by a phase space argument. The
electron-phonon coupling involves an inelastic scattering, be-
cause phonons are created or destroyed in the interaction, and
they carry an energy �. Hence, electrons cannot be scattered at
low-energies, but must have an energy larger than � in order to
create a phonon and scatter. This further implies that quasipar-
ticles that are excited to energies within the phonon energy �

above the Fermi level E F (which we call the “phonon window”)
are Pauli blocked from further scattering, and thus have a long
lifetime (narrow line width). Quasiparticles with energies above
� have no such restriction, and thus have a short lifetime (high
scattering rate and wide line width). This restriction is illustrated
schematically in Figure 2. In experimental spectra, this leads to
a sharp step in the line width due to the sudden increase in the
scattering rate [Im �(ω)] at the phonon energy (|ω| = �),[32] as
shown in Figure 3. The sharp step in Im�(ω) occurs jointly with
a peak in Re�(ω) due to the Kramers-Kronig relation, leading to
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Figure 3. tr-ARPES spectra along the zone diagonal in the normal state
with a single phononmode at� = 0.1 eV. The panels are at various times:
in equilibrium (a), just after the pump (b) and long after the pump (c).
Reprinted with permission from[27] C© American Physical Society.

Figure 4. Population decay rates obtained from single-exponential fits.
Reprinted with permission from[31] C© American Physical Society.

a kink in the ARPES spectrum at the phonon energy �, which is
also seen in the experimental spectra.
The marked difference in scattering rates is also observed in

the population dynamics for this electron-phonon system, al-
though with some differences that are unique to the nonequilib-
rium process. After excitation with the pump laser, the popula-
tions are measured and their return to equilibrium is character-
ized by some single- or multi-exponential curve.[30,33–41] Typical
spectra during and after the pump are shown in Figure 3. In the
limit of zero pump fluence, the population decay rates [1/τ (ω)]
can be shown to approach the quasiparticle scattering rates[27,42]

as plotted in Figure 4. The decay rates are obtained by fitting
the momentum-integrated photoemission signal as a function of
time for various energies.
However, the pump alsomodifies the distribution of electrons,

which in turn affects the interactions: the self-energy here is
given by the normal-state limit of Eq. (3):

�c
el−ph(t, t ′) = ig 2

Nk

∑
k

Gc
k(t, t ′)Dc

0(t, t ′), (17)

where Dc
0(t, t ′) is the bare phonon propagator defined above.

Thus, the interactions “know” about the distribution of the elec-

Figure 5. Weakening of the electron-phonon kink due to the pump.
Reprinted with permission from[31] C© American Physical Society.

trons through G<
k (t, t ′). This is reflected in the simple phase

space picture through a redistribution of the spectral weight,
leading to a modification of the scattering rates. Within the
phononwindow, the scattering rate increases since a larger phase
space for scattering becomes available; outside the phonon win-
dow, the opposite occurs. This is also observed in the population
dynamics — 1/τ (ω) obtained from the population decay shows a
fluence dependence that agrees with the simple picture of phase-
space restriction, but with a modification due to the pump field
(see Figure 4). This effect has been observed experimentally in
the tr-ARPES spectra of Bi2Sr2CaCu2O8+x.[43] We want to empha-
size here that the relaxation rates extracted from exponential fits
to the decay of the populations do not coincide with the imagi-
nary part of the retarded self-energy as onemight have naively ex-
pected. This occurs because there is a bottleneck to energy relax-
ation, and because the nonequilibrium return to equilibrium has
a more complex dependence on the different many-body physics
quantities when the interaction strength increases.
In addition to the softening of the step in the lifetimes

[Im �(ω)], the sharp peak in Re �(ω) is reduced, leading to an
apparent weakening of the kink at ω = � as shown in Figure 5,
and observed experimentally by several groups.[44–46]

