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Spectral moment sum rules are presented for the inhomogeneous many-body problem described by the
fermionic Falicov-Kimball or Hubbard models. These local sum rules allow for arbitrary hoppings, site ener-
gies, and interactions. They can be employed to quantify the accuracy of numerical solutions to the inhomo-
geneous many-body problem such as strongly correlated multilayered devices, ultracold atoms in an optical
lattice with a trap potential, strongly correlated systems that are disordered, or systems with nontrivial spatial
ordering such as a charge-density wave or a spin-density wave. We also show how the spectral moment sum
rules determine the asymptotic behavior of the Green function, self-energy, and dynamical mean field when
applied to the dynamical mean-field theory solution of the many-body problem. In particular, we illustrate in
detail how one can dramatically reduce the number of Matsubara frequencies needed to solve the Falicov-
Kimball model while still retaining high precision, and we sketch how one can incorporate these results into
Hirsch-Fye quantum Monte Carlo solvers for the Hubbard (or more complicated) models. Since the solution of
inhomogeneous problems is significantly more time consuming than periodic systems, efficient use of these
sum rules can provide a dramatic speed up in the computational time required to solve the many-body problem.
We also discuss how these sum rules behave in nonequilibrium situations as well, where the Hamiltonian has
explicit time dependence due to a driving field or due to the time-dependent change in a parameter such as the

interaction strength or the origin of the trap potential.
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I. INTRODUCTION

Spectral moments are integrals of powers of frequency
multiplied by the corresponding spectral function and inte-
grated over all frequency. They can reveal important infor-
mation about the structure and spread of the spectral function
and, in some cases, can also reveal interesting information
about different many-body correlation functions. In theory,
knowledge of all spectral moments allows one to reconstruct
the function but that procedure is well known to be unstable
and is not commonly used in numerical calculations. The
spectral moments also correspond to derivatives of the Green
functions with respect to relative time (either real time or
imaginary time) evaluated at the point where the relative
time is zero. As such, the spectral moments provide informa-
tion about the relative time dependence when expanded as a
Taylor series in time.

Spectral moment sum rules for the many-body problem
were investigated in 1967 by Harris and Lange' shortly after
the Hubbard model? was introduced. In that work, one can
find the moment sum rules for the first three moments of the
retarded Green function of the Hubbard model and various
approximations such as the alloy analogy problem (which is
equivalent to an inhomogeneous Falicov-Kimball model?).
They also developed a strong-coupling projection method to
find spectral moments within each of the different Hubbard
bands. This approach is an approximate one as the projection
operator is developed in a power series of the hopping di-
vided by the interaction strength. Shortly thereafter, Roth*
and Nolting’ applied the spectral moment sum rules to de-
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velop approximations for the momentum-dependent Green
function that have two poles, with the weights and locations
of the poles fixed by the corresponding sum rules. This ap-
proach has been developed quite extensively and applied to a
variety of different problems including dynamical mean-field
theory.®~!% That work examined ferromagnetic and antiferro-
magnetic long-range order in the Hubbard model, different
approximation schemes for perturbation theory that produce
the correct strong-coupling limit, and extended the sum rules
to the retarded self-energy. The approach has also been ap-
plied to photoemission and inverse photoemission,!! where it
was recognized that the moments of the so-called lesser and
greater Green functions play an important role. Finally, Har-
ris and Lange’s projection technique was applied to the lesser
and greater Green functions to examine spectral properties of
the Hubbard model.'?

Most of that work has had as its focus using the sum rules
to develop different approximations or to learn semiquanti-
tative features of the many-body problem. But there is an-
other application of spectral moment sum rules that is quite
important for computational work. The sum rules allow, in
certain circumstances, for numerically exact computations to
be benchmarked against the sum rules. White applied this to
the Hubbard model in two dimensions,'? and Deisz et al.
applied it to the fluctuation-exchange approximation'* at the
Matsubara frequencies. The sum rules have been generalized
to nonequilibrium situations for the Green functions'> and
self-energies.'® In the case when one applies a spatially uni-
form but time-dependent electric field to the system, it turns
out that many of the low-order moments are time indepen-
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dent even though the Hamiltonian has explicit time depen-
dence due to the field being turned on at a specific time (or
because the field has nontrivial time dependence). Nonequi-
librium dynamical mean-field theory!”'® can solve the
many-body problem exactly, and the sum rules are employed
to benchmark the quality of the solutions.?”

Finally, spectral moment sum rules when viewed as a Tay-
lor series expansion in time are now being employed to im-
prove both the speed and the quality of Hirsch-Fye quantum
Monte Carlo approaches?! for solving the impurity problem
in dynamical mean-field theory.””> In particular, recent
work?¥23 has shown that employing the exact Taylor series
expansions for short imaginary times allows one to use much
larger Trotter error, yet achieve high accuracy with the
Hirsch-Fye algorithm, so that it is competitive with
continuous-time-based approaches.?®

In this work, we want to extend the spectral-moment sum
rules for the retarded Green function and retarded self-energy
to inhomogeneous cases, which are becoming more impor-
tant and where one can find similar improvement in the ef-
ficiency of impurity solvers for use in inhomogeneous dy-
namical mean-field theory problems. There are four main
thrusts of work in the inhomogeneous many-body problem
currently: (i) examining the properties of strongly correlated
multilayers because of their potential for quantum-
mechanical engineering of device properties;?’ (i) examin-
ing the properties of ultracold atoms on optical lattices but
spatially confined by a magnetic or optical trap;?® (iii) exam-
ining the properties of a strongly correlated material that is
disordered; and (iv) examining properties of strongly corre-
lated materials with inhomogeneous spatial ordering [such as
a charge-density wave (CDW) or spin-density wave]. In the
multilayer problem, most solutions have relied on approxi-
mate techniques for the Hubbard model or have examined
simplified models such as the Falicov-Kimball model (re-
cently, however, the numerical renormalization group has
been applied to multilayer Hubbard systems?%3). In the cold
atom problem, little work has been applied to Green-
function-based techniques (although this is increasing); here
the spectral-moment sum rules could aid both in benchmark-
ing and in improving the accuracy and efficiency of numeri-
cal algorithms. The strongly correlated material with disorder
problem has had many different techniques applied to it, but
most of them are approximate in one way or another so un-
derstanding the quality of the approximations is important.
Less work has taken place in ordered phase calculations,
especially for sum rules when the system is spatially ordered;
these results can be immediately examined with the results
presented here. In all cases, use of sum rules can help pro-
vide quantitative data to analyze how accurate the numerical
solutions are. Finally, inhomogeneous systems are likely to
be studied within the nonequilibrium context. Here, we also
generalize the nonequilibrium sum rules to the inhomoge-
neous environment, and we consider a wide range of differ-
ent nonequilibrium contexts.

