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We derive the first two moment sum rules of the conduction electron retarded self-energy for both the
Falicov–Kimball model and the Hubbard model coupled to an external spatially uniform and time-dependent
electric field �this derivation also extends the known nonequilibrium moment sum rules for the Green functions
to the third moment�. These sum rules are used to further test the accuracy of nonequilibrium solutions to the
many-body problem; for example, we illustrate how well the self-energy sum rules are satisfied for the
Falicov–Kimball model in infinite dimensions and placed in a uniform electric field turned on at time t=0. In
general, the self-energy sum rules are satisfied to a significantly higher accuracy than the Green function sum
rules.
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I. INTRODUCTION

The theoretical description of nonequilibrium strongly
correlated electron systems is one of the most important
problems in condensed matter physics. This problem is not
only an intellectual challenge but has the potential for many
practical applications. Systems with strong electron correla-
tions, such as heavy-fermion compounds, manganites, high-
temperature superconductors, and strongly correlated oxide
multilayers, demonstrate interesting and unusual properties,
some of which have already been applied to electronic and
magnetic devices. Due to the expectation for strong tunabil-
ity of such systems, they are important candidates to be used
in modern nanoelectronics, such as multilayered structures,
quantum wires, and dots. Some of the properties of these
materials can be exploited in spintronic and orbitronic de-
vices, where the spin and orbital degrees of freedom are
manipulated.1 Since the size of modern electronic devices
can be small ��10–100 nm�, the physical processes in these
systems can become strongly nonequilibrium because they
are exposed to strong external fields, which are generated by
moderate external potentials ��1 V� placed over the nanos-
cale structures. The second consequence of a small system
size is that the system will have enhanced quantum fluctua-
tions. This makes it difficult to study different properties of
the system, such as transport and optics, since we cannot use
phenomenological approaches that rely on different relax-
ation times �Coulomb, phonon, etc.�, which are longer than
typical time scales in the system. Recently, much progress
has been made in experimental short pulse laser techniques,
which allow one to study ultrafast processes in different bulk
systems and nanostructures. These experiments also need a
theoretical interpretation.

Thus, it is important to have exact nonequilibrium solu-
tions for correlated electron systems, which can serve as
benchmarks for more general approximation methods. This
problem is complicated even in the equilibrium case, due to
the fact that one needs to treat the kinetic energy and the
potential Coulomb energy terms in the Hamiltonian on equal

footing. The simplest models for correlated electrons are the
Hubbard model2,3 and the Falicov–Kimball model5 �which is
a simplified version of the Hubbard model with localized
spin-down electrons�. The equilibrium solutions of these
models are known only in the one-dimensional case, where
an analytical Bethe ansatz approach4 can be used for the
Hubbard model and in the limit of infinite dimensions, where
the dynamical mean-field theory �DMFT� can be applied5,6 to
both models.

Similar to the equilibrium case, much progress in study-
ing nonequilibrium properties of correlated electron systems
has been made in both cases of low and high dimensions.
Different approaches, such as perturbation theory, equation
of motion, and variational wave function methods, were ap-
plied to study the properties of strongly correlated systems in
the case of quantum dot and chain systems �see, for example,
Refs. 7–10�. Recently, a nonequilibrium generalization of the
Bethe anzatz technique was proposed11 and simulations in
one dimension with the density matrix renormalization group
have been performed.12 In the infinite-dimensional case, the
nonequilibrium properties of the Hubbard13,14 and
Falicov–Kimball15 models were studied by using second-
order perturbation theory in U within DMFT. Recently, the
Falicov–Kimball model was exactly solved16–21 in the pres-
ence of a homogeneous time-dependent electric field and in
the case of a sudden change in the interaction strength U.22

In these papers, the nonequilibrium generalization of the
DMFT approximation was proposed, which allows one to
obtain the numerical solution of the nonequilibrium problem
for the Falicov–Kimball model. The numerical method is
based on the Kadnoff–Baym–Keldysh nonequilibrium Green
function formalism when the nonequilibrium Green function
is defined on the Kadanoff–Baym–Keldysh time contour. We
studied different properties of the model when a constant
electric field is switched on at a particular moment of time.
We found that Bloch oscillations of the electric current can
survive for a long time and develop beats with a period de-
pending on the interaction strength; in addition, the Wannier–
Stark peaks in the density of states can broaden and split
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when the Coulomb interaction increases. It was also found
that the Falicov–Kimball model does not switch from one
equilibrium state to another when the interaction strength is
suddenly changed.

Since most solutions of strongly correlated problems are
numerical, it is important to develop tests that allow one to
check the precision of those solutions. In equilibrium, one of
the ways to check the accuracy is to calculate the spectral
moments of the Green function23 and compare them to exact
results. Spectral moments have been used in many different
contexts than just to test the numerical accuracy of numerical
solutions. Harris and Lange24 used spectral moments and a
projection that forbids double occupancy to determine prop-
erties about the spectral moments of the individual Hubbard
bands at strong coupling. They also determined the equilib-
rium Green function moments for the Falicov–Kimball
model when they examined an alloy disorder Hamiltonian.
Nolting25 used the spectral moments to develop different
strong-coupling-based approximations to the Green functions
of the Hubbard model. This approach has been extended in
many different directions to look for magnetic order or to
improve iterated perturbation theory in the dynamical mean-
field theory when away from particle-hole symmetry.26–30

White23 used the exact expressions for the zeroth and the first
two spectral moments for the Hubbard model to estimate the
accuracy of a quantum Monte Carlo solution of the two-
dimensional Hubbard model. Usually, only the zeroth and the
first two moments have been examined. However, as was
argued in Refs. 28 and 29, it is also important to know the
third spectral moment since it is connected with the sponta-
neous magnetic order in correlated systems, and knowledge
of the zeroth and the first three moments also contain valu-
able information about the strongly correlated band structure.
The authors of these papers have also established a relation
between the zeroth and the first moment for the self-energy
with the lowest moments for the Green functions. This al-
lowed them to estimate the precision of the solution for the
self-energy at high energies. Recently, interest in the self-
energy spectral moments has been renewed, due to an appli-
cation of these results to the description of experiments on
the self-energy of high-temperature superconductors arising
from angle-resolved photoemission.31–33 While the retarded
Green function moments we discuss here are appropriate for
the full spectral function, the lesser moments �and the greater
moments which can be extracted from the retarded and lesser
moments� are appropriate for photoemission or inverse pho-
toemission experiments. The recent work in Ref. 32 exam-
ines the lesser moments with a further strong-coupling pro-
jection that removes doubly occupied states. We do not
examine these kinds of projections here. Instead, we focus on
nonequilibrium effects.

The nonequilibrium case is more complicated than the
equilibrium case. In nonequilibrium, all Green functions now
depend on two time variables, as opposed to just the time
difference in equilibrium. Nevertheless, exact expressions
have been found17 for the zeroth and the first two spectral
moments of the nonequilibrium lesser and retarded Green
functions for the Falicov–Kimball and the Hubbard models
�coupled to a homogeneous and time-dependent electric
field�. The moments were also used to test the accuracy of

the nonequilibrium solution to the Falicov–Kimball model in
the limit of infinite dimensions.

In this paper, we generalize the results of Ref. 17 by de-
riving the third spectral moments for the retarded and the
lesser Green functions and deriving expressions for the cor-
responding zeroth and the first spectral moments of the re-
tarded self-energy for the Falicov–Kimball and Hubbard
models. Similar to the zeroth and the first two retarded Green
function moments, the third-order moment of the retarded
Green function �Falicov–Kimball model� and the zeroth
�both� and first �Falicov-Kimball model� moments of the re-
tarded self-energy remain time independent. We apply these
results to benchmark the precision of the DMFT solution of
the Falicov–Kimball model in both the equilibrium case �at
arbitrary doping� and the nonequilibrium case �at half-filling�
when a constant electric field is switched on at a particular
moment of time.

The rest of the paper is organized as follows. The equi-
librium Falicov–Kimball and Hubbard models and their gen-
eralization to include the external electric field are presented
in Sec. II. The results for the spectral moments are presented
in Sec. III �Green functions� and Sec. IV �self-energies�. In
Sec. V, we give a brief description of the nonequilibrium
DMFT formalism, present equilibrium and nonequilibrium
solutions of the infinite-dimensional Falicov–Kimball model,
and compare results for the moments obtained from the nu-
merical solutions with the exact results. Our summary and
conclusions are presented in Sec. VI.

