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Abstract

 Strongly correlated materials can be tuned to pass 
through a metal-insulator transition as a function of 
doping, pressure, or temperature.  This high tunability 
makes them strong candidates for use in so-called “smart 
materials” that exhibit tunability of their properties.  In 
this Capabilities Application Project (CAP) Phase II 
project we used the Arctic Region Supercomputing Center 
(ARSC) Opteron computer (Midnight) to exactly solve for 
the nonlinear response of these materials to a strong 
electric field.  Our computational algorithm breaks into 
two portions, one serial and one parallel; the serial part 
does not scale while the parallel part scales perfectly with 
the number of compute nodes.  The code is transportable 
having been run on a wide variety of machines with high 
efficiency and requiring only FORTRAN, LAPACK and 
BLAS.  The main bottlenecks that determine how large a 
system can be simulated stem from the memory per node 
on the machine, and the total computational time 
available.  We found that the performance on Midnight 
was excellent for large jobs (where the executable size 
was larger than 4GB) due to the fact that the job could be 
run with shared memory on one board and fewer 
processors.  Doing so required simply using the proper 
calling protocol within Message Passing Interface (MPI) 
to exclusively share memory within the same 
motherboard.  Midnight also showed improved 
performance over other machines in the 2GB–4GB range 
for the executable because each processor can use up to 
4Gb memory without any sharing, and many other 
machines require sharing of memory when larger than 
2GB.   

1.  Introduction 

 In this work, we examine how a strongly correlated 
material responds to the turning on of a large electric 
field.  Ohm’s law[1] describes the steady-state response of 

materials in the linear regime, where the current is 
proportional to the field (the coefficient being the 
conductivity); here we are interested in what happens as 
the field is made larger—so large that the linear-response 
approach breaks down—and we are interested in 
understanding the short-time transient behavior before the 
system reaches its steady-state response.  The underlying 
theory and formalism for treating this nonequilibrium 
quantum statistical mechanics problem was developed 
over 40 years ago[2,3].  Modern computers now allow 
these systems to be solved exactly.  In this work, we 
report on a CAP that utilized the ARSC Sun Opteron 
machine (Midnight) to solve these equations for a few 
very large cases.  In total, about 600,000 CPU hours were 
used on the project over about a six week period.   
 The nonlinear response of a material is important 
because it is often used in devices to achieve specific 
goals, such as amplification of a signal, fast switching, 
sensing of external fields or chemical species, etc.  As we 
move toward developing tunable electronics, we need to 
understand how the device properties can be tuned, and 
what effect that has on the nonlinear behavior.  Strongly 
correlated materials may play an important role in such 
“smart electronics” devices, because they often can show 
high tunability of their properties, especially when they 
are close to a Mott metal-insulator transition.  In addition, 
large fields are common across a device as electronics 
move into the nanoscale.  When a feature size is on the 
order of 100 nm, a potential difference of 1 V produces an 
electric field of E 107V/cm over the feature area.  Such a 
large field will cause nonlinear effects.  Finally, the 
military is interested in the robustness of electronics 
devices to large pulsed fields that can arise from natural 
sources like lightning, or from man-made sources like 
those employed in electronic warfare.  These high energy-
density short-time pulsed fields may be difficult to filter 
out of a device and can cause the device to “burn out”.  
Such effects can also be treated within our transient 
response  formalism,  but  we  concentrate  on  a  constant 
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electric field turned on at a specific time in this initial 
phase of our work.  Strongly correlated electron materials 
require a full quantum-mechanical treatment of the 
mutual electron-electron repulsion in determining how the 
material responds to external perturbations; in 
conventional materials, we can simply assume that an 
electron moves in the average background field generated 
by the other electrons.  This average background 
approach is used in the so-called band-theory which has 
been highly successful in describing many real-materials 
properties.  But as the electron-electron interactions are 
made stronger relative to the kinetic energy of the 
electrons, the electron correlations need to be treated 
properly; this is necessary in only a small subset of 
materials, but those materials often have interesting 
properties for use in devices.  Hence electrons will not be 
treated in an average way, but instead we need to take into 
account where the electrons are and how they move as 
every other electron moves.  This adds significant 
complexity to the quantum-mechanical treatment of the 
problem.  It also allows new and exciting physical results, 
such as the existence of a metal-insulator transition as the 
interaction between the electrons grows; this transition is 
called the Mott-Hubbard transition and the insulating 
phase is a Mott insulator (to distinguish it from the 
ordinary band insulator).  It occurs when there is on 
average one electron per lattice site and the electron-
electron interaction is so strong that two electrons cannot 
sit on the same lattice site at the same time—then they 
crystallize into a frozen state where electron motion is not 
allowed and the material becomes an insulator.   
 The simplest model which takes into account strong 
electron-electron correlations is the Falicov-Kimball (FK) 
model[4].  This model has two kinds of electrons: itinerant 
electrons and localized electrons.  They interact by a 
Coulomb repulsion only when they both occupy the same 
unit cell of the lattice.  If the number of itinerant electrons 
plus the number of localized electrons is equal to the 
number of lattice sites, then the system will undergo a 
metal-insulator transition as the Coulomb repulsion is 
increased because the electrons become frozen at their 
lattice sites, unable to move because their motion involves 
a double occupancy.   