The remainder of this contribution is organized as fol-
lows: in Sec. II, we discuss the formalism for deriving the
spectral moments in equilibrium; in Sec. III, we generalize to
nonequilibrium cases; in Sec. IV, we discuss different appli-
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cations of sum rules within dynamical mean-field theory; and
in Sec. V, we present the conclusions and summary.

II. FORMALISM FOR DERIVING SPECTRAL MOMENTS
IN EQUILIBRIUM

The equilibrium Hamiltonian for the inhomogeneous
Falicov-Kimball® and Hubbard?> models can be written in the
following unified form:

H=- E yelej— 2 tfif - E picici- E 1pif i
ij i i

ij
+2 Usz‘flczicl (1)

Here c:f (c;) are the creation (annihilation) operators for a
conduction electron at site i and fj and f; are the correspond-
ing operators for a localized electron at site i; in the case of
the Hubbard model, the ¢ electrons are the spin-up electrons
and the f electrons are the spin-down electrons. The hopping
matrix is denoted by —7;; and —tfj for the ¢ and f electrons,
respectively; for the Falicov-Kimball model we have #=0,
while for the Hubbard model we have #= ¢ (one can also
consider an asymmetric Hubbard model with 0 <# # t). Note
that the hopping matrix need not be translationally invariant,
the only requirement is that it is Hermitian. The local chemi-
cal potentials are denoted by w;=u—V; and wupy=pu—Vy for
the conduction and localized electrons with V; and V; the
corresponding local potentials (u;=uy; for the Hubbard
model in a vanishing magnetic field; ;=0 for the Falicov-
Kimball model since it does not enter into the conduction
electron moments), and the local interaction between differ-
ent particles is U;. In the case of disorder, one often averages
the Hamiltonian, and different measurable operator expecta-
tion values over the given disorder distribution for the differ-
ent parameters that are disordered. We will not discuss the
details of how to treat those kinds of problems here. The sum
rules we derive would be for one quenched disorder configu-
ration (corresponding to a particular choice of parameters in
the Hamiltonian) and could subsequently be averaged with
respect to the given disorder distribution if desired. Note that
this Hamiltonian is time independent, and we have no net
current flow so it corresponds to an equilibrium problem (in
other words, it is in the “slow limit” if the potentials corre-
spond to an electric field, where the charge rearranges itself
into a static redistribution in response to the potential rather
than allowing current to flow). We will also examine a wide
class of nonequilibrium cases below.

We do not make any assumptions about the translational
invariance of any of the parameters that enter the Hamil-
tonian so the Green function will generically depend on two
spatial coordinates rather than on their difference. But in
equilibrium, the system does have time-translation invari-
ance so we can describe the Green functions with a single
frequency by making a temporal Fourier transform. The re-
tarded Green function is defined to be

Gs(tl’tz) =—i0(t; - 1) Tr P ()] ()} 2 (2)

in the time representation, with Z=Trexp(-8H) as the
partition function, B as the inverse temperature, and
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{A,B},=AB+BA as the anticommutator. The creation and
annihilation operators are in the (equilibrium) Heisenberg
representation, where O(r)=exp(iHt)O exp(-iHt) for any
operator O; in this representation, the time-translation invari-
ance is easy to show due to the invariance properties of the
trace and the fact that the Hamiltonian commutes with itself.
The frequency representation for the retarded Green function
is

Gii(w) = f dte''G(1,0). (3)
The spectral function is then defined to be
R 1 R
Ai(w) =~ —Im Gij(w), (4)

and the spectral moments become
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pr(R,R)) = dww"AR(w> (5)
Similar to the homogeneous case,'>!'® one can easily show
that
R -n (9" R
w,(R;,R)) ==2 Im| i"—-G;(t,0) ) (6)
oY =0+

Using the Heisenberg equation of motion, one can relate the
time derivatives to commutators with the Hamiltonian to ob-
tain

pn(R,R)) =Re({L"c;(0),c}(0)},), (7

where L"O=[--[[O,H],H]--~H] is the multiple commuta-
tion operator performed n times. In Eq. (7), we used a short-
hand notation, where the angular brackets denote the trace
over all states weighted by the density matrix exp(-B8H)/ Z.

Evaluating the commutators is straightforward but te-
dious. The results are

,U«g(Ri,Rj) = Jyjs (®)
:u“lle(Ri’Rj) =—t;;— 6/(n;— Uny), )
ﬂg(Ri,Rj) = E] tity+ (i = Uty + 1 = Uing) + S, (p = Uinfi)2 + Uiznfi(l -ngpl, (10)
SRR = 2 titiatyy — (i = Unfl)E Tty — ; (= Upnp)ty;— 2 tuty(p; = Upngy) = (= Uing) 1 — (i — Ut (w;
- anfj) - fij(#j - anfj)2 -U; ”fi(l - nfi)tij - UitijUj[<f'Tfifoj> - nfinfj] - ti'Uz'nfj(l - ”f, [(Mz Unfz
+ 3Ui2:u’infi(1 —-ng) - U;'ani(l —ng)(1+ "fi)] + 5ijUiE [tfmt{m<f,fl> + ffmffm(f - 2/ t{, ]+ 6 U,‘E (Ml -
Lm 1

XL + EXFf] + @,U% Hfify -

where nﬂ-:(fjfi); this result corrects a factor of 2 error in the
third line of Eq. (29) of Ref. 16. Note that in cases where we
have inhomogeneity arising from the spatial long-range order
(say charge- or spin-density wave order, for example), then
the Hamiltonian is actually translationally invariant, but the
sum rules have inhomogeneous results due to the explicit
evaluation of the different expectation values (the charge
density will vary from site to site in a charge-density wave,
for example). This then gives rise to spatially inhomoge-
neous moments.

