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We use a self-consistent strong-coupling expansion for the self-energy (perturbation theory in the

hopping) to describe the nonequilibrium dynamics of strongly correlated lattice fermions. We study the

three-dimensional homogeneous Fermi-Hubbard model driven by an external electric field showing that

the damping of the ensuing Bloch oscillations depends on the direction of the field and that for a broad

range of field strengths a long-lived transient prethermalized state emerges. This long-lived transient

regime implies that thermal equilibrium may be out of reach of the time scales accessible in present cold

atom experiments but shows that an interesting new quasiuniversal transient state exists in nonequilibrium

governed by a thermalized kinetic energy but not a thermalized potential energy. In addition, when the

field strength is equal in magnitude to the interaction between atoms, the system undergoes a rapid

thermalization, characterized by a different quasiuniversal behavior of the current and spectral function

for different values of the hopping.
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Introduction.—Nearly all experiments with cold atoms
involve nonequilibrium processes in either the experimen-
tal probes used for measurements or the experimental setup
itself. Of particular interest is the nonequilibrium behavior
when the interactions are strong enough to create a Mott
insulator. In this regime, perturbative methods based on an
expansion in the interaction strength are bound to fail. In
this work, we consider a different complementary tech-
nique, based on a strong-coupling expansion [1–4], and
demonstrate its application to nonequilibrium systems. The
strong-coupling expansion has proved to be an accurate
and well controlled approximation for equilibrium cold
atom problems [2,3] (especially for temperatures larger
than the hopping), yielding excellent approximate results
at a fraction of the computational cost of more exact
methods.

In nonequilibrium, it is crucial to account for the damp-
ing and relaxation effects in a perturbed system. Typical
random phase approximation-type calculations include the
lowest-order correction to the self-energy and cannot cap-
ture these damping effects. So we must go to the next order,
and we include all corrections up to the second order in
hopping, which allows us to capture the damping effects,
although at an increased computational cost. Other related
techniques for the strong-coupling regime include the hy-
bridization expansion [5–8] used in dynamical mean-field
theory (DMFT), but our approach will work in any
dimension.

To illustrate this method, we study Bloch oscillations in
a Mott insulating cold atom system in an artificial electric

field. Similar work has been done within the context of
DMFT [9–12]. Here, we show that a prethermalized state
persists for a long time after the transient excitation of the
system and that it shows quasiuniversal behavior for differ-
ent strengths of the field or hopping (similar prethermal-
ized states have been studied in other contexts [13–15]).
We also find a very rapid thermalization when the field
equals the interaction strength with scaling behavior for the
current and for the density of states for a wide range of
hoppings.
Model.—We describe the nonequilibrium cold atom sys-

tem with a single-band Fermi-Hubbard model for a homo-
geneous system with no trap potential,

HðtÞ ¼ X
i

Hð0Þ
i ðtÞ þHðhopÞðtÞ;

HðtÞ ¼ X
i

UðtÞni"ni# � JðtÞ X
hiji;�

ðei ~AðtÞ� ~rijcyi�cj� þ H:c:Þ;

(1)

where JðtÞ is the hopping amplitude between the nearest-
neighbor lattice sites, UðtÞ is the energy penalty for two

atoms to occupy the same optical lattice site, and ~AðtÞ is the
vector potential fully describing the external ‘‘electric’’

field ~EðtÞ: ~AðtÞ ¼ �R
t
0
~Eðt0Þdt0 (which corresponds to

‘‘pulling’’ the optical lattice through the atomic cloud in
a cold atom experiment). The creation operator for an atom
on site i in the hyperfine (‘‘spin’’) state � with two avail-

able spin states � ¼" , # is cyi�. The occupancy at site i in

state � is ni� ¼ cyi�ci� and ~rij ¼ ~ri � ~rj, where ~ri is the

PRL 109, 260402 (2012) P HY S I CA L R EV I EW LE T T E R S
week ending

28 DECEMBER 2012

0031-9007=12=109(26)=260402(5) 260402-1 � 2012 American Physical Society

http://dx.doi.org/10.1103/PhysRevLett.109.260402


position vector of lattice site i. In this model, the hopping

JðtÞ, interactionUðtÞ, and field ~EðtÞ can be time dependent.
The vector potential is used to describe the electric field
because it preserves translation invariance. Due to gauge
invariance, the same field can be described by an appro-
priate scalar potential, which corresponds to a ‘‘lattice
tilting’’ by adding a linear potential in a cold atom
experiment.