II. HAMILTONIANS FOR THE MODELS IN EQUILIBRIUM
AND IN A UNIFORM FIELD

The generalized equilibrium Hamiltonian for the spinless
Falicov–Kimball and the spin one-half Hubbard models can
be written in the following unified form:

H�0� = − �
ij

tijci
†cj − �

ij

tij
f f i

†f j − ��
i

ci
†ci − � f�

i

f i
†f i

+ U�
i

f i
†f ici

†ci, �1�

where in the case of the Hubbard model, the operators ci �f i�
and ci

† �f i
†� correspond to the spin-up �spin-down� electron

annihilation and creation operators on site i. In this paper, we
consider the case of a hypercubic lattice and assume that the
electrons can hop to the nearest neighbor site. The corre-
sponding hopping matrices are tij = tij

f and the chemical po-
tentials are �=� f for both kinds of electrons �Zeeman split-
ting can be incorporated by choosing different chemical
potentials, but for simplicity, we keep them equal here�. The
last term in the Hamiltonian describes the local Coulomb
repulsion between spin-up and spin-down electrons with a
strength equal to U. The Hamiltonian in Eq. �1� also corre-
sponds to the spinless Falicov–Kimball model when one sets
tij
f =0. In this case, the system consists of two kinds of elec-

trons: itinerant c electrons and localized f electrons, which
locally repel each other. In the case of the Falicov–Kimball
model, we shall also put � f =0 for simplicity since the value
of the chemical potential of the localized electrons is not
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important for the spectral moments of c electrons, which we
evaluate below.

The electric field E�r , t� can be introduced into the Hamil-
tonian by means of the Peierls substitution for the hopping
matrices,34

tij → tij exp�−
ie

�c
�

Ri

Rj

A�r,t�dr� = t̃i j , �2�

tij
f → tij

f exp�−
ie

�c
�

Ri

Rj

A�r,t�dr� = t̃i j
f , �3�

where the electric vector potential A�r , t� is connected to the
electric field in the following way:

E�r,t� = −
1

c

�A�r,t�
�t

, �4�

and the scalar potential vanishes. This choice of the electro-
magnetic potential, when the scalar potential is set equal to
zero, corresponds to the Hamiltonian gauge. For simplicity,
we also assume that the electric field is spatially uniform and
it lies along the direction of the elementary cell diagonal,

A�r,t� = A�t��1,1, . . . ,1� . �5�

Neglecting the spatial dependence of the vector potential as-
sumes that we ignore the magnetic field effects in the system
�since the magnetic field is H�r , t�=��A�r , t�	 because the
electric field is smooth enough in time that the transient mag-
netic field can be neglected. This can take place in nanostruc-
tures when an applied external potential produces an almost
homogeneous electric field due to the small size of the sys-
tem �see also the discussion in Ref. 17�.

The Hamiltonian �in the Schrödinger picture�, which de-
scribes the electron system coupled to an external spatially
independent electric field, has a rather simple form in the
momentum representation �the creation and annihilation op-
erators now create or annihilate electrons with definite mo-
mentum�,

H�A� = �
k

��k −

eA�t�
�c

� − ��ck
†ck

+ �
k

� f�k −

eA�t�
�c

� − � f� fk
† fk

+ U �
p,k,q

fp+q
† ck−q

† ckfp, �6�

where the free electron band structures are

��k −
eA�t�

�c
� = � f�k −

eA�t�
�c

�
= − 2t�

j=1

d

cos
a�k j −
eA j�t�

�c
�� , �7�

d is the dimensionality of the system, and t is the correspond-
ing hopping parameter. In the case of the Falicov–Kimball
model, one has to put � f�k− �eA�t� /�c	−� f =0 in Eq. �6�.

III. SPECTRAL MOMENTS FOR THE GREEN
FUNCTIONS

In the case of nonequilibrium, there are two independent
Green functions, which describe the properties of a many-
body system. We use the retarded,

Gk
R�t1,t2� = − i��t1 − t2���ck�t1�,ck

†�t2�	� , �8�

and the lesser,

Gk
��t1,t2� = i�ck

†�t2�ck�t1�� , �9�

Green functions as the basis functions. The fermion opera-
tors on the right hand side of Eqs. �8� and �9� are in the
Heisenberg representation and the averaging operation �¯�
is performed with respect to the equilibrium Hamiltonian
�corresponding to the initial conditions prior to the field be-
ing turned on�. It is convenient to use the Green functions in
Eqs. �8� and �9� since they have important physical interpre-
tations. Namely, the poles of the retarded Green function
define the energy levels of the system �and thereby determine
the many-body density of states�, and the equal-time lesser
Green function describes the occupation of these levels �and
hence determines the distribution function�. In equilibrium,
only one of these functions is independent since they are
connected by a simple relation depending on the Fermi–
Dirac distribution.

In order to calculate moments of the spectral functions at
different values of time, it is convenient to introduce Wign-
er’s time variables: the average time T= �t1+ t2� /2 and the
relative time t= t1− t2. The frequency dependence of a Green
function can be calculated by Fourier transforming the Green
function with respect to the relative-time coordinate, and the
time evolution of the function is then described by the aver-
age time coordinate. In other words, the average time coor-
dinate is associated with the physical time in the system. The
spectral function for the retarded and the lesser Green func-
tions can then be defined in the following way:

Ak
R,��T,�� =

	



Im �

−�

�

dtei�tGk
R,��T,t� , �10�

where we have introduced a prefactor 	, which is equal to
−1 for the retarded Green function and 1 for the lesser Green
function in order to have positive zeroth moments for both
retarded and lesser Green functions �see below�. The nth
spectral moments that correspond to the spectral functions in
Eq. �10� are defined to be

�n
R,��k,T� = �

−�

�

d��nAk
R,��T,�� . �11�

It is not difficult to show from Eqs. �10� and �11� that there
exist the following relations that connect the moments with
the corresponding Green functions:

�n
R,��k,T� =

	



Im �

−�

�

d��
−�

�

dtei�tin �n

�tnGk
R,��T,t�

�12�

and
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�n
R,��k,T� = 2

	



Im�in �n

�tnGk
R,��T,t��

t=0+
�13�

�for details, see Ref. 17�. It is more convenient to use the
expression in Eq. �12� for the retarded Green function and in
Eq. �13� for the lesser Green function. The time derivatives
with respect to the operators of the Green functions in Eqs.
�8� and �9� can be expressed by taking commutators of the
corresponding fermion operators with the Hamiltonian in the
Heisenberg picture �the terms proportional to the time de-
rivatives with respect to the theta function in the case of the
retarded Green function do not contribute to the moments�.
This leads to the following expressions, which connect the
zeroth and the first three spectral moments with specific cor-
relation functions:

�0
R�k,T� = ��ck�T�,ck

†�T�	� , �14�

�1
R�k,T� =

1

2
���L1ck�T�,ck

†�T�	� − ��ck�T�,L1ck
†�T�	�	 ,

�15�

�2
R�k,T� =

1

4
���L2ck�T�,ck

†�T�	� − 2��L1ck�T�,L1ck
†�T�	�

+ ��ck�T�,L2ck
†�T�	�	 , �16�

�3
R�k,T� =

1

8
���L3ck�T�,ck

†�T�	� − 3��L2ck�T�,L1ck
†�T�	�

+ 3��L1ck�T�,L2ck
†�T�	� − ��ck�T�,L3ck

†�T�	�	 ,

�17�

�0
��k,T� = 2�ck

†�T�ck�T�� , �18�

�1
��k,T� = �ck

†�T�L1ck�T�� − ��L1ck
†�T�	ck�T�� , �19�

�2
��k,T� =

1

2
��ck

†�T�L2ck�T�� − 2��L1ck
†�T�	�L1ck�T�	�

+ ��L2ck
†�T�	ck�T��	 , �20�

�3
��k,T� =

1

4
��ck

†�T�L3ck�T�� − 3��L1ck
†�T�	�L2ck�T�	�

+ 3��L2ck
†�T�	�L1ck�T�	� − ��L3ck

†�T�	ck�T��	 ,

�21�

where LnO= �¯��O ,HH�T�	 ,HH�T�	¯HH�T�	 is the mul-
tiple commutation operator with respect to the Hamiltonian
�in the Heisenberg picture� performed n times; the operator
HH�T� is given by Eq. �6� with all fermionic operators re-
placed by the Heisenberg-picture operators evaluated at time
T. The commutation relations can be directly evaluated be-
cause two fermionic operators at equal times �within the
Heisenberg picture� satisfy the canonical commutation rela-
tions.