2.  Formalism and Numerical Algorithm

 We consider the FK model in the presence of an 
external electric field that is spatially uniform, but time-
dependent, and can have an arbitrarily large amplitude.  
Such a pure time-dependent electric field does not 
rigorously satisfy Maxwell’s equations, since a time 
varying electric field cannot be spatially uniform and a 
time varying electric field generates a coupled time-
varying magnetic field.  But both of those effects are 

small if the time dependence is smooth or slow, and the 
corrections can be added later via the so-called gradient 
expansion, so we ignore them here.   
 The FK model has two kinds of electrons: itinerant 
electrons with creation and annihilation operators †

ic  and 
ci for conduction electrons at site i and localized electrons 
with the corresponding operators †

if  and fi.  The FK 
Hamiltonian is  

† † † †0 ij i j i i i i i i
ij i i

t c c U c c f f c c , (1) 

where tij is the nearest-neighbor hopping matrix, U is the 
on-site repulsion between c and f electrons, and  is the 
chemical potential of the conduction electrons.  The f-
electrons are localized and do not move (hence they do 
not interact with the electric field).  We choose them to 
occupy half of the lattice sites.  We also choose the 
conduction electrons to occupy half of the lattice sites (
= U/2).  This is called the case of half-filling, and it can 
lead to a metal-insulator transition if U is large enough, 
because the conduction electrons will then avoid the 
lattice sites occupied by the f-electrons, and since there 
will be no empty sites left over that allow them to move, 
the entire system will be “frozen” and cannot conduct 
electricity.
 The uniform electric field E(t) is described by a 
vector potential A(t)in the Hamiltonian gauge where the 
scalar potential vanishes:  

1 t
t

c t

A
E . (2) 

We assume that the vector potential A(t) is smooth 
enough, that we can neglect the magnetic field normally 
associated with the time-varying electric field.   
 The electric field is introduced into the Hamiltonian 
in Eq. (1) by the so-called Peierls’ substitution[5,6]

expij ij j i

ie
t t t

c
A R R ; (3) 

interband transitions are neglected because there is only 
one band that couples to the electric field (the hopping 
matrix tij is nonzero only for nearest-neighbor sites i and 
j).  The field-dependent Hamiltonian (A) is then the 
field-free Hamiltonian, with the hopping term replaced by 
the Peierl’s substituted hopping term.   
 We examine the case of a d-dimensional hypercubic 
lattice in the limit of large spatial dimensions d
because the full quantum-mechanical many-body problem 
simplifies for this case.  The electron self-energy becomes 
local (i.e., has no momentum dependence), which greatly 
simplifies both the formalism and the numerical 
calculations.  This approach is called dynamical mean-
field theory (DMFT)[7] and provides one of the known 
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ways to exactly solve the many-body problem.  The 
simplest electric field to consider (for computation) is one 
that lies along the unit cell diagonal[8]:

1,1, ,1t A tA . (4) 

After the Peierls’ substitution, the “band-structure” in the 
electric field becomes  

