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A review of ion confinement in Penning traps and discussion of a variety of equilibrium states, including 2D Coulomb crystals
(ionic Wigner crystals), can be found in [1–3]. A number of authors have theoretically analyzed and discussed the prospects of
using 2D Coulomb crystals for quantum information and computation [4–9]. The engineered Ising interaction, which we report
here, builds on our previous experimental work using 2D Coulomb crystals for high-fidelity quantum control [10–14]. Below
we discuss some details of this new capability.

I. SPIN INITIALIZATION, CONTROL, AND MEASUREMENT

Reference [11] gives a detailed discussion of our spin initialization, control, and measurement capabilities with planar ion
arrays in Penning traps. Here we briefly summarize some of that discussion, emphasizing aspects relevant for the measurements
reported here. Figure 1 shows the relevant 9Be+ energy levels. We use the valence electron spin states parallel |↑〉=

∣∣mJ =+ 1
2

〉
and antiparallel |↓〉 =

∣∣mJ =− 1
2

〉
to the applied magnetic field of the Penning trap as the two-level system or qubit. In the

4.46 T magnetic field of the trap, these levels are split by approximately Ω0 = 2π× 124 GHz. The 9Be+ nucleus has spin
I = 3/2. However, we optically pump the nuclear spin to the mI = +3/2 level [15], where it remains throughout the duration
of an experiment. The ions are Doppler laser-cooled to a temperature ∼ 1 mK [16] by a 1 MHz linewidth, 313 nm laser tuned
approximately 10 MHz below the |↑〉 →

∣∣2P3/2 mJ =+3/2
〉

cycling transition. Spins in the |↓〉 state are efficiently optically
pumped to the |↑〉 state by a laser tuned to the |↓〉 →

∣∣2P3/2 mJ =+1/2
〉

transition. The repump beam and the main Doppler
laser cooling beam are directed along the magnetic field (ẑ-axis). Powers are a few milli-Watt with laser beam waists of ∼ 1 mm.
In addition, a weak Doppler laser cooling beam (∼ 40µm waist) directed perpendicularly to the ẑ-axis directly Doppler cools the
perpendicular degrees of freedom. A typical experimental cycle starts with 10 ms to 20 ms of combined Doppler laser cooling
and repumping. The repump laser remains on for another 3 ms after the Doppler cooling laser is turned off. The fidelity of the
|↑〉 state preparation is estimated to be very high (� 99.9%) [11].

Low-phase-noise microwave radiation at 124 GHz is used to rotate the spins through the magnetic dipole interaction ĤB =

gµB ∑i�Bµ(t) ·
(
�̂σi/2

)
, where �Bµ(t) is the applied microwave field (predominantly perpendicular to ẑ), g � 2 is the electron g-

factor, and µB is the Bohr magnetron. The fidelity of a π-pulse was measured to be greater than 99.9% in a random benchmarking
experiment [11]. The microwave source consisted of an agile 15.5 GHz source followed by an amplifier multiplier chain with
150 mW output power at 124GHz. The 15.5 GHz source is obtained by mixing, with a single-side-band mixer, the output of
a 15.2 GHz dielectric resonator oscillator (DRO) with the output of a 300 MHz direct digital synthesizer (DDS) that is under
field programmable gate array (FPGA) control. On/off switching of the 124 GHz microwaves is done at 15.5 GHz before the
amplifier multiplier chain. The microwaves are transported to the ions down the bore of the magnet with a rigid waveguide
and directed onto the ions with a horn located between the ring and endcap electrodes of the trap. With this arrangement
the microwave hardware does not block optical access along the magnetic field axis, enabling imaging of the ion resonance
fluorescence scattered along the magnetic field (top-view image — see III). We obtain π-pulses of 70µs duration with the
150 mW output power of the amplifier multiplier chain and the setup described here. The measured spin-echo coherence
duration (T2) is ∼ 100 ms.