Methodology.—We solve the model using the strong-
coupling expansion [1,2,4], which treats the hopping
amplitude as a small parameter. The single-particle propa-
gation is fully described by the contour-ordered Green’s
function Gðt; t0Þ ¼ �ihTccðtÞcyðt0Þi where both time argu-
ments lie on the Kadanoff-Baym-Keldysh contour (Fig. 1).
In the atomic limit, the Green’s function on site i is given

byGð0Þ
i ðt; t0Þ ¼ �ihTcciðtÞcyi ðt0ÞiHð0Þ

i
. The first-order correc-

tion to the full Green’s function is due to a single hopping
to or from a neighboring site,

Gð1Þ
ij ðt; t0Þ ¼

Z
C
dt1G

ð0Þ
i ðt; t1ÞJijðt1ÞGð0Þ

j ðt1; t0Þ; (2)

where the time integral is taken over the full contour.All local
second-order terms can be expressed as (Supplemental
Material [16])

Gð2Þ
ii ðt; t0Þ ¼

Z
C
dt1

Z
C
dt2

X
m

Jimðt2ÞJmiðt1Þ

�G
ð0Þ
i ðt; t1; t2; t0ÞGð0Þ

m ðt2; t1Þ; (3)

where

Gð0Þ
i ðt0; t1;t2; t3Þ¼Gð0Þ

i ðt0;t1;t2; t3ÞþGð0Þ
i ðt0; t3ÞGð0Þ

i ðt1;t2Þ
�Gð0Þ

i ðt0;t2ÞGð0Þ
i ðt1; t3Þ (4)

is a second-order cumulant Green’s function and

Gð0Þ
i ðt0; t1; t2; t3Þ ¼ �hTcciðt0Þciðt1Þcyi ðt2Þcyi ðt3ÞiHð0Þ

i
is the

two-particle atomic Green’s function.
Due to the increased computational complexity, the

terms beyond second order are truncated. However, a
partial but infinite resummation of terms is possible. For
a homogeneous system, this leads to a matrix equation for
the momentum-dependent Green’s function

Gk ¼ f½Gð0Þ��1 � �cJk � �½G�g�1; (5)

where Jk ¼ �2JðtÞPd
i¼1 cos½ki � AiðtÞ� is the Fourier

transform of the hopping on a d-dimensional cubic lattice,
and we have abandoned the time indices in favor of a
matrix notation. This requires discretization of the contour
so that the matrix size equals the number of time slices on
the contour (Nt). We adopt a convention that Gðt; tÞ ¼
G>ðt; tÞ for the equal time Green’s function, which results
in the following definition of the delta function on the
discretized contour �c;ij ¼ �iþ1;j � �i;1�j;Nt

for i, j ¼
1 . . .Nt. The expression �½G� is the ‘‘second-order cumu-
lant self-energy’’

�½G� ¼ ½Gð0Þ��1Gð2Þ
ii ½Gð0Þ��1; (6)

which implicitly depends on the local single-particle
Green’s function on neighboring sites used to calculate

Gð2Þ
ii . The only nonlocal second-order term (which corre-

sponds to hopping two sites away) does not appear in the
expression in Eq. (5), since it is recovered by resummation
as a product of first-order terms. Finally, we require that the
propagation on the adjacent site in the self-energy func-
tional [Eq. (6)] is described by the same full Green’s func-
tion as that on the original site or equivalently that the local
Green’s function obtained through the momentum summa-
tion is the same as the one used to calculate the self-energy
�½G�. This approximation is justified in a homogeneous
system and results in a solution that captures the relaxation
effects to a steady state. It also imposes a self-consistency
condition that requires an iterative solution. Remarkably,
this method also recovers the exact result for U ¼ 0, since
in that case both the second-order cumulant Green’s func-
tion and the self-energy vanish. A diagrammatic interpre-
tation of the approximation is shown in Fig. 2.
A number of measurable quantities can be obtained

directly from the single-particle Green’s function. The mo-
mentum distribution is calculated as nkðtÞ ¼ iGkðtu; tlÞ,
where tu (tl) denote upper (lower) branches of real time
part of the Keldysh contour (Fig. 1). The kinetic energy and
current can be calculated as sums over k space [17]