2 cos l
l

l

e t
t a

ck

A
k , (5) 

with a the lattice spacing which we will take to be one.  
With our choice for the electric field along the diagonal, 
the Peierl’s substituted band structure becomes  

cos sin
eA t eA t

c ck k k , (6) 

with generalized energy functions  

cos l
l

t
k

d
k  (7) 

and

sin l
l

t
k

d
k . (8) 

and t* being the renormalized hopping parameter:  
/ 2t t d  in the limit d [7]; t* will be used as our 

energy unit.   
 Important quantities, like the current flowing through 
the system, involve a summation over momenta of 
functions of  and .  Since the momentum space is 
infinite-dimensional, it is not practical to perform an 
integration directly over the Brillouin zone.  Instead, the 
summations are performed by calculating a joint density 
of states for the two energies in Eqs. (7 and 8) 

2 , k kk
; the joint density of 

states in the limit of the infinite dimensions[9] satisfies:
2 2

2 2 2 2

1, exp
t t t

.

 So, the summation over the infinite-dimensional 
Brillouin zone is transformed into a two-dimensional (2D) 
Gaussian weighted integral.  In our calculations, the most 
important integrals we need to evaluate are matrix-valued 
integrals, which we evaluate via discrete Gaussian 
quadrature in each of the two energy dimensions.   
 In this work, we focus our computational efforts on 
determining the so-called Green’s functions.  These 
objects measure how easy it is to create an electron at a 
particular time, and destroy it at a later time.  In 
nonequilibrium problems, particularly those that include 
the transient response, these Green’s functions depend on 
two time variables, because the system is not time-

translation invariant due to the field being turned on at a 
particular time.  We consider two Green’s functions 
which determine all of the properties of the system:  (i) 
the retarded Green’s function, which measures how the 
quantum-mechanical states are distributed in energy, and 
(ii) the lesser Green’s function, which measures the 
statistical occupancy of those quantum states as a function 
of time.  Both Green’s functions can be determined from 
the so-called contour-ordered Green’s function, which is 
defined on the Kadanoff-Baym-Keldysh contour shown in 
Figure 1.  The definition of the contour-ordered Green’s 
function is  

0 †, Tr c c
ij t i j

i
G t t e c t c t , (9) 

where  = Tr exp (0)  is the initial equilibrium 
partition function, the Fermionic operators are expressed 
in the time-dependent Heisenberg picture (i.e., the 
temporal evolution is determined by (A)), the symbol 

c
t  denotes time ordering along the Kadanoff-Baym-

Keldysh contour, and = 1/T is the inverse temperature 
of the system prior to the field being turned on.  In this 
case, the lesser Green’s function is found when t lies on 
the lower real branch and t  lies on the upper branch of the 
Kadanoff-Baym-Keldysh contour.  The retarded Green’s 
function can also be determined, but is somewhat more 
complicated to write out.  The procedure to numerically 
calculate the Green’s functions is complicated, and has 
been sketched in References 10–14.  In this work, we 
describe in detail the numerical and computational aspects 
of our algorithm.   

Figure 1. Kadanoff-Baym-Keldysh integration contour for the 
time variables.  The time-domain cutoffs are symmetric at 

±tmax.  The direction for the integration of the line integral is 
indicated by the arrows.  The dashed line schematically 
shows where we typically turn on the electric field, as 

represented by the vector potential; it is commonly turned on 
when the time is equal to tmax + 5.  Note that for the lesser 
functions, we choose the first time argument on the upper 

real time branch, and the second time argument on the lower 
real branch.  When the contour is discretized, we use a step 
spacing of t along the real axis, and a step size of 0.1 along 
the imaginary axis.  All calculations presented here have  = 
10 corresponding to one hundred steps along the imaginary 