At the end of an experimental sequence we turn on the Doppler cooling laser and make a projective measurement of the ion
spin state through state-dependent resonance fluorescence. With the Doppler cooling laser on, an ion in the |↑〉 state scatters
∼ 107 photons/s while an ion in |↓〉 is dark. For the spin precession measurements reported here we performed a global spin-state
detection. Specifically we detected, with f/5 light collection and a photomultiplier tube, the resonance fluorescence from all the
ions in a direction perpendicular to the magnetic field (the side-view). For detection periods of ∼ 50 ms the detection fidelity is
high, typically limited by quantum projection noise. Here we used short detection periods of ∼ 500µs, from which we would

2

detect ∼ 1 photon for each bright state |↑〉. Typically, each experiment was repeated ∼ 100 times and averaged, resulting in a
few percent uncertainty due to shot noise in the measurement of P(↑).

The spin-precession signal used to benchmark spin-spin coupling in the manuscript relied on a global spin-state measurement
via side-view fluorescence collected on a photo-multiplier tube. In the future, we anticipate that time-resolved top-view images
such as that shown in Fig. 1 will be used to obtain the spin state of individual ions. As discussed in the manuscript, ion crystal
rotation at ωr is phase-locked locked to an external oscillator. We use an imaging photomultiplier tube to record (x,y, t) for each
photon. Rotating-frame images are generated computationally given (x,y, t) and ωr, a technique established in 2001 [17]. In
linear Paul trap experiments, determination of ion spin-state is possible with as few as 10 photons/ion [18]. At present we await
the arrival of a new (x,y, t) detector system capable of a detection rate of 5×106 Hz. We anticipate this will enable high-fidelity
spin-state measurement of a 300-ion crystal in ∼ 10 ms. From a suite of identical experiments, the spin-spin correlation function
can be computed. We believe that our ability to resolve single ions, even in the presence of rotation at ωR indicates a path forward
in performing individually resolved measurements of fluorescence correlations between ions.

Previous measurements have elucidated some of the possible limiting mechanisms. For instance, the stability of crystal
orientation in the rotating frame was studied for spherical crystals of ∼ 10,000 ions. In these experiments the orientation was
observed to precess uniformly for durations of � 10 s, then suddenly slip by a large angle before again resuming slow precession
[17]. This “stick-slip” motion can be followed and easily corrected. Figure 1a of the manuscript was generated from 600 s of
integration after stick-slip corrections. Other potential issues include ion loss and background gas collisions. As the trap depth is
� 1 eV, background gas collisions do not result ion loss. Collisions with background hydrogen generate BeH+ (1 per 6 minutes
for N ∼ 300 9Be+ ions) which collect at the crystal perimeter due to centrifugal separation. These effects do not appear to limit
top-view imaging fidelity, as demonstrated in Fig. 1a of the manuscript.
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Figure 1. Relevant energy levels of 9Be+ at B0 = 4.46 T (not drawn to scale). We show only mI =+ 3
2 levels that are prepared experimentally

through optical pumping. The 2S1/2 − 2P3/2 transition wavelength is ∼ 313 nm. A resonant laser beam provides Doppler laser cooling and
state discrimination; a second laser beam repumps |↓〉 to |↑〉. The optical dipole force (ODF) interaction is due to a pair of beams (derived
from the same laser) with relative detuning µR. The qubit splitting ∆E0/�∼ 2π×124 GHz. A low-phase-noise microwave source at 124 GHz
provides full global control over spins.
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Figure 2. Sketch of optical dipole force (ODF) laser beam setup. (a) The ODF laser beams lie in the y-z plane at angles ±θR/2 with respect
to the y-axis. (b) View looking in the −ŷ direction. The beams are linearly polarized but with different polarization angles relative to vertical
polarization.