Evaluating the commutation and anticommutation opera-
tions in Eqs. �14�–�17� results in the following expressions
for the retarded moments:

�0
R�k,T� = 1, �22�

�1
R�k,T� = ���k − eA�T�	 − � + Unf , �23�

�2
R�k,T� = ���k − eA�T�	 − �2

+ 2U���k − eA�T�	 − �nf + U2nf , �24�

�3
R�k,T� = ���k − eA�T�	 − �3 + 3U���k − eA�T�	 − �2nf + 3U2���k − eA�T�	 − �nf + U2�

p,q
�� f�p + q − eA�T�	

− 2� f�p − eA�T�	 + � f�p − q − eA�T�	�fp
† fp��T� − U2 �

p,q,q�

�� f�p + q − eA�T�	 − � f�p + q + q� − eA�T�	

− � f�p − eA�T�	 + � f�p + q� − eA�T�	�fp+q+q�
† fpck−q

† ck+q���T� + U2 �
p,p�,q

���k + q − eA�T�	 − ��k − eA�T�	

+ � f�p� − eA�T�	 − � f�p� − q − eA�T�	 + 2� f�p − eA�T�	 − 2� f�p + q − eA�T�	�fp�−q
† fp�fp+q

† fp��T� + U3nf . �25�

Summing over momentum yields the following local mo-
ments:

�0
R�T� = 1, �26�

�1
R�T� = − � + Unf , �27�

�2
R�T� =

t*2

2
+ �2 − 2U�nf + U2nf , �28�
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�3
R�T� = −

3t*2

2
�� − Unf� + 3U�nf�� − Unf�

+ 3U2�nf�nf − 1� + U3nf − �3 + 2U2�
ij

t̃ij
f �f i

†f j�

− 2U2�
ij

t̃ij
f ��f i

†f jcj
†cj� + �f i

†f jci
†ci��

+ U2�
ij

t̃ij
f �− �f i

†f j f i
†f i� + �f i

†f j f j
†f j� − 2�f i

†f if i
†f j�

+ 2�f j
†f j f i

†f j�� , �29�

where t̃i j
f is defined in Eq. �3�. In these equations, we have

assumed that we are on the infinite-dimensional hypercubic
lattice and have explicitly evaluated the second moment of
the hopping matrix; the generalization to finite dimensions is
simple to complete �see the erratum of Ref. 17�.

As follows from Eqs. �26�–�28�, the zeroth and the first
two retarded moments remain time independent even in the

case of an arbitrary external time-dependent field. The third
local moment �in Eq. �29�	 is time independent for the case
of the Falicov–Kimball model �t̃ f =0�. In the case of the Hub-
bard model, its expression is complex and we cannot imme-
diately tell whether they are time dependent �but they most
likely are�. The last two terms in Eq. �29� are defined by
electron correlations and they define the shape of the spectral
functions of the lower and upper Hubbard bands, the redis-
tribution of the spectral weights between the bands, and a
shift of their centers of gravity.28,29 It is difficult to obtain
analytical expressions for these terms.

In a similar way, one can obtain expressions for the lesser
moments from Eqs. �18�–�21�,

�0
��k,T� = 2�nk�T�� , �30�

�1
��k,T� = 2���k − eA�T�	 − ��nk�T��

+ U�
p,q

��ck
†ck+qfp+q

† fp��T� + �ck−q
† ckfp+q

† fp��T�	 ,

�31�

�2
��k,T� = 2���k − eA�T�	 − �2�nk�T�� +

3

2
U���k − eA�T�	 − ��

p,q
��fp+q

† fpck−q
† ck��T� + �fp+q

† fpck
†ck+q�	

+
1

2
U�

p,q
���k − q − eA�T�	 − ��fp+q

† fpck−q
† ck��T� +

1

2
U�

p,q
���k + q − eA�T�	 − ��fp+q

† fpck
†ck+q��T�

−
1

2
U�

p,q
�� f�p + q − eA�T�	 − � f�p − eA�T�	��fp+q

† fpck
†ck+q��T� − �fp+q

† fpck−q
† ck��T�	

+
1

2
U2 �

p,q,P,Q
��fp+q

† fpfP+Q
† fPck−q−Q

† ck��T� + 2�fp+q
† fpfP+Q

† fPck−q
† ck+Q��T� + �fp+q

† fpfP+Q
† fPck

†ck+Q+q��T�	 , �32�

�3
��k,T� = 2���k − eA�T�	 − �3�ck

†ck��T� + 2U���k − eA�T�	 − �2�
p,q

�ck
†ck+qfp+q

† fp��T� + 2U�
p�,p

���k − eA�T�	 + ��p

− eA�T�	 − 2� + � f�p� − eA�T�	 − � f�p� + p − k − eA�T�	���p − eA�T�	 − ��ck
†cpfp�+p−k

† fp���T�

+ 2U�
q�,p

���k − eA�T�	 + ��k + q� − eA�T�	 − 2� + � f�p − eA�T�	 − � f�p + q� − eA�T�	�� f�p − eA�T�	

− � f�p + q� − eA�T�	�ck
†ck+q�fp+q�

† fp��T� + 2U2 �
p�,q�,p,q

���k − eA�T�	 + ��k + q� − eA�T�	 − 2� + � f�p� − eA�T�	

− � f�p� + q� − eA�T�	�fp+q
† fpfp�+q�

† fp�ck
†ck+q�+q��T� + 2U2 �

q�,p,q,k�

�� f�p + q − eA�T�	 − � f�p + q + q� − eA�T�	

− � f�p − eA�T�	 + � f�p + q� − eA�T�	�fp+q+q�
† fpck

†ck+q�ck�−q
† ck���T� + 2U2 �

p�,q�,p,q

���k + q + q� − eA�T�	

− � − � f�p� + q� − eA�T�	 + � f�p� − eA�T�	 − � f�p + q − eA�T�	 + � f�p − eA�T�	�fp�+q�
† fp�fp+q

† fpck
†ck+q+q���T�

+ 2U3 �
p�,q�,p,q,P,Q

�fP+Q
† fPfp�+q�

† fp�fp+q
† fpck

†cQ+k+q+q���T� . �33�

The corresponding local lesser moments are

�0
��T� = 2nc�T� , �34�
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�1
��T� = − 2�

i,j
t̃ij�ci

†cj� − 2�nc + 2U�
i

�f i
†f ici

†ci� , �35�

�2
��T� = 2�

i,l,j
t̃ilt̃lj�ci

†cj� + 4��
i,j

t̃ij�ci
†cj� + 2�2nc�T� − 2U�

i,j
�t̃i j�f i

†f ici
†cj� + t̃ ji�f i

†f icj
†ci�	 + 2U�U − 2���

i

�f i
†f ici

†ci� , �36�

�3
��T� = − 2 �

i,j,l,m
t̃ilt̃lmt̃mj�ci

†cj��T� − 6��
i,j,l

t̃ilt̃lj�ci
†cj��T� − 6�2�

i,j
t̃ij�ci

†cj��T� − 2�3�
i

�ci
†ci��T� + 2U�

i,l,j
t̃ilt̃lj�ci

†cjf j
†f j��T�

+ 2�3U�2 − 3U2� + U3��
i

�f i
†f ici

†ci��T� + 6U��
i,j

t̃ij�ci
†cjf j

†f j��T� + 6U��
i,j

t̃ij�ci
†cjf i

†f i��T� − 2U2�
i,j

t̃ij�f j
†f jci

†cj��T�

− 2U2�
i,j

t̃ij�f i
†f ici

†cj��T� + 2U�
i,l,j

t̃ijt̃ jl�ci
†clf j

†f j��T� + 2U�
i,l,j

t̃ilt̃lj�ci
†cjf i

†f i��T� − 2U2�
i,j

t̃ij�f j
†f j f i

†f ici
†cj��T�

+ 2U�
i,j,l

t̃ijt̃il
f �ci

†cjf i
†f l��T� − 2U�

i,j,l
t̃ijt̃li

f �ci
†cjf l

†f i��T� + 2U��
i,j

t̃ij
f �ci

†cif i
†f j��T� − 2U��

i,j
t̃ ji
f �ci

†cif j
†f i��T�

+ 2U�
i,j,l

t̃il
f t̃lj

f �ci
†cif i

†f j��T� + 2U�
i,j,l

t̃il
f t̃lj

f �cj
†cjf i

†f j��T� − 4U�
i,j,l

t̃ ji
f t̃il

f �ci
†cif j

†f l��T� − 2U2�
i,j

t̃ij
f ��f i

†f if i
†f jci

†ci��T�

− �f j
†f j f i

†f jcj
†cj��T�	 − 4U2�

i,j
t̃ij
f �f i

†f jci
†cicj

†cj��T� + 4U2�
i,j

t̃ij
f �f i

†f jcj
†cj��T� , �37�

where t̃i j is defined in Eq. �2�.
Contrary to the case of the retarded moments, even the