axis.
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 The dynamical mean-field theory equations are a set 
of nonlinear equations that must be solved self-
consistently.  The system of equations is solved by 
iteration, which turns out to be quite robust.  We simply 
start from some initial guess for the self-energy (usually 
chosen to be the equilibrium self-energy), calculate the 
local Green’s function by solving the field-dependent 
Dyson’s equation, determine the effective medium by 
removing the self-energy from the local Green’s function, 
solve an effective time-dependent impurity problem in the 
effective medium for the local Green’s function and 
extract the local self-energy for the impurity.  This 
procedure is then iterated until it converges.  The most 
intensive piece of the iteration is the calculation of the 
local Green’s function from the local self-energy.  This is 
because it is calculated via an integral over the 2D joint 
DOS and the integrand is a matrix valued function that 
requires one matrix multiplication and one matrix 
inversion to determine it.  Using approximately 100 
integration points for each dimension requires 10,000 
inversions and matrix multiplications for each iteration, 
and it naturally parallelizes and can be coded to scale 
essentially linearly with the number of processors.   
 The first numerical issue that we need to resolve is 
that we need to find a way to discretize the continuous 
matrix operators so they can be represented as discrete 
matrices and we can use linear algebra packages to 
perform operations on them.  We do this by choosing a 
step size t on the top two branches of the contour, and a 
step size = 0.1 on the imaginary axis.  The imaginary 
branch always has a fixed step size of 0.1, while we vary 
the step size on the upper and lower branches from 0.1 to 
0.0143.  We typically take the time cutoff at tmax = 20.  
The matrices are general complex matrices, which range 
in size from 900  900 up to 5,700  5,700.  The 
computational time grows like the cube of the linear 
dimension of these matrices while the size of the 
executable grows like the square.   
 Next we need to efficiently evaluate the two-
dimensional Gaussian-weighted matrix-valued integral.  
This is handled by using Gaussian integration along each 
of the dimensions.  We take the average of the integral 
with 54 points and 55 points in each dimension.  This 
results in 54  54 +55  55 = 5,941 quadrature points for 
each iteration (see Reference 10 for a discussion of the 
accuracy and limitations of the Gaussian integration 
scheme).   
 Finally, we use LAPACK and BLAS routines for the 
required matrix inversions and matrix multiply 
operations.  The matrix inversions are the most time-
consuming parts of the algorithm.  We need 5,941 
inversions to determine the local Green’s function for 
each iteration, which is followed by six more inversions 
to solve the impurity problem, which completes the 

DMFT iteration; typically between 10 and 100 iterations 
are needed to achieve a self-consistent solution.   
 As can be quickly seen, this algorithm has a clear 
parallelizable part (the matrix inversions for each 
quadrature point), and a clear serial part (solving the 
impurity problem), since the inversions for the impurity-
problem solver must all take place sequentially.  Hence 
we expect the algorithm to be the combination of a fixed 
time plus a time that scales inversely with the number of 
processors.  The algorithm is also easily parallelized in 
the master-slave format.  When examining strong scaling, 
the serial part will not scale, but the parallel part will, if 
the number of slave nodes is chosen so that the slave 
nodes are all active most of the time.   
 Once the DMFT algorithm has been solved, then we 
can determine the properties of the system as a function of 
time.  One interesting quantity is the current density that 
is driven by the external electric field:

sin , , ,l
l l

e Tet
T i G t t

cd
k k

k

A
j k , (10) 

expressed in terms of the momentum-dependent lesser 
Green’s function, with each vector component identical 
when the electric field lies along the diagonal.   
 The current response of a noninteracting metal turns 
out to be oscillating even from a dc electric field.  This 
occurs because the electron accelerates in the first 
Brillouin zone until it reaches the zone boundary, where it 
Bragg reflects and is moved to the opposite side of the 
Brillouin zone where it is accelerated again.  This periodic 
motion creates an oscillating ac current with the period of 
the oscillation determined by the strength of the electric 
field.  This phenomenon is called a Bloch oscillation[15–17],
and it should be seen in any material that is free enough of 
defects and other sources of scattering.  No conventional 
metal has ever been grown that has small enough 
scattering to exhibit Bloch oscillations.  Instead, the 
scattering occurs so rapidly, that the steady-state current 
is a constant, which increases linearly with the electric 
field until nonlinear effects take over.  Bloch oscillations 
have been seen in semiconducting heterostructures[18].
 Bloch oscillations are also seen in DMFT[13], with a 
time-independent electric field (E constant and 
A(t) = Ect for t < 0)[8] 

sin
eA t df

j T d
c d

, (11) 

producing an oscillating current density [ ( )is the 
noninteracting density of states, which is equal to the 
integral of 2 over  and f( ) =1/1 + exp( ) is the 
Fermi-Dirac distribution].  The frequency of the 
oscillation is Bloch = eE/  and is called the Bloch 
oscillation frequency.  These oscillations survive in the 
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presence of scattering (but are damped) when the field is 
large enough that the relaxation time due to scattering is 
significantly larger than the Bloch oscillation period.  
They even survive in the Mott insulating phase, but they 
become irregular oscillations that are more sharply 
damped.  The frequency of oscillation is undoubtedly too 
high for the Bloch oscillations to be directly observed 

Bloch > 1012 Hz for E = 1).   