Next, we examine the retarded self-energy moments.
To begin, we start with the Dyson equation in the real
space for the frequency-dependent Green function and self-
energy:

UE ULt fificlen + Efifieled]+ UU LY, {fifie! C>+lf<ff]C]C>]

(11)

Gii(w) = GﬁO(w)+EG59(w>2 (0)Gi(w),  (12)

where Gﬁo(a)) is the noninteracting retarded Green function
on the lattice. When the frequency w is large enough, all
Green functions and self-energies become purely real (on the
infinite-dimensional hypercubic lattice, there can be an expo-
nentially small imaginary part since the bandwidth is infinite,
but this plays little role for large frequencies), and by using
the spectral formulas,

1 ImGXo'
Gf_(w)z__f dw/m_lﬂ (13)
J 7T) w-—w +ié
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o R 1

SR(w)=— - f dor 2D o), (1)
7). w-o +id Y

we can expand the functional dependence of the Green func-

tion and self-energies in terms of the corresponding moments

(since the denominators in the integrals never vanish when

the numerators are nonzero) yielding

)= S —L R). (15)
m=0
S =Sz + S —Lﬁ’f), (16)
m=0

where
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1
CRR,R) =—— f
T

—00

doo™ Im 3f(w) (17)

are the spectral moments for the self-energy [25((0:00) is a
real constant equal to the large-frequency limit of the self-
energy]. The expansions in Egs. (15) and (16) (and a similar
expansion for the noninteracting retarded Green function) are
substituted into the Dyson equation in Eq. (12) and then one
equates powers of 1/ to find

WS (R,R)) = fis (RI,R>+Eﬁ§<Rl,RZ)2,m(w o) uf(R,,R))

+ 2 ,U«g(R,,Rz)C (RhR )/-Lg(Rm’R ) + 2

WE(RLR) = ZE(RLR) + X FA(R,R)SF (0= o0)

lm

I,m

wh(R,R)) = fig(R,R)), (18)
©f(R,R) = Zf(R,R))
+ 2 ,U«g(Ran)E ((1) OO)MO(Rm’RJ) s
lm
(19)
YR R)SS (0 =) uf(R,,.R)), (20)

5 (R, R)C5 (R, R,) 11 (R, R))

+ E ,U«g(Ran)CR(Rl,R )Mg(R1119R ) + 2 M (RL’RI)E (w Oo)lu“l (Rm’R )

+ 2 ZF(RLR)CHRLR,) (R, R) + 2 &
I.m Lm

where the matrix i, (R,,R) is the nth spectral moment of
the noninteracting retarded Green function on the lat-
tice. Those noninteracting moments are found from Egs.
(8)-(11) with U;=0. Substituting the explicit values of the
moments into Egs. (18)—(21) finally yields the self-energy
moments:

25(0) =) = §;Uny;, (22)

le(Ri,Rj) @,U,z”ﬁ(l - nfi)[Ui(l - nfi) -]+ 6,

+ ]+ %U?E fif -
+ t{](f fj 'eal,

U 2 [ mz <f}L i> + t{m

(l{l’l{l)2 (w OO)IU“O(Rm’Rj), (21)

Co(R:R)) = 8,;Uins(1—np). (23)

Note that the algebra required to arrive at these results is
nontrivial. In cases where i and j are farther apart than the
range of the hopping matrix (which is often chosen to be
nonzero only for nearest neighbors) many moments are iden-
tically zero, but nontrivial cancellations are required to en-
sure that all of the off-diagonal moments vanish (no local
approximation has been made for the self-energy here—
these results hold in all dimensions). The first self-energy
moment is

i KFL1D) = 28, L f ]+ 6, UE(MI EDLESF LD

@jUiE Ul[ <f; i€l Cl> +t <folcl cl>] Utl_/ j[(foLfoj> nflnfj] + UtU[ (fflc C>
1

(24)
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which contains an off-diagonal term when one is in finite
dimensions (it is local in infinite dimensions due to the scal-
ing of the hopping matrix element with dimension).

The expression for the nonhomogeneous Green function
moments Egs. (8)—(11) and for the self-energy moments Egs.
(22)—(24) are rather general. In particular they can be used to
evaluate the moments in the case of a particular (quenched)
configuration of disorder. Then we would average over some
disorder distribution [say, P(V;) for diagonal disorder]. This
procedure requires one to perform calculations over a range
of different disorder distributions and then perform the aver-
aging. If the system tends to self-average, not too many spe-
cific configurations would be needed, but if there is interest-
ing physics arising from rare regions of the distributions,
many calculations would be needed, and these calculations
can get to be rather lengthy.

III. GENERALIZATION TO NONEQUILIBRIUM
SITUATIONS

One rather general form for the nonequilibrium Hubbard-
Falicov-Kimball Hamiltonian is

H(1) == 2 t5(0)c]e; = 2 0fif;- 2 mlb)ele;
ij ij i
-2 wi0fifi+ 2 U ficle;. (25)
L L

In this case, we have added time dependence to all of the
parameters in the Hamiltonian but have not introduced any
additional forms of interaction within the Hamiltonian. Nev-
ertheless, this generalization allows for a rather rich class of
nonequilibrium problems to be studied. For example, if we
are examining a multilayered device with electronic charge
reconstruction®' (where the potentials V; and V{ are deter-
mined by an additional semiclassical Poisson equation), and
we use a vector potential to describe an external electric field
that drives current through the system,?’*? then we would
have a time-dependent hopping determined by the Peierls
substitution.®® If we want to examine an interaction quench,
as is often studied in cold atom systems, we would have
(typically harmonic) trapping potentials V; and V/, and the
interaction U; would become time-dependent switching from
one value for early times to another value for later times*
such as would occur near a Feshbach resonance if the bias
magnetic field is changed from one value to another (for
some experiments, the potentials or hopping could also
change when the coupling changes); the switching could be
sudden as in a rapid quench, or adiabatic, with a slowly
varying change or anything in between. In addition, within
the cold-atom picture, we could imagine creating time-
dependent trap potentials V(1) and V/(z). This would allow
us to examine what would happen if we applied an impulse
to the atomic cloud or if we shifted the origin of the har-
monic potential from one spatial location to another and then
examined how the center-of-mass oscillates and damps back
to the thermal state or to some nonthermal steady state. Fi-
nally, we could examine the so-called Bragg spectroscopy
experiment, where the optical lattice potential amplitude is
oscillated with some set frequency and one observes things
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such as the change in the momentum distribution after the
system is driven for a certain period of time or the change in
the double occupancy. In this case, the hopping, the local
potentials, and the interaction could all become time depen-
dent but can still be described by the general form of our
Hamiltonian.