II. OPTICAL-DIPOLE-FORCE LASER SETTINGS

Figure 2 shows a simple sketch of the optical dipole force (ODF) laser beam set-up. As discussed below, the frequency as
well as the beam polarizations were chosen to null the AC Stark shift from an individual beam and to produce a state-dependent
force that is equal in magnitude but opposite in sign for the |↑〉 and |↓〉 qubit states (F↑ = −F↓ ). This reduced the system
sensitivity to laser intensity fluctuations. For example, if F↑ �=−F↓, then the interaction induced by the optical dipole force will
include terms linear in the σ̂z

i ’s. These terms can be canceled with spin-echo techniques, but this requires that laser intensity
fluctuations are small. Likewise, by adjusting the laser polarization to null the AC Stark shift from a single beam, we mitigated
qubit decoherence due to laser intensity fluctuations. For the benchmarking measurements described here we did not actively
stabilize (i.e., noise eat) the laser beam intensity.

The off-resonant laser beam frequency was detuned from the cycling transition
(
|↑〉 →

∣∣P3/2,mJ = 3/2
〉)

by ∆R �−63.8 GHz.
This gives detunings of +15.6 GHz and −26.1 GHz, respectively, from the |↑〉→

∣∣P3/2,mJ = 1/2
〉

and |↓〉→
∣∣P3/2,mJ =−1/2

〉
transitions (Fig. 1). Laser beam waists were wz � 110 µm in the vertical (z-direction) and wx � 1 mm in the horizontal direction.
Here we define the waist as the distance from the center of the beam over which the electric field intensity decreases by 1/e2

(i.e. I(z)∼ e−(z/wz)
2

). With the small 2.4◦ incident angle each beam makes with respect to the plane of the crystal, this provided
a uniform electric field with < 10% intensity variation across ion crystal arrays with N < 250.

The ODF laser beams were linearly polarized at nonzero angles with respect to the ẑ-axis. Let

�EU (�r, t) = ε̂U EU cos
(
�kU ·�r−ωUt

)

�EL (�r, t) = ε̂LEL cos
(
�kL ·�r−ωLt

) (1)

denote the electric fields of the upper and lower ODF beams. If φp is the angle of the laser beam electric-field polarization with
respect to vertical polarization (ε̂ · x̂ = 0), then the AC Stark shift of the qubit states when illuminated by a single beam can be
written

∆↑,acss = A↑ cos2 (φp)+B↑ sin2 (φp)
∆↓,acss = A↓ cos2 (φp)+B↓ sin2 (φp)

(2)

where A↑(A↓) is the Stark shift of the |↑〉(|↓〉) state for a π-polarized beam (ε̂ parallel to the ẑ-axis) and B↑(B↓) is the Stark shift
of the |↑〉(|↓〉) state for a σ-polarized beam (ε̂ perpendicular to the ẑ-axis). (Here we neglect the small σ polarization (∝ sin2.4o)
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that exists when φp = 0.) The Stark shift of the qubit transition is

∆acss =
(
A↑ −A↓

)
cos2 (φp)+

(
B↑ −B↓

)
sin2 (φp) . (3)

If A↑ −A↓ and B↑ −B↓ have opposite signs, there is an angle which makes ∆acss = 0. For a laser detuning of ∆R =−63.8 GHz,
∆acss = 0 at φp �±65o.

With ∆acss = 0 for each ODF laser beam, we exploit the freedom to choose their polarization in order to obtain a state-
dependent force. Specifically, we choose �EU to have a polarization given by φp,u = 65o and �EL to have a polarization given

by φp,l = −65o. In this case the interference term in the expression for the electric field intensity
(
�EU +�EL

)2
produces a

polarization gradient which results in spatially dependent AC Stark shifts
(
A↑ cos2 (φp)−B↑ sin2 (φp)

)
2cos(δk · z−µRt)(

A↓ cos2 (φp)−B↓ sin2 (φp)
)

2cos(δk · z−µRt)
(4)

for the qubit levels. Here δk ≡
∣∣∣�kU −�kL

∣∣∣ = 2k sin
(

θR
2

)
is the wave vector difference between the two ODF laser beams, µR =

ωU −ωL is the ODF beat note, and φp = |φp,u|=
∣∣φp,l

∣∣. The spatially dependent AC Stark shift produces a state-dependent force
F↑,↓(z, t) = Fo↑,↓ sin(δk · z−µRt) where

Fo↑ =−2δk
(
A↑ cos2 (φp)−B↑ sin2 (φp)

)
Fo↓ =−2δk

(
A↓ cos2 (φp)−B↓ sin2 (φp)

)
.