3.  Scaling to Large Numbers of Processors 
for Large Jobs  

 This code was originally tested in a CAP Phase II 
project in 2006 on the Cray XT3 (Sapphire) and since 
then has been run on National Aeronautics and Space 
Administration’s (NASA’s) Columbia supercomputer as 
part of a National Leadership Computing System 
initiative.  Originally, the code did not scale well past 
about 900 processors due to a many-to-one 
communications bottleneck, but that bottleneck was 
removed by using what we call a recursive binary gather 
operation[12], where each slave node accumulates results 
of the quadrature locally, then half send the results to the 
other half for accumulation and that is repeated until all 
the accumulated results lie on one slave node, which then 
transfers them to the master.  The code has achieved a 
sustained performance in excess of 60% of the peak 
operating speed on the 2,048 subcluster of Columbia at 
about 8 Teraflops[19].  This is all done with conventional 
FORTRAN compilers, and LAPACK and BLAS libraries; 
no assembly language coding is needed.   
 In spite of these successes, there were challenges in 
running the code for larger matrices (the matrices used are 
general complex double precision matrices).  Larger 
matrices are needed if one wants to go out further in time, 
or if one needs a smaller discretization time step t along 
the real axis.  The latter is needed for the Mott-insulating 
cases, where small step sizes are critical to maintaining 
the overall precision of the calculation.  On the original 
runs on Engineer Research and Development Center’s 
(ERDC’s) XT3 machine, the memory size per node was 
limited at 1GB.  Since we need to store seven general 
complex matrices during the calculations, the executable 
became too large when the matrix size was larger than 
about 2,100  2,100.  On NASA’s Columbia machine, the 
memory per node is 2GB, and the machine is a shared 
memory machine, so larger size jobs can be run at the 
expense of using fewer processors.  There, we were able 
to run 3,300  3,300 jobs without any sharing of memory, 
but larger jobs, which required shared memory began to 
slow down due to the need for the memory to be shared 
across different motherboards.  ARSC’s Midnight 
machine allows us to push the limit much further.  
Midnight is a SUN Opteron machine with two kinds of 

compute nodes: the Taurus nodes (X2200) are quad core 
processors with 16GB shared memory per node and the 
Galaxy nodes (X4600) are sixteen-fold core processors 
with 64GB shared memory per node.  The throughput per 
core for this code is somewhat higher for the Taurus 
nodes than the Galaxy nodes.  This architecture has 
allowed us to easily run 4,100  4,100 and 4,900  4,900 
cases which both fit within the 4GB limit.  We even were 
able to run two cases with 5,700  5,700 matrices which 
has not been attempted with this code on any other 
machine.  In fact, we started to run into runtime 
limitations more than memory limitations on Midnight, 
i.e., the processor time was becoming too long for the 
jobs to be completed in the real time allowed for the CAP.   
 When we performed a scaling analysis of this code 
on the ERDC XT3 and the NASA Columbia machines, 
we saw excellent strong scaling results, where the 
compute time for the parallel part of the code decreased 
linearly with the number of processors, while the serial 
part remained the same.  On the ARSC Opteron, however, 
we saw more run to run and processor number to 
processor number variations in the code when we 
performed a scaling analysis and we found the raw run 
time for smaller jobs was not as fast as on other machines 
(see Figure 2).  This is because these codes allocate a 
fixed amount of memory per processor (rather than a 
fixed amount for a problem size).  Therefore as the 
problem size increases, the per-processor memory 
requirements also increase, no matter how many 
processors are used, so machines with large memory 
“near” the processor, such as Midnight, will perform best 
on large problems.  On Midnight, we were able to use the 
medium memory model and options to the PBS batch 
script to map three MPI tasks (instead of four) to a four-
core x2200 node enabling us to run with more than 4GB 
of memory per core at the expense of leaving one core per 
node idle.  (Only the 5,700  5,700 case, requiring 4.5GB 
per core, needed this technique.)  
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Figure 2.  Scaling plot of the inverse of the total 
computational time as a function of the number of Taurus 

(four-way) processors used on Midnight.  The problem size is 
2,500 × 2,500 in panel (a) and 4,100 × 4,100 in panel (b).  If we 

had linear scale up of the algorithm, the inverse 
computational time would scale linearly, as indicated by the 

dotted line.  But because there is a serial part of the code, the 
scale-up is not as fast.  Nevertheless, we achieve greater 

than 70% of linear scale-up with 760 processors.  Note 
however, that there is significant scatter in the data.  We 

were not able to trace the source of this run-to-run noise with 
large numbers of processors, or the poor performance in 

extending to 1,000 processors. 