There are a few subtle points to keep in mind with these
nonequilibrium problems. For example, in the case of a mul-
tilayered system with electronic charge reconstruction, the
charge reconstruction is created in the distant past so it cor-
responds to an equilibrium static potential which does not
contribute to any flow of current. The field that drives the
current is described by a time-dependent vector potential,
which is turned on at a particular time. One can examine the
transient current flow or the steady-state current flow by ex-
amining how the system responds to the external field.

Given this general form for the Hamiltonian, we next
need to derive the sum rules. We work in a Heisenberg pic-
ture because the operator algebra for the time-dependent cre-
ation and annihilation operators, at equal times, is unchanged
from the standard fermionic commutation relations. The only
difference from the nonequilibrium derivations worked out
previously!>19 is that here we need to work in real space for
all calculations because there is no translational invariance.
In order to evaluate the expression for the nonequilibrium
spectral moments, it is convenient to introduce the relative
t=t,—t, and the average T=(t,+1,)/2 time coordinates for
the retarded Green function Eq. (2). In this case, the physical
time at which one would like to calculate the moments will
correspond to the average time 7, and the Fourier transform
to frequency space must be performed with respect to the
relative time ¢. Then, one can define the nonequilibrium
Green function moments by generalizing the expression in
Eq. (5):

e’}

1
ph (R, R, T) =~ — f dow" Im G{(T,w). (26)
T

—o0

In a similar way, one can define the nonequilibrium moments
for the self-energy:

1
C;/R;l(RhRj’ T) == _f
w

—o0

]

doo™ Im ES-(T, ) (27)

(for more details, see Ref. 16). By using these equations,
one can easily show that the expressions for the nonequilib-
rium retarded Green function moments in Eqs. (8)—(11) re-
main unchanged in the nonequilibrium case, except the
model parameters and the operator expectation values are
replaced by their time-dependent forms: U;,— U(T), u;
— u(T), and ng— ng(T). Also, the operators in the correla-
tion functions in Eq. (11) are in the Heisenberg representa-
tion at the average time 7, at which the spectral moment is
calculated. Similarly, one can show that the expressions for
the large frequency self-energy in Eq. (22) and for the zeroth
self-energy moment in Eq. (23) remain the same in the non-
equilibrium case. However, the expression for the first mo-
ment in Eq. (24) will acquire an additional term proportional
to the second derivative of the large frequency limit of the
self-energy 2.;,(T, w=). Namely, in the nonequilibrium case
one finds
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CY(R,R;

+, (D,

+ (DDA + 8,V 2 (DL (DFAT)) +
l

1) = 8;U;(Dng(D[1 = ng(DILUATHT = n(1)} = p(T)] + 6
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T)E [, (D], (D (D)D)

I (DHDFD)) = 24, (T)el( T)«*(T)fm(T)>]+6,,U(T)E (W) (T) = wl(T[DS (D))

1 PLU(T)ngi(T)]
Ty aT?

8, UAT) X UT)E(DS (D fAT)e](De (D) + (DD f(T)e] (T)e(T))] = Ut (T UAT)
1

XA DA D)) = ni(Dng(T)] + U UAD LD (D FT)e(T)e i T))

+ (D DFT (el T)].

For most nonequilibrium problems we would consider, ex-
cept for an adiabatically changing interaction or an ampli-
tude oscillation of the optical lattice, the derivative term
would vanish almost everywhere.

IV. APPLICATION OF SPECTRAL MOMENT SUM RULES
TO DYNAMICAL MEAN-FIELD THEORY

There are two immediate applications of spectral moment
sum rules within dynamical mean-field theory. The first is to
use them to evaluate the high-frequency asymptotic behavior
exactly and then supplement the high-frequency results by
numerical calculations at low frequencies, and the second,
closely related, is to use them to evaluate the short imaginary
time behavior exactly and supplement with long-time nu-
merical calculations. The latter has been already discussed
within the context of the Hirsch-Fye quantum Monte Carlo
algorithm for solving the impurity problem in dynamical
mean-field theory, and the results there show great promise
as a means to improve the accuracy and the efficiency of
calculations.”*?3 The basic idea (at half filling) is that the
curvature, which grows sharply with increasing U, immedi-
ately determines the short-time behavior for the Green func-
tion. Because of the sharp dependence on 7, one would need
to use a very small discretization step for the QMC to accu-
rately describe such behavior, which would then be very
costly in terms of computational time. Instead, one uses a
coarser grid but before performing the Fourier transform to
Matsubara frequencies, one simply creates a finer grid and
uses the short time relations to find the behavior close to 7
=0 and uses simple interpolation for other time values (a
shape preserving spline would work well in this context).
Then the Fourier transformation will much more accurately
reflect the true behavior of the system, and all of the high-
frequency structure will be properly recovered so that the
QMC can be used to determine the low-frequency data
where it is most accurate. (It has already been demonstrated
that this approach is competitive with other QMC techniques
such as the continuous-time algorithm.) Issues of accuracy
and efficiency will become increasingly important for inho-
mogeneous dynamical mean-field theory problems (such as

(28)

multilayers or ultracold atoms in a trap) because one needs to
solve an impurity problem at each inequivalent lattice site of
the inhomogeneous system. This can range from tens to hun-
dreds of impurity solvers for multilayered systems to many
thousands or more for ultracold atomic systems in a trap. We
will not discuss the application within quantum Monte Carlo
approaches further here and instead will concentrate on ex-
amining a different application, which is to solve the dy-
namical mean-field theory for the Falicov-Kimball model
with fixed local chemical potentials on the lattice sites. This
approach works equally well (with appropriate modifica-
tions) for the two-site approximation to the Hubbard model®>
in the insulating phase.