(5)

In general Fo↑ �=−Fo↓. We operate at ∆R =−63.8 GHz where for ∆acss = 0 we also obtain Fo↑ =−Fo↓ ≡ Fo
For a given φp,u , φp,l , and ∆R we use straightforward atomic physics along with well known values for the energy levels and

matrix elements of 9Be+ to calculate Fo as a function of the electric field intensity IR = cεo
2 |EL|2 = cεo

2 |EU |2 at the center of the
laser beams. For θR = 4.8◦ and IR = 1 W/cm2 , Fo = 1.4×10−23 N.

Stronger forces can be generated after experimental modification to our apparatus to permit θR ≈ 35o . At this angle larger
detunings µR −ω1 are required to satisfy Eq. 6 in Methods. With our definition HI =

1
N ∑i< j Ji, jσ̂z

i σ̂
z
j, the interaction strength

between two ions i and j is Ji, j/N. Consider for example N = 217 ions, ωr = 2π× 45.6 kHz, powers of IR = 20 mW/beam
(12.5W/cm2) and θR = 35o. The spin-motion entanglement constraint is satisfied by a detuning of µR −ω1 = 2π×100 kHz. In
this case we obtain Ji, j/(2πN)∼ (560 Hz)(d0/di, j)

1.7, where d0 ∼ 20µm is the typical nearest neighbor separation.

III. WAVEFRONT ALIGNMENT

The ODF laser beams produce a one dimensional (1D) optical lattice characterized by the effective wave vector δ�k and beat
note µR. In Sec. II we assumed that δ�k ‖ ẑ, or equivalently that the wavefronts of the lattice were aligned perpendicular to the
ẑ-axis (magnetic field axis). If the wavefronts are not normal to the ẑ-axis as sketched in Fig. 3, then the time dependence of
the ODF seen by an ion in the rotating frame depends on the (x,y) position of the ion. This complicates the effective spin-spin
interactions generated by the ODF but can be adequately mitigated by careful alignment.

Alignment of the ODF laser beams is obtained by a technique that makes top-view images (images of the ion resonance
fluorescence scattered along the magnetic field) from a single plane of ions sensitive to ODF wave front misalignment. For this
measurement we set µR = 0 (stationary 1D lattice) and detune the frequency of the ODF laser beams approximately 0.5 GHz
below the |↑〉 →

∣∣2P3/2 mJ =+3/2
〉

Doppler cooling transition. This small detuning generates sufficiently large AC Stark shifts
on the cooling transition to measurably change the ion scatter rate from the Doppler cooling laser. With the Doppler cooling laser
turned on and the ODF beams turned off, we observe a spatially uniform, time-averaged image of a rotating planar crystal. With
the ODF beams on, ions located in regions of high electric field intensity at the anti-nodes of the optical lattice are Stark-shifted
out of resonance with the Doppler cooling laser. This is the cause of the dark bands in the top-view image shown in Fig. 4. We
adjust the ODF laser beams based on this real-time imaging to optimize their alignment. Improved alignment is indicated by a
fringe pattern of longer wavelength. With this technique we have aligned the ODF wave fronts with the planar array to better
than ∼ 0.05◦.

The image in Fig. 4 is typical of what we obtain with 1s integration duration. This indicates the 1D lattice was stable during
the integration period and shows the phase stability of our 1D lattice of better than 1s.