zeroth and the first two local lesser moments in Eqs.
�34�–�36� cannot be solely expressed in terms of the model
parameters, and they depend on different correlation func-
tions. Therefore, in order to check the accuracy of calcula-
tions in the lesser case, one can only compare the numerical
results for the lesser moments obtained by direct calculations
by using Eq. �11� with the corresponding results obtained by
a numerical evaluation of the time derivatives of the Green
function in Eq. �12�. However, the results in Eqs. �34�–�37�
still contain practical importance because they provide a
simple way to calculate combinations of different correlation
functions. The reason for this is due to the fact that the cor-
relation functions on the right hand side of Eqs. �34�–�37�
can be expressed in terms of the local lesser Green functions
and their time derivatives by using Eq. �12�, the equation of
motion, and/or the Dyson equations for the Green functions
�see Eqs. �39� and �44�–�46�, below	. For example, as shown
in Ref. 17, we can connect the average potential energy
�evaluated at average time T= t1� with the Green functions
and self-energies,

U�f i
†f ici

†ci� = � − i�
k

i

�

�t1
+ � − ��k

−
eA�t1�

�c
��Gk

��t1,t2��
t2=t1

= − i
k
� dt�k

R�t1,t�Gk
��t,t1� + k

��t1,t�Gk
A�t,t1�	 ,

�38�

a generalization of the well-known equilibrium result.

IV. SPECTRAL MOMENTS FOR THE RETARDED
SELF-ENERGY

It is possible to derive expressions for the lowest retarded
self-energy moments by using the Dyson equation, which
connects the retarded Green function and self-energy, and the
results for the retarded Green function moments derived in
the previous section.

In order to derive the nonequilibrium Dyson equation for
the retarded Green function, it is convenient to write down
the Dyson equation for the contour-ordered lattice Green
function in the Larkin–Ovchinnikov representation, where all
the time arguments are defined on the real branch of the time
contour,

Ĝk�t1,t2� = Ĝk
0�t1,t2�

+ �
−�

�

dt3�
−�

�

dt4Ĝk
0�t1,t3�̂k�t3,t4�Ĝk�t4,t2� ,

�39�

and all the Green functions and self-energy functions are 2
�2 matrices,

Ĝk�t1,t2� = �Gk
R�t1,t2�

0

Gk
K�t1,t2�

Gk
A�t1,t2�

� , �40�

̂k�t1,t2� = �k
R�t1,t2�

0

k
K�t1,t2�

k
A�t1,t2�

� , �41�

with matrix elements consisting of the retarded, advanced
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Gk
A�t1,t2� = i��t2 − t1���ckH�t1�,ckH

† �t2�	� , �42�

and the Keldysh

Gk
K�t1,t2� = − i��ckH�t1�,ckH

† �t2�	� �43�

components �and similarly for the self-energy�. The function

Ĝk
�0� in Eq. �39� is the electron Green function in the nonin-

teracting case �U=0 but with E�0 for the nonequilibrium
case�. The expression for this function can be analytically
obtained �see, for example, Refs. 34 and 35�.

The nonzero matrix components of the Dyson equation
can be written in the following form:

Gk
R�t1,t2� = Gk

R0�t1,t2� + �Gk
R0k

RGk
R	�t1,t2� , �44�

Gk
A�t1,t2� = Gk

A0�t1,t2� + �Gk
A0k

AGk
A	�t1,t2� , �45�

Gk
K�t1,t2� = �1 + Gk

Rk
R	Gk

K0�1 + k
AGk

A	�t1,t2�

+ �Gk
Rk

KGk
A	�t1,t2� , �46�

where we suppressed integrations over internal time vari-
ables implied by the continuous matrix operator multiplica-
tions.

In order to find the retarded self-energy spectral moments,
one only needs Eq. �44�. It is convenient to rewrite this equa-
tion in a combined frequency-average time representation,

Gk
R�T,�� = Gk

R0�T,�� +� dT̄� dt̄� d�� d�e−i�t̄ei�T̄

�Gk
R0�T +

T̄

2
+

t̄

4
,� + � +

�

2
�k

R�T + T̄,� + 2��

�Gk
R�T +

T̄

2
−

t̄

4
,� + � −

�

2
� , �47�

where we restored the internal time-frequency integrations.
Similar to the equilibrium case,28,29,31 one can expand the

Green functions and the self-energies at large values of the
frequency � in terms of the corresponding moments,

Gk
R�T,�� = �

m=0

�
�m

R�k,T�
�m+1 , �48�

k
R�T,�� = k

R�T,� = �� + �
m=0

�
Cm

R�k,T�
�m+1 , �49�

where the moments �m
R�k ,T� and Cm

R�k ,T� correspond to the
retarded Green function and self-energy in Eq. �44�. In par-
ticular, we have

Cm
R�k,T� = −

1



Im �

−�

�

dtei�t�mk
R�T,t� . �50�

The large-� expansions in Eqs. �48� and �49� can be obtained
by using the following spectral identities �valid for retarded
functions that rapidly decay enough for large relative time�:

Gk
R�T,�� = −

1



�

−�

�

d��
Im Gk

R�T,���
� − ��

, �51�

k
R�T,�� = −

1



�

−�

�

d��
Im k

R�T,���
� − ��

+ k
R�T,� = �� ,

�52�

where we take � large enough that the Green function and
self-energy on the left hand side are real. In fact, by making
expansions in powers of �1 /�� on the right hand sides of
Eqs. �51� and �52� and by using the moment definitions in
Eqs. �11� and �12�, one can obtain the expansions in Eqs.
�48� and �49�. The self-energy expansion in Eq. �49� contains
a frequency-independent term k

R�T ,�=��, which corre-
sponds to the mean-field term of the self-energy �see Eq. �58�
below	; this form arises because the self-energy generically
approaches a real constant nonzero value as �� � →�.

Then, one can insert these expansions into Eq. �47� and
separately consider the terms that have the same order in
�1 /��. In order to do this, it is necessary to expand all the
functions under the integrals in powers of �1 /��. For ex-
ample,

Gk
R�T +

T̄

2
−

t̄

4
,� + � −

�

2
� = �

m=0

� �m
R�k,T +

T̄

2
−

t̄

4
�

�� + � −
�

2
�m+1

= �
m=0

� �m
R�k,T +

T̄

2
−

t̄

4
�

�m+1

�
1

�1 + �� −
�

2
�/��m+1

= �
m=0

� �m
R�k,T +

T̄

2
−

t̄

4
�

�m+1

��1 −

� −
�

2

�
+ ¯ �

m+1

.