The dynamical mean-field theory for the Falicov-Kimball
model is well established in the literature®37 so we just
present the relevant formulas. Starting from a local self-
energy 2,(iw,), one must solve the Dyson equation for the
local Green function [G;(iw),)]

E {[lwn +m;— 2 (lwn)] ik T ttk}ij(lwn) (29)

Here w,=m(2n+1)/p is the fermionic Matsubara frequency.
When the system is homogeneous, a Fourier transformation
allows this problem to be solved immediately. When one has
inhomogeneity in one dimension, as in multilayered struc-
tures, the local Green function (of an infinite device) can be
found from the so-called quantum zipper algorithm?7-38
which expresses the Green function in terms of continued
fractions. For finite cold atom systems, one can use LAPACK
(or sparse matrix) routines to perform numerical matrix in-
versions to find the local Green function.’**? Whatever the
technique, we assume that one can solve the Dyson equation
to determine the local Green function. Next, the effective
medium G) and dynamical mean field \; are extracted via the
scalar equations

Gliw,) ={[Gliw,)]" +2(iw,)} (30)

and
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Miw,) = iw, + ;= [Giw,)] " (31)

[All quantities in Egs. (30) and (31) are scalar quantities—
there are no matrix operations here.] Then one calculates the
filling of the local electrons ny= 2,/ (Zy+ 2;;) with

_ eﬁ#i/z H iwn + M- )\i(iwn)

Zyi= ; (32)
n=—% lw,
and

Z,;= PrUI 2B T (W, + Wi _.)\i(iwn) - Ui' (33)

n=—x lwy,

Now we find the new local Green function

1 —-ng ng
Gii(iwn) = [ L .
w, + Mi— \; (lwn) lwn + Mi— )\i(lwn) -U

(34)

and finally extract the local self-energy
i) =[Gi0,)]" - G (iw,). (35)

These equations are then iterated until they converge. The
conduction-electron filling satisfies

= — Giliw 36
Pei ﬁn_E_x iliw,); (36)

this result is not part of the dynamical mean-field theory
iteration, but it is needed if one wants to update the chemical
potential during the iterations to achieve a particular electron
filling. Note that this summation is ill-defined and needs to
be properly regularized (see below).

Typically, one chooses a set number of Matsubara fre-
quencies, usually with an energy cutoff many multiples of
the noninteracting electron bandwidth, and solves the (now
finite) set of equations for the Green functions and self-
energies by iteration starting from 3,;=0. One can try to in-
clude the effects of the neglected tails of the summations and
infinite products to improve the accuracy and minimize the
effect of the energy cutoff. By employing the exact sum
rules, one can make this procedure work well. We describe
this process next.

First recall that we have already proven that the Matsub-
ara frequency Green function and self-energy satisfy

R.R;
Gu(lw )_ E Mm( lm+1) (37)
m=0 o )

and

CRR,R
S (i) = 3,() + 3, CaReR)

38
m=0 ( ( )

1
n)m+

when the Matsubara frequency is large |w,|> |Upal + Wi
where W;,, is the half bandwidth (in real frequency) of the
interacting density of states (valid only for finite-dimensional
systems). These results follow from the definition of the
spectral moments and the spectral formula for the Green
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function and self-energy. Using these two relations, substi-
tuting into Eq. (30) and recalling the definition in Eq. (31),
produces

11 1Un;- ( 1 )
= = O . (39
2ioy 2 Gyt T \Gay)

This asymptotic expansion along with the expansion in Eq.
(37) will allow us to treat the tails in the summation for the
conduction-electron filling in Eq. (36) and in the infinite
products needed for the localized-electron filling in Egs. (32)
and (33).

We imagine taking an energy cutoff E. which is larger
than the interacting density of states half bandwidth. Using
that cutoff to determine the explicit Matsubara frequencies
solved in the numerical implementation of dynamical mean-
field theory, we examine only Matsubara frequencies with
|w,| <E.. This defines a cut-off integer n, corresponding to
the Matsubara frequency closest to E, but lying below it. The
tail for the conduction-electron filling 27">G,(iw,)/B
+En +1Gii(iw,)/ B can now be evaluated analytically for the
first four moments that we have calculated. Define the ap-
proximate Green function via

)\i(iwn)

GPPON(jgy ) = L + le(Ri,Ri) Mg(RiaRi) ,Ug(Ri,Ri)
! "o, (iw,)? (iw,) (iw,)*
(40)
Then, the identity
1 1l 1
-—U)=——=— 41
S = B B i Y

allows us to evaluate infinite sums of inverse powers of iw,
noting that the sum of 1/iw, requires special regularization
which is given by the result in Eq. (41). By taking deriva-
tives, and evaluating at w=0, we immediately learn that

1

52 0 —f(O) == (42)
—2 f(0)= B (43)
1 [ D
E% W = Ef (0)=0, (44)
3
—E f” 0=5 (45)

n

Substituting into the expression for the conduction-electron
filling then yields

‘—%(R,,Rn—u ®ReR)+ L S Gyl

n=-n.1

~ G iw,)]. (46)

_!
pe=5 -
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(a)

(b)

FIG. 1. False grayscale image of the relative error of the (left) zeroth self-energy moment and the (right) third spectral function moment
for a trapped atoms system confined in harmonic traps with a length scale of 30 lattice units, U=5, 1/8=0.2, and 51 X 51 lattice sites. Note
that the scale for the figures is less than the full range of deviations to pick up the fine structure far from the center of the lattice. At the center
of the lattice, the error is maximal and equal to approximately 1.5% for the zeroth self-energy moment and approximately 0.01% for the

spectral function. This is elaborated on in the next figure.