FIG. 1. The Kadanoff-Baym-Keldysh contour describing the
nonequilibrium evolution of the system in real time t ¼ 0 . . . tmax

following an initial (equilibrium) thermalization at temperature
T. Numerical solution requires discretization resulting in Nt ¼
2Nre

t þ Nim
t finite time steps.

FIG. 2. (a) Graphic notation for the full Green’s function,
atomic Green’s function, hopping, and the second-order local
Green’s function [Eq. (3)]. (b) Diagrammatic interpretation of
the self-consistency condition. The resummation in momentum
space requires that the initial propagation in the first- and
second-order terms is governed by the full Green’s function. In
addition, we require that the propagation on the neighboring site
in the second-order term is also the same as that of the full
Green’s function.
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ekinðtÞ ¼ � 2JðtÞ
Nk

XNk

k

Xd
m

cos½km � AmðtÞ�nkðtÞ; (7)

jmðtÞ ¼ 2JðtÞ
Nk

XNk

k

sin½km � AmðtÞ�nkðtÞ: (8)

The potential energy (and double occupancy) can be
obtained from the equal time derivative of the Green’s
function and the previously calculated kinetic energy

@Gðt; t0Þ
@t

��������t¼t0
¼ UðtÞ

�
n"ðtÞn#ðtÞ � 3

4
ðn"ðtÞ þ n#ðtÞÞ þ 1

2

�

þ ekinðtÞ
2

: (9)

The local retarded Green’s function is

GRðt; t0Þ ¼ �i�ðt� t0ÞhfcðtÞ; cyðt0Þgi
¼ Gðtl; t0uÞ �Gðtu; t0lÞ;

(10)

and the spectral function at an average time ta is
Atað!Þ ¼ � 1

� Im
R1
0 GRðta þ t=2; ta � t=2Þei!tdt.

Results.—We take the hopping, interaction, and electric
field to be time independent. We investigate a three-
dimensional cubic system of N ¼ 323 sites at half filling
(the total number of atoms is equal to the number of optical
lattice sites). The hopping J=U is taken small so that the
system is originally in a Mott-insulating state.

We start with a system initially in thermal equilibrium at
a temperature T=U ¼ 0:25 (corresponding to 6.5% of sites
doubly occupied) and turn on a constant field at time t ¼ 1.
The resulting response of the energy and the current is
shown in Fig. 3. Sudden application of a strong field
(E>U) gives rise to Bloch oscillations with a period of
2�=E. The damping or decay of the Bloch oscillations
depends on the number of axial directions for which the
field is nonzero. For a field aligned with the axial direction
of the lattice, the Bloch oscillations decay rapidly with a
time scale determined by the inverse hopping (J�1),
whereas for a field aligned with the diagonal direction,
there is essentially no damping within the time scale of the
simulation. A strong field suppresses the tunneling of
particles along the direction of the field, resulting in an
effective two-dimensional system for the axial field and an
effective zero-dimensional system for a diagonal field [18].
The amplitude of the current is proportional to the hopping
parameter J. We show results for one initial temperature
here. As the initial temperature increases, the amplitude of
the current decreases. The additional amplitude modula-
tion of the current has a dominant frequency of U that is
independent of field, temperature, or hopping. For both
field directions, a strong field results in a small increase
of the total energy that is almost entirely due to the change
in the kinetic energy that is much smaller than the energy in
the long-time thermalized state, which will have the