�53�

To calculate the frequency-independent term and the ze-
roth and the first spectral moments for the retarded self-
energy, it is necessary to make an expansion of the functions
in powers of 1 /� in Eq. �47� up to fourth order. All the time
and frequency integrals in Eq. �47� can be easily performed,
and we get the following equations that connect the Green
functions and self-energy spectral moments:

�0
R�k,T� = �̃0

R�k,T� , �54�

�1
R�k,T� = �̃1

R�k,T� + �̃0
R�k,T�k

R�T,� = ���0
R�k,T� ,

�55�

NONEQUILIBRIUM SUM RULES FOR THE RETARDED… PHYSICAL REVIEW B 77, 205102 �2008�

205102-7



�2
R�k,T� = �̃2

R�k,T� + �̃0
R�k,T�k

R�T,� = ���1
R�k,T�

+ �̃0
R�k,T�C0

R�k,T��0
R�k,T�

+ �̃1
R�k,T�k

R�T,� = ���0
R�k,T� , �56�

�3
R�k,T� = �̃3

R�k,T� + �̃0
R�k,T�k

R�T,� = ���2
R�k,T�

+ �̃0
R�k,T�C0

R�k,T��1
R�k,T�

+ �̃0
R�k,T�C1

R�k,T��0
R�k,T�

+ �̃1
R�k,T�k

R�T,� = ���1
R�k,T�

+ �̃1
R�k,T�C0

R�k,T��0
R�k,T�

+ �̃2
R�k,T�k

R�T,� = ���0
R�k,T� , �57�

where the matrix �̃n
R�k ,T� is the nth spectral moment of the

retarded Green function in the noninteracting case. One can
straightforwardly derive expressions for the retarded self-
energy moments from Eqs. �54�–�57� by using the results in
Eqs. �24� and �25� for the retarded Green function moments.
After some long algebra, we find

k
R�T,� = �� = Unf , �58�

C0
R�k,T� = nf�1 − nf�U2, �59�

C1
R�k,T� = U2nf�1 − nf��U�1 − nf� − �	 + U2�

p,q
�� f�p + q − eA�T�	 − 2� f�p − eA�T�	

+ � f�p − q − eA�T�	�fp
† fp��T� − U2 �

p,q,q�

�� f�p + q − eA�T�	 − � f�p + q + q� − eA�T�	

− � f�p − eA�T�	 + � f�p + q� − eA�T�	�fp+q+q�
† fpck−q

† ck+q���T� + U2 �
p,p�,q

���k + q − eA�T�	 − ��k − eA�T�	

+ � f�p� − eA�T�	 − � f�p� − q − eA�T�	 + 2� f�p − eA�T�	 − 2� f�p + q − eA�T�	�fp�−q
† fp�fp+q

† fp��T� . �60�

The expressions for the local moments are

C0
R�T� = nf�1 − nf�U2, �61�

C1
R�T� = U2nf�1 − nf��U�1 − nf� − �	 + 2U2�

ij

t̃ij
f �f i

†f j�

− U2�
ij

t̃ij
f ��f i

†f jcj
†cj� + �f i

†f jci
†ci��

+ U2�
ij

t̃ij
f �− �f i

†f j f i
†f i� + �f i

†f j f j
†f j�

− 2�f i
†f if i

†f j� + 2�f j
†f j f i

†f j�� . �62�

It is worthwhile to notice that the local retarded self-energy
moments are time independent �except for the first moment
in the case of the Hubbard model, for which we are not sure
about the time dependence�. This may be a surprising result
for the Hubbard model since the second-order perturbation
theory is frequency dependent, but the total weight of the
self-energy remains constant and depends just on the electron
densities and the interaction. Other interesting observations
are that the mean-field term k

R�T ,�=�� is equal to the first
order �Hartree–Fock� term of the self-energy in the expan-
sion in U and that the zeroth moment corresponds to the
zeroth moment of the imaginary part of R�� ,T� in the trun-
cated second-order perturbation expansion15 �for the
Falicov–Kimball model case�. This is in agreement with the
result of Ref. 36, where it was shown that in equilibrium, the
exact coefficient of the term proportional to 1 /�n in the large

Matsubara frequency expansion of the electron self-energy
of the Hubbard model can be obtained from the second-order
skeleton diagram for the exact Green function. Finally, it was
shown in Ref. 37, in the insulating phase, that the imaginary
part of the d→� equilibrium retarded self-energy acquires
an additional term proportional to ���� in the frequency rep-
resentation �at half-filling, away from half-filling, a delta
function appears but not at �=0�. In particular, in the case of
the Falicov–Kimball model, the weight of the delta-function
term is equal to −
�U2nf�1−nf�−1 /2	 and it produces a term
that requires special care to include in the zeroth self-energy
moment when one performs the integration over frequency
of the self-energy. Note that the delta function implies that
the finite-frequency integration of the zeroth self-energy mo-
ment remains fixed at 0.5 for the Falicov–Kimball model in
the insulating phase at half-filling, and all of the additional
spectral weight comes from the delta-function piece at �
=0. Away from half-filling, the delta function typically con-
tributes to all moments because it appears at a finite fre-
quency. In the nonequilibrium case, the situation is more
complicated because we cannot prove that such a term is also
present in this case. To see whether such a term is present,
one needs to examine the large relative-time limit of the
nonequilibrium retarded self-energy, which would have a
constant term equal to the weight of the delta function when
the delta function appears at �=0 �and would be a term
proportional to exp�i�t� when the delta function is at a finite
frequency�, but we do find good overall agreement for the
sum rules, so this issue is not important in verifying the
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accuracy �when one performs calculations in the time repre-
sentation�.

Unfortunately, it is impossible to derive analogous expres-
sions for the lesser self-energy spectral moments,

Cm
��k,T� =

1



�

−�

�

d��m Im k
��T,�� , �63�

since in this case the expansions similar to Eqs. �48� and �49�
do not exist. In fact, the representations in Eqs. �51� and �52�,
which lead to Eqs. �48� and �49�, are not valid in the cases of
the lesser Green function and self-energy because the lesser
functions are pure imaginary and, hence, not analytic. Note
that we could try to define an auxiliary Green function that
has the imaginary part of the lesser Green function and a real
part determined by a Kramers–Kronig relation, but doing so
does not produce any new results for the spectral moments of
the lesser self-energy.

An alternate approach is to express the lesser self-energy
in terms of the retarded Green function and self-energy by
using the system of Dyson equations in Eqs. �44�–�46� and
the equation that connects the lesser Green function with the
retarded, advanced, and Keldysh Green functions,

Gk
��t1,t2� =

1

2
�Gk

K�t1,t2� − Gk
R�t1,t2� + Gk

A�t1,t2�	 , �64�

and then try to express the lesser self-energy moments in
terms of moments for the retarded and lesser Green functions
and the retarded self-energy. In this case, one can find the
following Dyson equation for the lesser self-energy:

Gk
��t1,t2� = �1 + Gk

Rk
R	Gk

�0�1 + k
AGk

A	�t1,t2�

+ �Gk
Rk

�Gk
A	�t1,t2� . �65�

By using the equations of motion for the Green functions
�with an implicit integration over the internal time variables�:

���t − t1�
i
�

�t1
− ��k − A�t1�	 + �� − k

R�t,t1��Gk
R�t1,t2�

= ��t − t2� , �66�

Gk
A�t1,t2��
i

��

�t2
+ ��k − A�t2�	 − ����t2 − t�� + k

A�t2,t���
= − ��t1 − t�� , �67�

���t − t1�
i
�

�t1
− ��k − A�t1�	 − �� − k

��t,t1��Gk
��t1,t2� = 0,

�68�

one can get the following formal expression for the lesser
self-energy:

k
��t1,t2� = − ���t1 − t�
i

�

�t
− ��k − A�t�	 + ��

− k
R�t1,t��Gk

��t,t���
i
��

�t�
+ ��k − A�t��	

− ����t� − t2� + k
A�t�,t2�� . �69�

By using this result, one can calculate the lesser self-energy
moments similar to what was done for the Green functions,

Cn
��k,T� =

1



Im� 1

�− i�n

�n

�tnk
��T,t��

t=0+
, �70�

where T and t are the average and the relative-time coordi-
nates.

Unfortunately, this approach also does not provide any
useful results for the self-energy moments. In fact, even in
the equilibrium case, one finds from Eqs. �69� and �70� the
following trivial result:

Cn
��k,T� = −

2



� d��nf���Im k

R��� . �71�

�In order to obtain this expression, one needs to use the fol-
lowing equilibrium relations: k

A���=
k
R*��� and Gk

����=
−2if���Im Gk

R���	. The result in Eq. �71� can also be directly
obtained from the equilibrium relation k

����=
−2if���Im k

R���. Unfortunately, it is impossible to get ana-
lytical results for the lesser self-energy moments from Eq.
�71�, except in the high-temperature limit when they can be
expressed in terms of the retarded self-energy moments �via
a series expansion for f���	.

Since the exact analytical results for the lesser moments
cannot be found even in the equilibrium case, one can try to
make some approximations in order to obtain them. The
standard approximation for the lesser Green function is the
generalized Kadanoff–Baym �GKB� approximation,38

Gk
��t1,t2� = − i�Gk

R�t1,t2�Gk
��t2,t2� − Gk

��t1,t1�Gk
A�t1,t2�	 .