The summation, which needs to be evaluated numerically,
vanishes rapidly for large w, so the filling can be computed
quite accurately.

Now we show how to evaluate the infinite products by
properly taking into account the asymptotic limits using the
spectral moment sum rules. Substituting the results from Eq.
(39) into Egs. (32) and (33) allow for the local electron fill-
ing to be computed. First note that

- 11
Z = P2 1+ B
0i=¢€ n=]-n:[+1 iwn 2(l(1)n)2
R R (47)
2 (iw)® | 0 | Gliwyiw,
and

Z,=ePrrU2ePes T |1+ pot 1L

' n=n,+1 iwy, 2 (iw")2

9 e 2
I 11| P [ e

2 (iw,) =0 gi (iw,) iw,

The infinite products that have an infinite number of terms
are approximated by rewriting the infinite product as the ex-
ponential of the sum of the logarithm of the individual terms.
Replacing the sum by an integral (valid when the tempera-
ture is much smaller than the interacting half bandwidth) and
converting the integral over frequency to an integral over z
=1/w yields

o

I1

n=n +1

V/E,
~ exp|: B f i—iln({l +b2Y +Pa- czz}z)] ,

2770

14 2, b e
i, (i0,)" (i,

(49)

where we use a=u; for 2, a=u;—U,; for Z;, b=—1/2 for
both, and ¢=~(U;nz;—u;)/2 for both. This then allows for an
accurate evaluation of the filling using just the small set of
numerical data generated for |n| <n,.

Note that our use of the asymptotic expressions for the
different many-body functions aided us in reducing the effort
of computation only for problems that can be solved along
the imaginary axis. This includes the Falicov-Kimball model
(for static properties) and Hirsch-Fye quantum Monte Carlo
techniques for other models (such as the Hubbard model).
There does not appear to be any simple use of these sum
rules within real-frequency-based approaches such as the nu-
merical renormalization group. Of course, all of these results
can also be applied to the homogeneous case.

In Fig. 1, we plot false grayscale images of two moment
sum rules for each lattice site of a 51 X 51 square lattice. This
is a system close to phase separation with parameters U=5,
1/8=0.2, and a harmonic trap with a characteristic length
scale of 30 lattice spaces for both the light and the heavy
particles. Note how the errors, on the whole, are rather small.
In the imaginary-axis calculation, which is used to determine
the chemical potentials so that we have approximately 625
light and 625 heavy atoms on the lattice, we employ the use
of the moment sum rules to sum the tails of the Matsubara
frequency calculations, which reduces the computational
time by about a factor of 10 for the same accuracy. In this
real axis calculation, we use a frequency grid with a step size
of 0.004¢ that runs from —9.6¢ to 9.6¢. This step size does not
allow us to pick up fine structure smaller than the step size. It
also cannot pick up spectral weight lying outside of the
bounds. Both of these issues can cause inaccuracies in cal-
culations, especially when a system begins to order or phase
separate; they do not enter too significantly for this example
though; when we repeat the calculations with a smaller step
size of 0.0003z, we find the error in the zeroth self-energy
moment is reduced from 1.5% to 0.025% for the central site
of the lattice. The temperature we use here is high enough
that there is no order, and the calculations are under good
control. In any case, we show the spectral function and
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FIG. 2. (a) Density of states and (b) —Im 3;(w)/ 7 for the central site of the lattice with the same parameters as the preceding figure. Note
how the DOS is smooth and rather featureless so the sum rules work to high accuracy, while the self-energy has sharp features, which lead
to less accurate moments. In the inset of panel (b), we show the large peak in the self-energy; the data with the solid line have a small step
size of 0.0003¢, while the dashed lines and the circles correspond to a step size of 0.004¢. Note how the smaller step size is smoother.

—Im X;(w)/a for the central site of the lattice in Fig. 2,
where the relative error for the zeroth moment of the self-
energy is about 1.5%, and the relative error for the Green
function is about 0.01%. Notice the sharp peak in the self-
energy which leads to the higher error, while the Green func-
tion is quite smooth, and hence has very small errors. As the
step size is reduced, the errors in the moments are also re-
duced, indicating that these errors are arising predominantly
from the discretization size of the real frequency axis and the
structure of the sharp features in the functions.

We also examine the sum rules for inhomogeneous mul-
tilayered systems. In cases where there is no electronic
charge reconstruction, we have found that our data satisfy all
of the sum rules to high accuracy (typically better than
0.01%) except for cases with an insulating barrier where the
self-energy develops a sharp peak at low frequency. Our fre-
quency grid in previous calculations was sometimes too
coarse to properly extract the zeroth moment sum rule for the
self-energy, and errors could become very large because the
numerical quadrature is greatly overestimating the weight
within the sharp peak near w=0. In cases where the peak is

not so sharp, we once again find excellent agreement. A more
challenging case, though, is a case where there is an elec-
tronic charge reconstruction because the calculations become
much more difficult numerically in this case, and we usually
need to introduce a finite broadening into the calculation to
be able to estimate the local DOS on each plane. Hence, it is
much more interesting to examine these cases for calcula-
tions of the sum rules.

In Fig. 3, we plot the absolute errors of a self-energy
moment and a spectral moment (the other self-energy mo-
ment appears similar, while the other spectral moments had
much smaller errors). The system consists of a semi-infinite
bulk ballistic metal attached to a sandwich of 30 ballistic
metal planes, 20 Falicov-Kimball model planes, and 30 bal-
listic metal planes so the calculations are always for a ther-
modynamic limit system. Both the metallic leads and the
barrier are at half filling, with a common chemical potential.
We shift the center of the band of the barrier by the amount
AE and solve for the electronic charge reconstruction with a
screening length of a few lattice spacings and a temperature
of 1/8=0.1. The imaginary axis solver did not use the sum-

I | | | 00015 llllIlllllllllIlllllllllllllllllllllllll
st | . i ]
2 sl | 1 @ I
JR & 001 Ff
S 1%
.g 2 [~ I T .E 5X1O—3_
j— r [
o) I 4 8
[ [
Lu—z-— I B - 0 %ﬁ
C III 1 1 I. 1 1 ] 1 1 1] -nn||||||||||||||||||||||||||||I|||||||N
30 31 32 33 34 35 36 37 38 39 40 0 5 10 15 20 25 30 35 40
(a) Plane number (b) Plane number