We note that direct fluorescence imaging of the 1D lattice, for example by tuning the ODF laser resonant with the Doppler
cooling transition, is not viable. Even at low powers, resonantly scattered photons across the large horizontal waist of the ODF
beams apply a large torque, causing the rotation frequency and radius of the array to rapidly change, typically driving the ions
into orbits of very large radius.

We have also used phase coherent Doppler velocimetry to improve the ODF wavefront alignment [19]. But the top-view
imaging technique discussed here and shown in Fig. 4 provides more information on the angle and direction of misalignment,
which greatly improves the ODF-crystal alignment process.
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Figure 3. (a) Sketch of the ODF laser beam geometry used to generate the one dimensional (1D) traveling optical lattice. (b) Sketch of the 1D
optical lattice wave fronts (red lines). These wave fronts need to be aligned with with the ion planar array (represented by the blue dots). Here
λR = 2π/|−→∆k| ≈ 3.7µm and θerr denotes the angle of misalignment. 400 µm is the typical array diameter for N ∼ 200 ions. With the wavefront
alignment technique discussed in the text we obtain θerr < 0.05◦.

100 µm
Figure 4. Top-view image of the spatially inhomogeneous fluorescence from a single ion plane produced by the AC Stark shift from a static
(µR = 0) ODF lattice with misaligned wave fronts. Dark bands are regions of high standing wave electric field intensity (parallel to the dashed
yellow line). The bright horizontal feature bisecting the center of the image is fluorescence from the weak Doppler laser cooling beam directed
perpendicular to the magnetic field. The image was obtained by subtracting a background image with the ODF beams off (1 s integration).
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Figure 5. (a) Sequence used to measure spin precession due to the effective mean field generated by the engineered Ising interaction. The
spins are initially prepared in |↑〉. The first pulse rotates the spins by an angle θ1 about an axis (defined to be the x̂-axis in the rotating frame)
in the equatorial plane. The subsequent π and π/2 pulses occur about the ŷ-axis. (b) Evolution of a single spin prior to the application of the
spin-echo π-pulse.

IV. MODELING MEAN FIELD SPIN PRECESSION

For any spin j,
[
σ̂z

j, ĤI

]
= 0, which implies

〈
σ̂z

j

〉
= constant under application of ĤI . The Hamiltonian ĤMF

I describing the

mean field response of spin j to the application ĤI is obtained by expanding ĤI to first order in δ̂σ
z
j ≡ σ̂z

j −
〈

σ̂z
j

〉
:

ĤMF
I = 1

N ∑i< j Ji, j

(
〈σ̂z

i 〉 δ̂σ
z
j +

〈
σ̂z

j

〉
δ̂σ

z
i

)

= ∑N
j=1

1
N

N
∑

i,i�= j
Ji, j 〈σ̂z

i 〉× δ̂σ
z
j.

(6)

Defining B̄ j ≡ 2
N ∑N

i,i�= j Ji, j 〈σ̂z
i 〉, ĤMF

I can be written

ĤMF
I =

N

∑
j=1

B̄ jδ̂σ
z
i/2. (7)

The mean field Heisenberg equations of motion for spin�σk is obtained from the commutator of�σk and ĤMF
I . However, because

δ̂σ
z
j = σ̂z

k −
〈
σ̂z

k

〉
and

〈
σ̂z

k

〉
is a constant, it is clear that Eq. 7 describes spin precession about the z-axis at frequency B̄k. Our

observable is the spin precession (in excess of ordinary Larmor precession) averaged over all the spins 1
N ∑N

k=1 B̄k.
We use the spin-echo sequence in Fig. 5 to measure a precession proportional to the expectation value of the spin projection

along ẑ (〈σ̂z
i 〉). The spin-echo sequence minimizes contributions to spin precession that are not ∝〈σ̂z

i 〉. Specifically, the spin
echo cancels a constant spin precession independent of 〈σ̂z