�72�

Substitution of this result into Eq. �69� and using the equa-
tions of motion in Eqs. �66�–�68� gives the following ap-
proximate result for the lesser self-energy,

k
��t1,t2� = i�k

R�t1,t2�Gk
��t2,t2� − Gk

��t1,t1�k
A�t1,t2�	 + 2i��t1

− t2�
�nk�t2�

�t2
, �73�

or in the frequency-average time representation,

k
��T,�� = − 2i Im k

R�T,��nk�T� + 2i
�nk�T�

�T
. �74�

After summation over momentum, the last term disappears,
due to conservation of the total particle number; therefore, in
this case,

NONEQUILIBRIUM SUM RULES FOR THE RETARDED… PHYSICAL REVIEW B 77, 205102 �2008�

205102-9



Cn
��T� = 2�

k
Cn

R�k,T�nk�T� . �75�

Since the zeroth and the first retarded self-energy moments
are momentum independent, one can obtain the following
GKB result for the corresponding lesser moments:

Cn
��T� = 2Cn

R�T�nc. �76�

The GKB approximation gives good results for the Green
function moments in the case of weakly interacting systems.
Therefore, the relation �Eq. �76�	 should be approximately
valid in this case. There is one subtle issue with regard to the
GKB and DMFT. In DMFT, the self-energy is local and,
hence, momentum independent. However, the GKB approxi-
mation to the self-energy in Eq. �74� appears to be momen-
tum dependent. Hence, it is not clear how accurate the local
self-energy moments will be within this approximation, but
because the GKB corresponds to a mean-field-like decou-
pling of correlation functions for the Green function
moments,17 it is possible that the approximation remains rea-
sonable for the local self-energy, at least for weak coupling.

Thus, generally speaking, similar to the lesser Green func-
tion moment case, one cannot obtain analytical expressions
for the lesser self-energy moments. Moreover, it is even im-
possible to express these moments in terms of correlation
functions. Hence, in order to check the accuracy of the nu-
merical calculations, one can only compare the numerical
results for the moments with the numerical evaluation of the
self-energy time derivatives in Eq. �70�, which is not a strin-
gent test.

V. NUMERICAL RESULTS FOR THE FALICOV–KIMBALL
MODEL IN INFINITE DIMENSIONS

In this section, we shall use results for the local moments
obtained in Secs. III and IV to check the accuracy of the
equilibrium and nonequilibrium numerical solutions of the
Falicov–Kimball model in the limit of infinite dimensions. In
this limit, the electron self-energy is local,39 which allows
one to numerically solve the problem in both equilibrium6

and nonequilibrium cases.16–21 The case of infinite dimen-
sions is important since many physical properties of the
model are qualitatively similar as in the two-dimensional and
three-dimensional cases �see, for example, Ref. 6�.

In order to study the time-dependent properties of the
model in infinite dimensions, one needs to solve a general-
ized system of nonequilibrium DMFT equations for the
contour-ordered Green function G�t1 , t2�, self-energy
�t1 , t2�, and an effective dynamical mean-field ��t1 , t2�,

G�t1,t2� = �
k

�Gk
�0�−1 − 	−1�t1,t2� , �77�

G0�t1,t2� = �G−1 + 	−1�t1,t2� , �78�

��t1,t2� = G0imp
−1 �t1,t2;�� − G0

−1�t1,t2� , �79�

G�t1,t2� = �1 − w1�G0�t1,t2;��

+ w1�G0imp
−1 �� − U� − �	−1�t1,t2� , �80�

where all time arguments are defined on the complex
Kadanoff–Baym–Keldysh time contour �see Fig. 1�. On this
contour, the time increases from the top left point �−tmax�
along the contour to the bottom point of the imaginary axis
�−tmax− i��. In Eqs. �77�–�80�, Gk

�0��t1 , t2� and G0�t1 , t2� are
the noninteracting electron Green functions in the presence
of an external field and the corresponding local function,
defined by Eq. �78�. Since in the homogeneous DMFT case
the problem is translationally invariant, one can solve it by
studying an effective free impurity Green function
G0imp�t1 , t2 ;�� for an impurity self-consistently embedded in
the bath of all other electrons. The dynamical mean-field
��t1 , t2� �defined in Eq. �79�	 describes the effective dynam-
ics of the impurity site with no interaction; � is a chemical
potential and w1 is the average number of the f electrons per
site �for further details, see the discussion in Refs. 20 and
21�.

As mentioned in Sec. II, we shall consider the case of a
spatially uniform electric field directed along the elementary
cell diagonal, as in Eq. �5�. We also assume that the system
starts in equilibrium with an inverse temperature �, and then
a constant electric field is turned on at time t=0.

In the case of an external field, as given in Eq. �5�, the
free electron spectrum �in Eq. �7�	 has a simple momentum
dependence,

��k −
eA�t�

�c
� = cos� eaA�t�

�c
���k� + sin� eaA�t�

�c
��̄�k� ,

�81�

where

��k� = − 2t�
l

cos�akl� �82�

and

�̄�k� = − 2t�
l

sin�akl� �83�

are two energy functions. It is possible to show that in the
case of an infinite-dimensional hypercubic lattice, the joint

-tmax 0 tmax

-tmax-iβ

FIG. 1. The complex Kadanoff–Baym–Keldysh contour for the
two-time Green functions in the nonequilibrium case.
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density of states for these two energy functions has the fol-
lowing form:14

�2��, �̄� =
1


t*2ad exp�−
�2

t*2 −
�̄2

t*2� , �84�

where t* is a scaled hopping parameter connected with the
hopping t in the Hamiltonian �Eq. �1�	 as t= t* /2�d. The
momentum summation in Eq. �77� can be performed by us-
ing the joint density of states in Eq. �84�: �kFk
=�d��d�̄�2�� , �̄�F�,�̄ since in our case the noninteracting
Green function on the right hand side of Eq. �77� has simple
momentum dependence, which can be expressed in terms of
the two energy functions in Eqs. �82� and �83�. The two-
dimensional energy integration can be performed by using
Gaussian integration.16,18 We typically use about 100 points
per dimension.

In addition, one needs to choose the proper discretization
of the time contour in Fig. 1. The results strongly depend on
the discretization step when the step size is not small enough.
Choosing a given discretization and a tmax determines the
matrix size for the given calculations. We typically work
with general complex matrices with size of 900�900 up to
5700�5700.

A. Equilibrium case

First, we consider the equilibrium case when there is no
external field. In this case the system of equations �Eqs. �77�
and �80�	 reduces to the equilibrium DMFT equations40 with
no average time dependence, so functions of two time argu-
ments can be replaced by corresponding functions of one
frequency, F�t1 , t2�→F���. The numerics are under good
control and one can obtain quite accurate solutions. The most
important numerical checks that can be performed arise from
a comparison of the spectral moments directly calculated by
integrating the real-frequency solutions, with results for the
moments that can be exactly determined via parameters of
the model for the retarded moments or by an evaluation of
the relevant correlation functions using a Matsubara fre-
quency formalism for the lesser moments.

Now, we show how to calculate the required correlation
functions in Eqs. �34�–�37� using the Matsubara Green func-
tions. One starts from the imaginary time-ordered Green
functions,

Gij��� = − �T�ci���cj
†�0�� , �85�

where the imaginary time-dependent operators satisfy ci���
=eH�ci�0�e−H� according to the Heisenberg representation.
Because these functions are antiperiodic on the interval
�0,�	, we employ a Fourier expansion in terms of the Mat-
subara frequencies,

Gij��� = T�
n,k

e−i�n�e−ik�Ri−Rj�Gk�i�n� , �86�

where �n=
T�2n+1� is the fermionic Matsubara frequency.
Here, the momentum-dependent Matsubara Green function
satisfies

Gk�i�n� =
1

i�n + � − ��k� − k�i�n�
, �87�

and in DMFT, the self-energy has no momentum depen-
dence.