Because the kink is historically used as a quantitative mea-
sure of the electron-phonon coupling strength in equilibrium,
this softening was initially ascribed to a dynamical decoupling of
electrons from the phonons in nonequilibrium. While it is true
that a weakening of the electron-phonon coupling strengthwould
reduce the kink, and one might argue such a weakening is pos-
sible due to how the nonequilibrium electrons screen differently
than the original equilibrium electrons, one must contrast that
reasoning with an exact analysis of what happens in theHolstein-
Hubbard Hamiltonian. In other words, there is another way that
the kink can be softened, and that is via a redistribution of spec-
tral weight (and of electron populations) which reduce the phase-
space limitations of equilibrium. Indeed, it was shown[31,47] that
there is a sum rule for the self-energy, and that the zeroth mo-
ment of the imaginary part of the self-energy is preserved out of
equilibrium as long as the phonon fluctuations are not changed.
The perturbative form of the sum rule reads as follows in the time
domain:

Im�R
el−ph(t, t) = −g 2

[
2n

(
�

T

)
+ 1

]
, (18)

where nB(�/T ) is the Bose function evaluated at the phonon fre-
quency, while the exact relation, which holds for all cases, reads:

Im�R
el−ph(t, t) = −g 2

[〈x2i (t)〉 − 〈xi (t)〉2
]
, (19)
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where xi (t) is the operator for the phonon coordinate at lat-
tice site i in the Heisenberg representation (and is indepen-
dent of i in a homogeneous system). Hence, the theoretical re-
sults for the Holstein-Hubbard model directly show the kink
softening resulting from a redistribution of the spectral weight
(or equivalently the phase space for electron-electron scattering)
with the electron-phonon coupling (as measured by the zeroth
moment of the retarded self-energy) remaining constant, inde-
pendent of the fluence, until it causes a change in the phonon
fluctuations as a function of time. Since the phonons are not
renormalized in the current calculations, this latter effect never
occurs.

3.2. Electron-Electron Interactions

The inclusion of other types of interactions reveals an even fur-
ther stark difference between equilibrium lifetimes of a single
excited quasiparticle and time-resolved population dynamics.[30]

The issue at hand is that there is a fundamental difference be-
tween these quantities. A singly excited quasiparticle has a life-
time due to its wave function decay, which can involve scat-
tering into another state, or simply dephasing due to e.g. im-
purity scattering. On the other hand, a macroscopic popula-
tion that has been excited due to a laser pulse has absorbed
energy and thus can only return to equilibrium if it releases
said energy. In pump-probe experiments, this can happen ei-
ther through the coupling of the electron population to some
bath —the phonons —or through diffusion of the excited pop-
ulation away from the excitation volume. Here, we focus on the
former. Electron-phonon interactions carry energy from the elec-
trons into the phonon bath, and thus provide a path to return to
equilibrium.
Electron-electron interactions, on the other hand,maintain the

energy within the electronic subsystem. While the electrons can
individually exchange energy, their total energy remains fixed;
this is an exact statement, true for any isolated system after the
pump is turned off because no power is dissipated when the elec-
tric field vanishes. This limits the action of el-el interactions to
simply causing a quasithermalization at some elevated effective
temperature, after which the new high temperature equilibrium
ismaintained. This is where the relation between the equilibrium
self-energy and the population dynamics completely breaks down
—the self energy reflecting the el-el interactions is still present,
approximately at a higher temperature, yet the population is not
returning to the original equilibrium.
In real systems, both el-el and el-ph scattering are present. This

combination causes a complex dynamics where the two interac-
tions each push towards its individual final state —equilibration
at the current energy within the electrons (for el-el) and equi-
libration with the phonons (for el-ph). Since el-ph scattering is
responsible for carrying energy out of the electronic subsystem,
and since it does so in finite quanta, the phase space restrictions
discussed above leave an imprint on the population decay rates.
This can be seen in Figure 6, where the decay rates are shown for
various strengths of el-el scattering.
The step in the decay rates at the quasiparticle energy E = �

seen in the case with only el-ph coupling remains as the el-el in-

Figure 6. Decay rates of a systemwith el-el and el-ph scattering for various
values of the el-el coupling strength U (reproduced from Ref. [43]).