 But when we went to the larger jobs, we began to 
find a significant increase in speed on Midnight due to the 
fact that for all jobs we could keep the executable within 
memory on a single motherboard by using the proper PBS 
options for mapping MPI tasks to processors to 
exclusively place the given number of processors on the 
particular nodes, and using the remaining memory as 
shared memory for the job (only the 5,700  5,700 case 
required using shared memory, as the executable size was 
about 4.5GB).  An example of this speed up is shown in 
Table 1 which compares the speeds on Midnight and 
Columbia for large memory jobs.  Note how the Altix 
performs better than both the XT3 and the Opteron for 
small jobs, primarily due to the larger total cache size 
(and the slightly larger Gflop rate of its processors), but 
because the XT3 is not a shared memory machine, once 
the executable becomes too large it cannot be run there.  
The Altix sees a significant slowdown once the machine 

needs to share memory outside of the single motherboard, 
but because the Opteron has so much more memory on a 
node, its computational time continues to grow almost as 
the cube of the matrix dimension, as expected.  This 
illustrates the significant benefits of Midnight for large 
memory jobs.   

Table 1. Total computational time for one iteration for 
different size problems on different supercomputers 

(in hours) 

Job size 
ARSC 

Opteron 
NASA 
Altix 

ERDC
XT3

900  900 12.5 6 10 

4,100  4,100 1,200 1,925 X 

4,900  4,900 2,250 10,500 X 

5,700  5,700 4,200 X X 

4.  Results

 The quantum-mechanical problem that we are 
solving requires us to determine results based on 
continuous matrix operators.  Since such operators cannot 
be described on a computer, we discretize the operators 
into discrete matrices and perform calculations directly on 
the discrete matrices.  In the end, however, we need to be 
able to take the limit where the discretization size goes to 
zero, otherwise our results will have quantitative errors in 
them.  Hence, we need to scale our results to t  0.  
This is done by performing calculations at various 
different discretization step sizes and then fitting the 
results of a set of different step sizes via a Lagrangian 
interpolation formula and then extrapolating the 
interpolation formula to t  0.  In order for this 
procedure to work robustly, we need to have good quality 
data that has a small enough step size that it is in the 
scaling regime.  As the strength U of the interactions 
between particles increases, the needed step size to get 
into the scaling regime is reduced.  As the strength of the 
field E is reduced, the needed step size is also reduced.  
Since calculations for a given time domain require more 
steps, and hence larger matrices, as the step size is 
reduced, the calculations can rapidly go beyond what is 
available in current computer resources.  Indeed, this is 
typically the limiting factor we have in our calculations.  
Usually the limitation arises from the executable memory 
being too large, but now we are starting to see limitations 
occur due to the runtime being too long.   
 We have two ways to independently check the 
quality of the calculations and the scaling hypothesis.  
The first is by examining the current as a function of time.  
We know that the current vanishes for times before the 
time when the electric field is turned on, but the 
calculation for a given discretization step size always 
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shows a nonzero current.  We know the scaling 
hypothesis is working well when the scaled current is zero 
for those early times.  The second involves examining the 
zeroth and second moment of the spectral function.  These 
moments satisfy known exact sum rules.  We can 
calculate them from our Green’s functions by examining 
the equal time Green’s function values for the zeroth 
moment and the equal time second derivative for the 
second moment.  By comparing the exact results to the 
scaled results we also can gauge the quality of the scaled 
answers.  The runs that we performed on Midnight were 
important to the cases of transport in Mott insulators, 
because those cases require small step sizes for good 
computational accuracy, and the size of the matrices 
needed can grow to be quite large.   
 An example of what we were able to achieve with the 
CAP work is shown in Figure 3.  In this plot, we show the 
equal time retarded Green’s function, which should equal 
1 for all times.  The raw data for different step sizes are 
plotted with different symbols and colors.  Note how poor 
the large step size results are, indicative of the difficulty 
in obtaining good results for the Mott insulator (here we 
have E = 1 and U = 3).  In fact, with data down to t = 
0.02, any extrapolation produced results with 
unacceptably large errors.  It is only after the last two data 
sets were included that one could achieve reasonably 
good scaled results.   