FIG. 3. (Color online) Plot of the absolute error of the (a) zeroth self-energy moment and the (b) third spectral function moment for a
multilayered inhomogeneous system described by the Falicov-Kimball model with electronic charge reconstruction. There are 30 self-
consistent ballistic metal planes to the right and the left of the 20 plane thick barrier which has U=6 and half filling for the heavy electrons.
The temperature is 1/8=0.1, and the shift in the band centers AE; labels the different figures. Note how the errors for the self-energy are
larger, while for the Green function the errors are small. This is because our grid size is too coarse to properly pick up the weight of the
narrow peak in the self-energy. The relative error for the third moment of the DOS is less than 0.1% in the barrier; in the metallic leads, the
third moment gets very small, and the absolute error arises primarily from the discretization of the numerical quadrature. The dashed line
indicates the interface between the metal and the insulating barrier.
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FIG. 4. (a) Density of states and (b) —Im 2 (w)/ar for the plane with the largest error (plane number 37 with AE;=1) in the preceding
figure. Note how the DOS is once again smooth and rather featureless so the sum rules work to high accuracy, while the self-energy has a
sharp peak (maximum amplitude is 8000), which leads to less accurate moments.

mation of the tails as we are using old data from Ref. 32. The
real-axis solver worked with a grid step size of 0.01¢ and
ranged w from —11¢ to 11¢. One can see that, similar to the
cold atom example above, here we also see errors which are
much larger for the self-energy than for the spectral function
(we only show the barrier planes for the self-energy moment
since the self-energy vanishes in the metal). This arises for
the same reason as before but is more acute here since the
step size in frequency is larger. This is shown in Fig. 4 for
the plane with the largest error in the self-energy. Note how
once again the DOS is smooth, which is why the moments
are so accurate, but the self-energy has a narrow peak, whose
weight is overestimated with the coarse grid used in the cal-
culation.

Spectral moment sum rules for ordered phases, such as a
charge-density-wave phase, have already been performed in
equilibrium* for the Falicov-Kimball model and agree with
the exact results to high accuracy. The spectral moment sum
rules for the nonequilibrium case in a homogeneous system
with a uniform electric field have also been verified to high
accuracy.!>!¢ In addition, in the rapid quench work of Ref.
34, the retarded Green function is given by the equilibrium
Green function of the particular value of the interaction for
each average time. Hence, the moments, which hold in equi-
librium, continue to hold in nonequilibrium with an interac-
tion quench. Here we examine a nonequilibrium case at half
filling for both localized and itinerant electrons with charge-
density wave order in the presence of a uniform electric field
at zero temperature. This system can also be solved exactly
within dynamical mean-field theory because the self-energy
vanishes or is equal to U and it has no damping (i.e., it is real
when expressed in the frequency-average time representa-
tion). Details of that work will appear elsewhere*? and follow
closely the derivation of the nonequilibrium Green function
for noninteracting electrons on a lattice* but with some
added complications due to the need for time-ordered prod-
ucts because of the CDW order. The local retarded Green
function at half filling with u=U/2 satisfies*?

Gﬁ(ﬁ,fz) =—if(t, - tz)z explUy(K,ty,1))
k

+Upn(K,11,1) = U (K,11,1) £ Usi(K,11,1)],
(50)

where the sum over momentum is over the CDW Brillouin
zone, which satisfies g, =0, and the plus sign is for i€ A
sublattice and the minus sign for i € B sublattice. The time
evolution operator U is a time-ordered product

U
f - |€k—eA(t)| E
U(K,1,1,) =T, exp if dt U
” 5 | €k—eas]

(51)

We used the Peierls’ subﬁtituted band structure with €
=-lim,_,., t*Elecos(kia)/ \Vd the band structure and A(f) the
vector potential, which is turned on at time =0 [A(z)
=—6(1)Et]. The electric field is chosen to lie along the diag-
onal direction. The time-ordered product can be calculated
directly for numerical work by employing the Trotter for-
mula on the corresponding 2 X 2 matrices.

Now we report on the nonequilibrium sum rules for the
CDW phase. In this case the moments of the local Green
functions on each sublattice satisfy the following: (i) the ze-
roth moment is 1; (2) the first moment is *U/2; (iii) the
second moment is 1/2+U?/4; and (iv) the third moment is
+U/4+ U?/8 (the plus or minus signs correspond to the A
or B sublattice). While, in theory, one can numerically cal-
culate these moments by first finding the Green functions as
functions of time, converting to average and relative time,
Fourier transforming the relative time to a frequency, and
finally calculating the moment sum rule by integrating over
frequency (see below), this approach runs into a number of
serious challenges. The most critical one is that the equilib-
rium DOS when there is no field present has a divergence in
it that goes like an inverse square root of frequency. Such a
singularity requires an infinite time domain to properly find
the Fourier transform (because the function has an amplitude
that decays like a power law in time), but our numerical
calculations are always truncated to a finite range so the Fou-
rier transform has the singularity smoothed over and the
truncation can lead to unphysical oscillations in the DOS as
a function of frequency (due to the presence of a sharp cutoff
in time). Furthermore, we calculate on a discrete grid in time,
which can have further effects on the Fourier transform, es-
pecially for high enough frequencies. Finally, the results, par-
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FIG. 5. Density of states for the A sublattice at U=1.5 with an
electric field of strength E=1 turned on at time 7=0. The different
panels correspond to different average times. Note how the main
structure of the DOS in equilibrium, which consists of the singular
peak and the finite peak is modified at the odd Bloch frequencies
here to create additional structures that look reminiscent of the DOS
of an ordered system (one can see small peaks near w= *3 t00).
Modifications at the even Bloch frequencies can only be seen at
short times.

ticularly at large times, are sensitive to the number of energy
points in the integration grid over the two energies. All of
these challenges make it much more useful to directly calcu-
late the results for the moments by evaluating the derivatives
of the Green functions as functions of time. This can actually
be done analytically for the form of the Green function (be-
cause of the time-ordered products), and it produces exactly
the requisite moments. In addition, we can do it numerically
in the time domain, and we verify that the sum rules are
satisfied to an accuracy much smaller than the step size in
time (when evaluated in the time domain via numerical dif-
ferentiation).