teractions are turned on. The step is clearly present even when
the total interaction energy for el-el scattering outweighs the el-
ph scattering. This prediction was recently confirmed in time-
resolved experiments on Bi2Sr2CaCu2O8+x.[43]

Finally, it is important to discuss the question of the applica-
bility of a hot-electron model. An exact analysis of the equation
of motion for electron populations shows that once one uses a
single distribution function for the lesser Green’s function and
the lesser self-energy (as would be required for a quasithermal
description), then the population no longer evolves with time.[28]

The distribution doesn’t even need to be an equilibrium one.
This immediately shows that a hot-electron model can never be
employed exactly in describing population dynamics, because it
has the distribution function for equilibrium, but with a time-
dependent temperature. Unfortunately, the exact dynamics pre-
cludes such behavior. Instead, the distribution functions for the
Green’s function fG and the self-energy f� both evolve distinctly
from one another, even though they remain close. This is shown
in Figure 7, where we plot the distribution function for the lesser
Green’s function, for the lesser self-energy and their ratio for
an electron-phonon coupled system that is relaxing in the long-
time limit after the pump has been applied.[29] If the system ap-
proached a hot-electron-like model, these distribution functions
would be Fermi-Dirac distributions with a time-dependent tem-
perature, but they are not. Instead, they behave in amore complex
fashion that we are only beginning to understand.
So, given this complicated behavior in nonequilibrium, one

may ask just what is it that does determine the relaxation rate?
It turns out, empirically, that the result is close to the imaginary
part of the self-energy, but somewhat different, and so far, no
one has determined the appropriate way to directly derive what
the relaxation rate is. Using numerical data for the full solution,
we extract the relaxation rate for an example and plot it in Fig-
ure 8. One can see that is closely resembles the self-energy both in
shape and magnitude, but also differs from it in important ways
(particularly in not having the large peaks and in having more
structure at low frequencies).
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Figure 7. Plot of the effective distribution functions fG (left) and f� (center) and their ratio (right) for the local Green’s function and self-energy.
Reprinted with permission from[29]

Figure 8. Approximate relaxation rate extracted from the change in scat-
tering integrals: �Ik/�nk after a pump has been applied.The equilibrium
electron-phonon self-energy is shown for reference with the solid black
line. Reprinted with permission from.[28]

4. Time-Resolved Dynamics of the
Superconducting State

Moving to the superconducting state, we now solve the equations
of motion allowing for a finite off-diagonal or “anomalous” com-
ponent. The equations of motion are otherwise equivalent, with a
2× 2 matrix in Nambu space representing the Green’s function
for each t, t ′ on the contour. For numerical reasons, we now turn
off the next nearest neighbor hopping and work with a particle-
hole symmetric system.
We first demonstrate that a superconducting solution is

achieved by illustrating the dependence of the solution and the
current on a uniform shift of the Fermi sea in momentum space.
Formally, such a shift enters via a uniform phase on the hopping,
which we denote by A0. Figure 9 shows how a uniform current
is proportional to the phase shift as long as the anomalous den-
sity is not significantly reduced, and a drop in the supercurrent
once it does (we define the anomalous density as the analogue of
the normal density, nsc(t) ≡ −i

∑
k F <

k (t, t)). At some point, the
phase shift cannot be supported by a current-carrying state, and
the current vanishes. This is often called the depairing critical
current of a superconductor.
Similarly, a pulsed applied electric field should lead to a su-

percurrent that remains present for long times. Figure 10 shows
the effect of a short electric field pulse. In the normal state, a field
pulse leads to a current that decays to 0 after some time.When su-
perconductivity is present, both a normal and a supercurrent are
generated. The normal current decays, leaving behind the super-
current. In fact, our results show that the remaining supercurrent

Figure 9. Superconductivity as a function of the constant phase shift A0
illustrating the supercurrent and the anomalous density nsc (t = 0).