Figure 3. Zeroth moment as calculated for different step sizes 
and the extrapolated results for the Mott insulator with E =1 
and U =3 (the field is turned on at time t =0).  Previous to the 
CAP, we did not have the last two data sets.  The results for 
larger step sizes did not extrapolate well, and we were left 

with errors on the order of 20–50%.  After running the smaller 
step size cases, we were able to get into the scaling regime 
(the extrapolated results scaled quadratically with the last 
three data sets).  In this case the average error is less than 

5%. 

 We plot similar results for the curvature (or second 
moment) of the retarded Green’s function in Figure 4.  
Here one can see a much more dramatic effect due to the 
higher quality data.  When we include the smallest t data 
in the extrapolation, we achieve an error of less than 8% 
after the field is turned on, while the error would have 
been about 100% if we were stuck with just the t = 
0.02data (where results could not be scaled).   

Figure 4. Plot of minus the second moment of the local 
retarded Green’s function at different times (E =1 and U =3).  
Note that the electric field is turned on at the origin in this 
plot.  The exact moment is equal to 2.75, and the curves 

with different symbols correspond to different values of t.
The solid line is the extrapolated result using a quadratic 

Lagrange interpolation formula for the extrapolation from the 
last three data sets.  One can see that as the step size is 

made smaller, the moment comes closer to its true value, 
and the extrapolated result is quite accurate (better than 8% 

on average). 

 These results show once again how some of the more 
extreme cases that we considered needed precisely the 
resources that are available with the ARSC Opteron 
cluster, which allows large memory jobs to be run 
efficiently.
 Now that we have benchmarked our results against 
exact sum rules, we can show some similar results for the 
current.  Figure 5 depicts the results for the current of a 
Mott insulator with E = 1 and U = 3.  The data is for the 
same time steps as in the moment figures, and the cyan 
colored curve is the extrapolated current.  Note how it 
essentially vanishes while the field is off as it must, while 
it develops irregular oscillations for larger U.   
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Figure 5. Current for different time steps with E = 1 and U = 3.  
Note how the raw data has significant current before the field 
is turned on, but after extrapolating, because the data does 

scale, we are able to achieve correct physical behavior, 
where the current vanishes while the field is off.  The current 
displays quite irregular oscillations that last for a relatively 

long period of time. 

 In total we ran eleven cases of size 4,100  4,100, 
three cases of size 4,900  4,900, and two cases of size 
5,700  5,700.  While a few runs were completed on the 
Galaxy (sixteen-way) nodes, most work was completed 
on the Taurus (four-way) nodes.  For the biggest jobs, we 
ran on 760 processors using additional memory from 252 
processors, which essentially utilized all of the Taurus 
nodes of Midnight.  Each of these jobs provided important 
results that either allowed us to go much further out in 
time than we had been able to do before or which allowed 
us to go to much smaller step size which moved us into 
the scaling regime and allowed our results to be scaled.   

5.  Conclusions

 In this work, we presented a summary of a CAP 
phase II project on the ARSC Opteron cluster named 
Midnight.  We ran a transportable and efficient code that 
solves for the nonequilibrium response of a strongly 
correlated material to a large electric field.  This code 
performed extremely well on Midnight for the very large 
jobs that we needed to make runs for to be able to 
complete the study of a number of important cases.  The 
large memory on each motherboard and the ability to use 
MPI to exclusively select processors on specific 
motherboards allowed us to be able to efficiently run the 
code, when it ran into severe memory limitations on other 
supercomputers.  In this sense, the architecture of 
Midnight was well utilized for being able to complete 
these large and demanding computations.   
 From a science standpoint, the ability to solve and 
understand the nonequilibrium response of a Mott 

insulator is a long-standing problem that has now been 
solved.  This work is providing the first new results in this 
area, but much more work is needed to be completed 
before a full understanding of the system can be achieved.   
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