Even though the numerical calculation of the DOS in the
CDW phase is challenging, as explained above, we present
results for this calculation in Figs. 5 and 6 for the A sublat-
tice DOS. The parameters chosen are an electric field equal
to 1, and turned on at time #=0, and interaction strength U
=1.5 and U=3 (we have a time domain cutoff running from
=500 to 500 with a time step of 0.0025). We compare a
number of different average time results including (a) the
equilibrium result 7,,,— -, (b) 7,,.=0, (¢) #,,.=10, and (d)
t.ve=500. We do not use the “equilibrium” results from the
real time calculation because our finite time-domain cutoff
leads to spurious oscillations. In addition, the DOS is already
modified at #,,,=0 because the relative time Fourier trans-
form involves a large number of points in time where the
field is on, and because the Green function has structure with
such long-ranged tails in time, one can see an effect even
before the average time where the field has been turned on.
When the field is turned on, the DOS naturally changes

PHYSICAL REVIEW B 80, 115119 (2009)
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FIG. 6. Density of states for the A sublattice at U=3 with an
electric field of strength E=1 turned on at time #=0. The different
panels correspond to different average times. Note how the main
structure of the DOS in equilibrium, which consists of the singular
peak and the finite peak is modified at the even Bloch frequencies
here to create additional structures that look reminiscent of the DOS
of an ordered system (small peaks are near w=0 too). Modifications
at the odd Bloch frequencies can only be seen at short times.

shape (and the square-root singularity appears to be
smoothed into a finite peak), but the changes are much
smaller than in the normal phase. Surprisingly, we predomi-
nantly see structure at either odd Bloch frequencies or even
Bloch frequencies, but not both, and the structure does not
look like a broadened, and split delta function as in the nor-
mal phase but instead looks more like some kind of ordered
phase gap structure, but the features can be quite small in
some cases. It is clear we have not yet fully reached the
steady state, but it also appears clear what the steady-state
DOS will eventually look like. Finally, we comment that if
we take the DOS as functions of frequency (our frequency
range is chosen to run from —10< @< 10), multiply by the
appropriate power of frequency and integrate to check the
sum rules, then all sum rules except the second moment are
satisfied to better than 1%. The second moment is worse
because we get significant contributions from the noisy tails
of the DOS which do not cancel as they do for the odd
moments. If we put the frequency cutoff closer to |w|<5,
then the second moment accuracy increases dramatically. But
we know that this is the least accurate way to check the
moment sum rules.

V. CONCLUSIONS

In this work, we have shown how to determine exact
spectral moment sum rules for the retarded Green functions
and self-energies of inhomogeneous strongly correlated sys-
tems. While our analysis is quite general, for concreteness,
we provided explicit results for a combined Hubbard-
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Falicov-Kimball model. We envision these results can be ap-
plied to strongly correlated multilayers, ultracold atomic sys-
tems in traps, or strongly correlated materials with disorder
(although we did not discuss the last case in much detail).
The sum rules can be used to gain qualitative information
about the many-body solutions, benchmark numerical calcu-
lations, be used to evaluate the tails of infinite sums (or in-
finite products) allowing for smaller energy cutoffs, or be
used to improve the accuracy of Hirsch-Fye quantum Monte
Carlo approaches by determining the short-imaginary-time
behavior exactly. We provided a full derivation of the sum
rules in equilibrium and then discussed a number of different
nonequilibrium situations appropriate for multilayers for
cold atom systems and for ordered phase systems (such as a
CDW). In the case of multilayers, the change in the local
electrical potential energy induced by an electronic charge
reconstruction modifies the sum rules, but the additional sca-
lar potential that creates an electric field to drive current
through the device does not. This motivates one to decouple
the description using a scalar potential and Poisson’s equa-
tion in a semiclassical analysis to determine the modified
Hamiltonian due to the electronic charge reconstruction but
use a time-dependent vector potential to describe the electric
field that drives current through the system. In the case of
cold atoms, we discussed nonequilibrium situations corre-
sponding to pulling the lattice in the presence of a static trap,
rapidly changing the location of the trap and examining the
transient response, and changing the interaction strength (say
due to a Feshbach resonance, by changing the magnetic
field) and examining the response to an interaction quench.
For the ordered phase, we examined the CDW state of the
Falicov-Kimball model at zero temperature with an uniform
electric field turned on at a specific time. We feel these sum
rules will have a broad application across a number of dif-
ferent systems and calculations.

One may ask whether it is useful to try to extend these
calculations to higher order. At this point, we are unclear

PHYSICAL REVIEW B 80, 115119 (2009)

about how useful this would be. The algebra required to go
to higher orders can become so cumbersome that it would
need to be automated to be able to extend results to large
orders. But, we also expect that as the order increases we
will start to see more complicated average time dependence
enter into the results for the nonequilibrium cases, and we
expect that more complicated operator averages will enter
into the equilibrium results. If these operator averages are too
complicated to evaluate for a given problem, then the useful-
ness of the approach fails (because there will be no indepen-
dent way to evaluate the moments). Hence, we are unclear on
whether there is much to be gained by going to higher orders
in this similar vein.

It is obvious that a similar exercise can be carried out for
bosonic systems. These will have most relevance for cold
atom problems, where bosonic atoms are readily available
within the alkali family. The sum rules for bosons become
more complicated, especially at higher orders, because we
used identities such as c?c,-cjc,:cjc,- which hold only for fer-
mionic systems. We are currently working on the generaliza-
tion of these sum rules to bosonic problems which will be
presented elsewhere. Of particular interest is a Falicov-
Kimball model with light fermions and heavy bosons, which
is realized in K-Rb mixtures used to make dipolar molecules
if the system is placed on a deep enough optical lattice**.
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