Figure 10. The resulting current as a function of time due to a short elec-
tric field pulse for the normal state, superconducting state, and a perfect
metal. For comparison, the superconductor with a constant static vector
potential A0 is also shown (which is equivalent to a phase shift). One can
clearly see the normal current decay, while the supercurrent remains. In-
set: the electric field as a function of time.

is equal in magnitude to that obtained from the approach above,
where a constant vector potential shift is included. Finally, in the
absence of any interactions, the system is a perfect conductor, and
the induced normal current remains for all time.
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Figure 11. Time-resolved spectral functions near the Fermi level. Panels (a-c) show the normal state, the superconducting state, and a pumped super-
conductor, respectively. The inset illustrates the full spectrum in the normal state. Reprinted with permission from[48] C© American Physical Society.

Figure 12. Snapshots of the spectral function near E F illustrating the oscillations of the spectra as a function of time. The times are chosen to show the
spectrum before the pump (a) and at the minima/maxima of the amplitude mode oscillations (b-e). Panel (f) shows the anomalous density as well as
the applied vector potential A(t). Reprinted with permission from[48] C© American Physical Society.

4.1. Anderson-Higgs (or amplitude) Oscillations

We next consider the single-electron spectra, shown in Figure 11.
Panel (a) shows the normal state spectrum for a coupled electron-
phonon system, with the kink at� = 0.2 eV clearly visible. Panel
(b) shows the spectrum in the superconducting state. The spec-
tral weight at the Fermi level has pulled back, indicating the open-
ing of a gap. At the same time, the kink has shifted down in en-
ergy by the magnitude of the gap �, and a shadow band has ap-
peared. After applying a pump, as shown in panel (c), the spec-
trum looksmore like the normal state—the features that indicate
the presence of superconductivity have all but disappeared.
However, the superconductivity has not entirely been elimi-

nated. This can be observed by considering the anomalous den-
sity which is plotted in Figure 12(f). The anomalous density is
reduced, but remains finite after the pump. The anomalous den-
sity also shows oscillations after the pump, which are reflected
in the snapshots of the tr-ARPES spectral (Figs. 12 b-e). These
oscillations occur at a frequency ω = 2�(∞), where �(∞) is
the remaining superconductivity after the pump.[49] These are

known as Anderson-Higgs oscillations, and arise from the am-
plitude mode of the superconductor. They have already been
the subject of many studies using single-time Bardeen-Cooper-
Schrieffer (BCS) theory (see e.g. Refs. [49,50]). Here, we show
that they also occur in a full Migdal-Eliashberg theory.
The oscillations are present throughout the spectrum, and can

be obtained e.g. through an analysis of the spectral weight above
the Fermi level, or through the position of the energy distribution
curve (EDC) maximum along some k.[48] In either case, we can
perform a fluence dependence analysis. A lower fluence causes
less transient melting of the SC order, leading to a larger �(∞)
and faster oscillations. Figure 13 shows the approach where the
EDC maximum is analyzed and plotted as a function of time. As
expected, the oscillations show a dependence on fluence (here
represented by electric field amplitude), where the oscillations
speed up at lower fields. The tradeoff is that the amplitude also
decreases. From here, it can also be seen that it is critical that
some superconductivity remains after the pump to observe this
phenomenon (i.e., anomalous quantities do not vanish) —if no
SC is left, the oscillation frequency goes to 0. Hence, the effect is

Ann. Phys. (Berlin) 2017, 529, 1600235 C© 2017 by WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim1600235 (8 of 11)

http://www.advancedsciencenews.com
http://www.ann-phys.org


www.advancedsciencenews.com www.ann-phys.org

Figure 13. Oscillations in the EDC maximum as a function of time and
pump fluence. Inset: normalized oscillation frequency vs. applied field.
Reprinted with permission from[48] C© American Physical Society.