infinite temperature limit of the energy. Clearly, the time
scale for full thermalization of the system far exceeds the
time of simulation, as expected, since the creation of
double occupancies involves multiple particle processes
when the hopping is much smaller than U (due to energy
conservation).
Setting the field equal to the interaction (E ¼ U) leads to

markedly different behavior illustrated by a rapid rise of
total energy that approaches (or even overshoots) the
maximum (T ! 1) value for both directions of the field.
The current shows a peak that is followed by a slow decay
with a time scale on the order of J�1. No Bloch oscillations
are present, but a slight period 2�=U modulation is appar-
ent during the initial rise of the current. Scaling of the
current and time for different values of hopping reveals the
quasiuniversal nature of the decay (see Fig. 4). The overall
shape of the response depends on the direction of the field
and the dimensionality of the system. Smaller fields
(E<U) again lead to Bloch oscillations, which become
less pronounced with a further decrease of the field [11].
We show the spectral function for the prethermalized

state in Fig. 5 for a diagonal field of variable strength. Even
for a small field, the spectral function rapidly collapses into
sharp peaks near !=U ¼ �0:5 with smaller sidebands
split off the main peaks roughly by plus or minus the size
of the electric field. For E=U ¼ 0:5, a resonant peak
emerges at zero frequency, similar to results obtained by
a numerical renormalization group method in Ref. [19].
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FIG. 3 (color online). Total energy (top) and current (bottom)
for different values of electric field at U=T ¼ 4 and U=J ¼ 24.
The field is suddenly switched on at t ¼ 1. A strong field results
in Bloch oscillations in the current and the total energy, yet the
damping of the oscillations depends strongly on the direction of
the field. The dotted line shows the infinite temperature equilib-
rium limit for the total energy (Etot ¼ U=4), and the dashed lines
correspond to equilibrium with the initial temperature and no
field. The current for cases when the field is aligned with the
axial direction of the lattice is scaled by

ffiffiffi
3

p
for a better

comparison with the results for a diagonal field.
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In the E � U case, the Hubbard bands widen due to rapid
thermalization. Since the retarded Green’s function data
are restricted to short time intervals, we use a method
similar to the one introduced by Sandvik [20] to transform
data to the frequency domain (see also the Supplemental
Material [16]).

When the field is aligned with the lattice, the Bloch
oscillations are rapidly damped and the Hubbard bands
remain wide and featureless (see the Supplemental
Material [16]), except for E=U ¼ 0:5, which shows a

spectral weight transfer from !=U ¼ �0:5 to a zero fre-
quency resonance [19].
The prethermalized state persists for long times (longer

than the inverse hopping J�1), and unfortunately we cannot
directly measure the associated time-scale which is proba-
bly exponential in U=J [11] or longer, and has been sug-
gested as related to the slow creation of doublons [21,22]. In
a strong field, all our observations are consistent with a
dimensional reduction mechanism suggested in Ref. [18].
Conclusions.—On the basis of a strong-coupling non-

equilibrium method, we have established the generic pres-
ence of a long prethermalized regime in a Mott insulator
for a wide range of uniform field strengths. Whereas the
damping of Bloch oscillations strongly depends on the
direction of the field relative to the axial directions of
the lattice, fast thermalization occurs only when the field
strength approaches the repulsive interaction between
atoms. In this case, the time scale of the thermalization is
defined by the hopping, and several measurements, includ-
ing the single-particle spectrum, point to quasiuniversal
behavior, which is independent of hopping or temperature
(within a certain range). For field strengths different from
the interaction, the heating is strongly suppressed and the
system enters a prethermalized regime characterized by a
long lifetime, which unfortunately cannot be computation-
ally resolved. The striking differences in the time scales of
thermalization for different field strengths are experimen-
tally relevant. The strong-coupling method introduced in
this Letter is quite general and can be used to study a wide
range of nonequilibrium phenomena. Despite an inability
to reach the lowest temperatures, it is especially well suited
to study cold atom systems, where current experiments
have similar limitations. The method is also easy to extend
for studies of bosonic systems. In future work, we plan to
generalize it to include the trap potential.
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