We start by deriving the equation of motion for the Green
function in Eq. �85� and extracting the expression for the
local four-operator correlation function by evaluating the
Green function at �=0 and removing the single-particle
terms,

�f i
†f ici

†ci� =
T

U
�
n,k

k�i�n�Gk�i�n� . �88�

The correlation functions for operators on different sites,
such as �f i

†f ici
†cj�, can be found by introducing an extra term

−�ihif i
†f i with a local field hi into the equilibrium Hamil-

tonian and then evaluating derivatives with respect to hi and
taking the limit hi→0. For example, straightforward algebra
shows that

�f i
†f ici

†cj� = �T
�

�hi
+ �wi��Gij�� = 0−� , �89�

where �wi�= �f i
†f i�=nfi �see Refs. 17, 41, and 42 and the Ap-

pendix for details�. Using these identities allows us to find
explicit expressions for all of the relevant correlation func-
tions using Green functions and self-energies determined at
the Matsubara frequencies. We present the final results for
the case of the Falicov–Kimball model in infinite dimen-
sions, where the self-energy is momentum independent,

nc = T�
n,k

Gk�i�n� , �90�

�
i,j

tij�ci
†cj� = − T�

n,k
��k�Gk�i�n� , �91�

�
i,l,j

tiltlj�ci
†cj� = T�

n,k
�2�k�Gk�i�n� , �92�

�
i,l,m,j

tiltlmtmj�ci
†cj� = − T�

n,k
�3�k�Gk�i�n� , �93�

�
i

�f i
†f ici

†ci� =
T

U
�
n,k

�i�n�Gk�i�n� , �94�

�
i,j

tij�f i
†f ici

†cj� = ��
i,j

tji�f i
†f icj

†ci��*

= −
T

U
�
n,k

�i�n���k�Gk�i�n� , �95�

�
i,l,j

tiltlj�ci
†cjf i

†f i� = �
i,l,j

tiltlj�ci
†cjf j

†f j� = ��
i,l,j

tijtjl�ci
†clf j

†f j��*

=
T

U
�
n,k

�i�n��2�k�Gk�i�n� , �96�
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�
i,j

tij�f j
†f j f i

†f ici
†cj� = −

T

U2�
n,k

2�i�n���k�Gk�i�n� . �97�

We next perform the momentum summation in Eqs.
�90�–�97� to express the results in terms of local quantities,

nc = T�
n

Gn, �98�

�
i,j

tij�ci
†cj� = T�

n

�1 − �i�n + � − n�Gn	 , �99�

�
i,l,j

tiltlj�ci
†cj� = − T�

n

�i�n + � − n��1 − �i�n + � − n�Gn	 ,

�100�

�
i,l,m,j

tiltlmtmj�ci
†cj�

= T�
n
�1

2
+ �i�n + � − n�2�1 − �i�n + � − n�Gn�� ,

�101�

�
i

�f i
†f ici

†ci� =
T

U
�

n

nGn, �102�

�
i,j

tij�f i
†f ici

†cj� = ��
i,j

tji�f i
†f icj

†ci��*

=
T

U
�

n

n�1 − �i�n + � − n�Gn	 ,

�103�

�
i,l,j

tiltlj�ci
†cjf j

†f j� = ��
i,l,j

tiltlj�ci
†cjf i

†f i��* = �
i,l,j

tijtjl�ci
†clf j

†f j�

= −
T

U
�

n

n�i�n + � − n�

��1 − �i�n + � − n�Gn	 , �104�

�
i,j

tij�f j
†f j f i

†f ici
†cj� =

T

U2�
n

2�i�n��1 − �i�n + � − n�Gn	 ,

�105�

where Gn��kGk�i�n� and n��i�n�. These expressions
can then be employed to efficiently determine the lesser mo-
ments from an independent Matsubara frequency calculation.

We find, for all cases that we consider, all of the different
Green function and self-energy moment sum rules are satis-
fied to essentially as high an accuracy as we want �the delta-
function contributions to the self-energy moments must be
included to get the correct answer; this becomes complicated
for particle-hole asymmetric cases when U is large enough
for the self-energy to have developed a pole because one
needs to accurately determine the location and weight of the
pole to obtain the correct sum rules�. In some cases, we need
to use many Matsubara frequencies in the summations to
achieve sufficient accuracy or we need to have a small fre-
quency grid spacing for the real-frequency Green functions.
The sum rules hold in the case of half-filling and away from
particle-hole symmetry and they hold equally well for metal-
lic and insulating cases. As an example, we tabulate the sum
rules for a Mott insulating phase at half-filling in Table I
�retarded� and Table II �lesser�. Results for metallic cases are
similar.

B. Nonequilibrium case

In this section, we compare the numerical results for the
moments �at half-filling� with exact analytical results ob-
tained in the case when a constant electric field is turned on
at time T=0. Since we calculate the contour-ordered self-
energy, we need to extract the correct retarded quantities to
compare with the moments that do not depend on correlation
functions �which we have no independent way to evaluate�.
This is simple to do for the Green functions. For the self-
energies, care is needed. The constant term in the self-energy
in the frequency representation becomes an equal-time delta
function in the time formalism. The zeroth moment corre-
sponds to the equal-time retarded self-energy �most easily
found by taking the difference of the greater and lesser self-
energies� and the first moment is found from the first deriva-
tive. We need to carefully evaluate the derivative because we
need to remove the delta-function piece first. We handle this
instead by using linear extrapolation from finite relative
times to the vanishing relative-time limit, so we do not need

TABLE I. Retarded moments for U=3 �a Mott insulator� and 1 /�=0.1 in equilibrium. We used 200 000
positive Matsubara frequencies and 60 000 positive real frequencies with a step size of 0.0002.

U �0
R �1

R �2
R �3

R C0
R C1

R

3 �Calc.� 1.0000000005 3.1�10−17 2.7500000007 −4.2�10−16 2.2500009 2.9�10−17

3 �Exact� 1.0000000000 0 2.7500000 0 2.2500000 0

TABLE II. Lesser moments for U=3 �a Mott insulator� and
1 /�=0.1 in equilibrium. We used 200 000 positive Matsubara fre-
quencies and 60 000 positive real frequencies with a step size of
0.0002. Note how it is more difficult to get high accuracy for the
odd moments.

U �0
� �1

� �2
� �3

�

3 �Calc.� 1.0000000005 −1.5821717 2.7500000007 −5.1601698

3 �Exact� 1.0000000000 −1.5821578 2.7500000000 −5.1578586
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the data at equal times to find the derivative. More sophisti-
cated techniques would be needed to find the higher mo-
ments, but we do not need those here.

In general, the self-energy moments are satisfied to very
high accuracy even if the step size is large. Errors are often
less than 0.1%, which is much lower than what one finds for
the Green function moments �where we often need to work
hard to get errors below the 1% level18,19,21�. We can extrapo-
late the results to the limit �t→0, which produces even
higher accuracy. The results are most accurate for the con-
stant piece to the self-energy, then the zeroth moment and,
finally, the first moment. However, the results of our inves-
tigations indicate that the Green function moments are a
much more accurate test of the accuracy of the solutions than
the self-energy moments. To illustrate this, we show similar
scaling plots to those already published18 for the Green func-
tion moments with E=1 and U=3 in Figs. 2–4. One can see
that the accuracy for the self-energy is very high even though
this case is a strong Mott insulator, where the numerics re-
quire results at many different step sizes to be able to ex-
trapolate to the continuous �t→0 limit. Indeed, the accuracy
for the self-energy appears to be at least an order of magni-
tude better than for the Green function in most cases. Also,
we find, once again, that the accuracy is worse in the equi-
librium region before the field is turned on �negative times�.