wiped out once the fluence becomes too high. These oscillations
have been observed recently using time-resolved THz transmis-
sion experiments[57] but tr-ARPES has not yet achieved a simi-
lar observation. This might be due to a difficulty in finding the
proper fluence to see the Anderson-Higgs oscillations. Similar
oscillations are also proposed in antiferromagnetically ordered
systems.[58]

4.2. Light-Enhanced Superconductivity

Recently, experiments have suggested that pump pulses can be
used to enhance the critical temperature of a superconductor in
two quite different systems: the high-TC cuprates and K -doped
C60.[59,60] One possible explanation for this effect lies in non-linear
phononics, where a resonantly excited phonon mode causes a
non-oscillatory displacement in another mode. The second, dis-
placedmode causes some effect on either the electronic structure
or the pairing interactions, leading to an enhanced TC .[61] Here
we consider the former mechanism and model the change in the
electronic structure by a decrease of the hopping amplitude. This
leads to an enhanced density of states at the Fermi level, which in
equilibrium would give an enhanced critical temperature.[62] We
consider short and long ramp-down of the hopping interaction,
and study the effect on the system.[63]

Figure 14 shows the effect of the changing bandwidth on the
superconducting gap �(t). For both long and short ramps, a
marked increase in �(t) is observed, with a much faster increase
for the short ramp. After the ramps, �(t) continues to increase
until it reaches its equilibrium value, shown as arrows on the
right side of the plot. In some cases, damped Anderson-Higgs os-
cillations can also be observed. One particular observation is that
the rate at which �(t) increases depends linearly on the initial
�(t = 0). The Figure also shows a comparison to a BCS model
with equivalent �(t = 0) and �(t = ∞). The BCS model agrees
mainly at short times, when the overall dynamics are captured
by the changes in the coherence factors. The long-time behavior,
where dissipation starts to play an important role is not captured
by BCS.
Note that this model may or may not describe the observed

experimental system. We included a description here as one of

Figure 14. Order parameter �(t) during a short ramp (3 fs, light colors)
and a long ramp (100 fs, dark colors). For comparison, the solution of a
simple BCS model is shown with dashed lines. The equilibrium value of
the gap for the final hopping parameter is shown as an arrow on the right
side of the plot. Reprinted with permission from[63] C© American Physical
Society.

the possible explanations, but this is not a comprehensive cover-
ing of the subject, which is rapidly evolving with numerous other
explanations or illustrations of phenomena which do not cause
light-induced superconductivity.

5. Summary

In this work, we have summarized a series of papers which shed
light onto tr-ARPES experiments using a pump/probe excitation
and detection scheme. We found that the thermalization of the
combined electron-phonon system is complex and not simply
governed by quasiequilibrium relaxation rates. We also showed
how spectral weight distributions affect the “phonon window ef-
fect” and the kink feature in the normal state. Finally, we exam-
ined a number of features in the superconducting state, includ-
ing the Anderson-Higgs (amplitude-mode) oscillations and light-
enhanced superconductivity. This work has only touched the tip
of the iceberg in determining the behavior of these complex sys-
tems. Major open problems include questions such as the fol-
lowing: (i) how does the long-time relaxation change when the
finite heat capacity of the phonons is taken into account? (ii)
what happens to the self-energy sum rules in the superconduct-
ing state? (iii) what effect does order parameter symmetry have on
the nonequilibrium properties of a superconductor? (iv) how can
one determine microscopic relaxation rates from a semi-analytic
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theory? (v) what do these nonequilibrium measurements tell us
about equilibrium? and (vi) what effects do nonconstant matrix
elements have on the tr-ARPES spectra?
We hope that the field will engage in these open questions and

work on answering them in the near future. We also look forward
to more surprises coming from experiment which will need in-
creasingly more detailed and materials-specific theory to be able
to describe the phenomena.
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