VI. CONCLUSIONS

In this work, we have shown how to extend the Green
function moment sum rules to third order for both the Hub-
bard and the Falicov–Kimball models and used these mo-
ments to examine the retarded self-energy moments through
first order. Our analysis holds both for equilibrium and non-

equilibrium situations. We find for the Falicov–Kimball
model that the moment sum rules remain time independent in
nonequilibrium, which is a surprising result. In the case of
the Hubbard model, it appears that the third order moments
will be time dependent, but we cannot explicitly confirm this.
When we compare the sum rules to numerical calculations
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FIG. 2. �Color online� Constant piece of the retarded self-energy
R��→�� as a function of average time. The curves with symbols
correspond to nonequilibrium calculations with different discretiza-
tion sizes �t on the real part of the Kadanoff–Baym–Keldysh con-
tour. The dashed line is the exact result �equal to 1.5 here� and the
solid line with no symbols is the extrapolated result using a qua-
dratic extrapolation with the three smallest discretization sizes. The
parameters are E=1, U=3, and 1 /�=0.1; the calculation is done at
half-filling for both the delocalized and the localized particles. Note
how the extrapolated result is accurate to better than 0.1%.
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FIG. 3. �Color online� Zeroth moment of the retarded self-
energy C0

R�T� as a function of average time. The curves with sym-
bols correspond to nonequilibrium calculations with different dis-
cretization sizes �t on the real part of the Kadanoff–Baym–Keldysh
contour. The dashed line is the exact result �equal to 2.25 here� and
the solid line with no symbols is the extrapolated result using a
quadratic extrapolation with the three smallest discretization sizes.
The parameters are E=1, U=3, and 1 /�=0.1; the calculation is
done at half-filling for both the delocalized and the localized par-
ticles. Note how the extrapolated result is accurate to better than
0.1%.
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FIG. 4. �Color online� First moment of the retarded self-energy
C1

R�T� as a function of average time. The curves with symbols cor-
respond to nonequilibrium calculations with different discretization
sizes �t on the real part of the Kadanoff–Baym–Keldysh contour.
The dashed line is the exact result �equal to 0 here� and the solid
line with no symbols is the extrapolated result using a quadratic
extrapolation with the three smallest discretization sizes. The pa-
rameters are E=1, U=3, and 1 /�=0.1; the calculation is done at
half-filling for both the delocalized and the localized particles. Note
how the extrapolated result has high accuracy.

NONEQUILIBRIUM SUM RULES FOR THE RETARDED… PHYSICAL REVIEW B 77, 205102 �2008�

205102-13



for the Falicov–Kimball model with DMFT, we find excel-
lent agreement both in equilibrium and in nonequilibrium. In
fact, the Green function sum rules are a much better indicator
of overall accuracy than the self-energy sum rules.

The sum rules are only relevant for quantitative compari-
sons of retarded functions. In the case of lesser functions, we
are able to make comparisons of the Green function sum
rules to the relevant correlation functions evaluated with a
Matsubara frequency formalism when the system is in equi-
librium, but we cannot extend that approach to the nonequi-
librium case. We are unable, even in equilibrium, to find any
useful sum rules for the lesser self-energy. Instead, we find
just trivial relationships that arise from the definitions of
these quantities �which are well known in equilibrium and
unknown in nonequilibrium�.

In the future, we will examine how these sum rules can be
extended to inhomogeneous situations, with relevance to in-
homogeneous DMFT �and other techniques� as applied to
mutlilayered nanostructures or ultracold atomic systems in a
harmonic trap. In addition, utilizing these sum rules can al-
low one to obtain more accurate results for the high-
frequency limit of the Green functions, self-energies, and
dynamical mean fields. We will illustrate this use in another
publication, which allows one to employ a minimal number
of Matsubara frequencies yet maintain high accuracy of so-
lutions.
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APPENDIX: CALCULATION OF EQUILIBRIUM
CORRELATION FUNCTIONS USING THE MATSUBARA

FREQUENCY FORMALISM

In this appendix, we present details of the derivation of
the correlation functions in Eqs. �94�–�97�. The expression in
Eq. �88� for the first correlation function in Eq. �94� can also
be determined by introducing a fictitious field −�ihif i

†f i into
the Hamiltonian and taking derivatives with respect to hi and
then setting all hi=0. Each derivative with respect to an hi
brings down an operator f i

†f i into the operator average �plus
a correction term when the derivative acts on the partition
function in the denominator of the thermal average�. This
approach is more general than the equation of motion ap-
proach used to derive Eq. �88� and will allow us to derive
expressions for the other correlation functions in Eqs.
�95�–�97�. As shown in Ref. 42, a correlation function that
contains a product of two c-electron operators and one
f-electron number operator can be expressed in terms of a
derivative of the c-electron Green function with respect to
the fictitious field �see, for example, Eq. �89�	.

In order to explicitly calculate the fictitious field deriva-
tive of the Green function, one uses the standard trick of
writing G=GG−1G so that derivatives of G are replaced by
derivatives of G−1, which involve a derivative of the self-
energy �see Ref. 42�. Because we have added the fictitious
fields to the Hamiltonian, and they are not translationally
invariant, we lose translational invariance in the system prior
to taking the derivatives �it is restored once we set hi=0�.
Hence, we need to work in real space rather than momentum
space, and we need to allow the dynamical mean fields and
the self-energies to have a site dependence. This implies that
we can write the local Green function at site i via

Gii�i�n� =
1

i�n + � − �i�i�n� − i�i�n�
, �A1�

in the Matsubara frequency representation.
Now, consider the case where we add an h field only at

site i. Since the h field will modify nfi, the Green function
and self-energy at site i are changed by hi. What about the
Green function and self-energy on neighboring sites? By us-
ing the Dyson equation, one can show that the change in the
Green function at site j, �Gjj�i�n�, is equal to

�Gjj�i�n� = Gji��i�n��hi=0�i�i�n�Gij��i�n��hi=0. �A2�

However, Gij is proportional to the hopping t raised to the
power equal to the smallest number of hops between site i
and site j. So, for example, if j is a nearest neighbor of site i,
the right hand side of Eq. �A2� is proportional to t2

= t*2 /4d→0 as d→�. Hence, we learn that �Gjj�i�n�=0 for
j� i and large dimensions. If Gjj is unchanged, then  j is
also unchanged. This means that

� j�i�n�
�hi

� �ij . �A3�

We now show how to derive one of the off-diagonal c-f
correlation functions. We want to calculate

�
ij

tij�f i
†f ici

†cj� =
1

�
�

n
�
ij
� �

��hi
+ nfi�Gji�i�n� , �A4�

which directly follows from the definition of the operator
average and an explicit computation of the derivative �the
term multiplied by nfi arises from the derivative of the par-
tition function�. Now, we focus on the derivative term and
use the GG−1G trick,

�

��hi
Gji�i�n� =

�

��hi
�
kl

Gjk�i�n�Gkl
−1�i�n�Gli�i�n� ,

�A5�

=Gji�i�n�� �

��hi
i�i�n��Gii�i�n� , �A6�

where we used the fact that the derivative of the self-energy
was nonzero only for k= l= i. Since the self-energy is an im-
plicit function of Gii and nfi, one can compute the derivative
of the self-energy with respect to the field by using the chain
rule and re-expressing in terms of derivatives of the self-
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energy with respect to the Green function and the f-electron
filling. The algebra is quite long and is contained in Ref. 42.
The end result is that

Gii�i�n�� �

��hi
i�i�n�� + nfi =

i�i�n�
U

. �A7�

Plugging this result into Eq. �A6� and then converting the
summation over i and j to a summation over momentum
produces Eq. �95�.

The only equation that requires some more formal devel-
opment is Eq. �97� because it involves two f-electron density
operators and, hence, derivatives with respect to two h fields.
By using the fictitious fields, one can immediately show that

�
ij

tij�f j
†f j f i

†f ici
†cj� = �

ij

tij� �

��hj
+ nf j�

�� �

��hi
+ nfi�Gji�� = 0−� . �A8�

All the terms in this expression, except the term proportional
�2Gji /�hj�hi, can be expressed in terms of the Green function
and self-energies by using the results above. In order to find
the second derivative of the Green function, one can show

�similar to the case of the first derivative� that in the limit of
infinite dimensions,

� �2Gji�i�n�
�hj�hi

�
h=0

=
�

�hj
��Gii�i�n�Gji�i�n�

�i

�hi
��

h=0

= Gii�i�n�Gjj�i�n�Gji�i�n�� � j

�hj

�i

�hi
�

h=0

+ Gjj�i�n�Gji�i�n�� �2i

�hj�hi
�

h=0
. �A9�

The last term in this equation is equal to zero since the sec-
ond derivative of the self-energy �2i�i�n� /�hj�hi vanishes.
The argument is elementary. Note that � j /�hj is a function
of Gjj and  j. If we now take a derivative with respect to hi
when i� j, the derivative must vanish because the derivative
of Gjj and  j with respect to hi is zero. Therefore,

� �2Gji�i�n�
�hj�hi

�
h=0

= Gii�i�n�Gjj�i�n�Gji�i�n�� � j

�hj

�i

�hi
�

h=0
.

�A10�

Evaluating the derivatives explicitly and simplifying the final
result then yields Eq. �97�.
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