i 〉 (e.g., due to slow uncontrolled magnetic field fluctuations), but
precession ∝〈σ̂z

i 〉 coherently adds in the two arms of the sequence.
The first pulse sets 〈σ̂z

i 〉 = cosθ1. The interaction ĤI is then applied by turning on the ODF laser beams for a period τarm.
During this interval 〈σ̂z

i 〉 is a constant and mean field theory predicts an average spin precession angle of 2J̄ cos(θ1) · τarm. The
π-pulse changes 〈σ̂z

i 〉→−cos(θ1) and the spin precession angle 2J̄ cos(θ1) ·τarm to −2J̄ cos(θ1) ·τarm. At the end of the second
ĤI interaction of duration τarm, the total precession angle of the spins is −2J̄ cos(θ1) ·2τarm. The final π/2-pulse is about an axis
shifted by 90o from the first θ1-pulse. This pulse converts precession out of the initial ŷz plane into excursions above or below
the equatorial plane of the Bloch sphere, which we measure.

The evolution operator of the measurement sequence Ûseq is obtained in a straight forward manner from the individual evolu-
tion operators from each segment of the sequence,

Ûseq = R̂
(

ŷ,
π
2

)
·Û(ĤMF

I ) · R̂(ŷ,π) ·Û
(
HMF

I
)
· R̂(x̂,θ1) . (8)

Here R̂(x̂,θ1) =

[
cos(θ1/2) −isin(θ1/2)

−isin(θ1/2) cos(θ1/2)

]
, R̂(ŷ,π) =

[
0 −1
1 0

]
and R̂

(
ŷ, π

2

)
=

√
2

2

[
1 −1
1 1

]
. The mean field evolution is
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Figure 6. We determine IR from the AC Stark shift of the qubit transition as a function of ODF laser beam polarization angle φp. The triangles
and filled circles are separate measurements done on the upper and lower ODF beams. IR is determined independently for each ODF beam by
a fit to Eq. 3. The error bars are smaller than the plot points.

given by

Û
(
ĤMF

I
)
=

[
exp(−iJ̄ 〈σ̂z〉τarm) 0

0 exp(iJ̄ 〈σ̂z〉τarm)

]
(9)

where 〈σ̂z〉 = cos(θ1) in the first arm of the spin-echo sequence and 〈σ̂z〉 = −cos(θ1) in the second arm. At the end of the
sequence we detect the |↑〉 state probability. Explicit computation gives

∣∣〈↑ |Ûseq| ↑
〉∣∣2 = 1

2
{1+ sin(θ1) · sin [2J̄ cos(θ1) ·2τarm]} . (10)

V. OPTICAL DIPOLE FORCE LASER INTENSITY CALIBRATION

The spin-spin couplings (J̄) measured here depend on the square of the ODF electric field intensity IR. Therefore, careful cali-
bration of the electric field intensity was important in benchmarking the strength of the interactions with mean-field predictions.
We separately determined IR for each beam by measuring the AC Stark shift of the qubit transition as a function of the laser
beam polarization angle φp, as shown in Fig. 6. The qubit transition frequency was measured by fitting for the center frequency
of a Rabi-resonance profile. The polarization angle φp was varied by rotating a λ/2 plate. The Stark shift measurements were
fit to Eq. 3, which provided values for A and B (Stark shifts for π-polarization and σ-polarization). Values for A and B were
then used with atomic physics calculations to determine IR, the electric field intensity of the ODF laser beams, with a fractional
uncertainty of ∼ 5%. Frequent intensity calibration measurements were taken during a benchmarking run. Slow drifts to the
laser intensity between calibrations added another 5% uncertainty, which we add in quadrature to the fitted uncertainty.

VI. SPONTANEOUS EMISSION

Decoherence due to spontaneous emission has been well studied in this system [14]. The qubit levels are closed under
spontaneous light scattering; that is, spontaneous light scattering does not optically pump the ion to a different ground state
level outside of the two qubit levels. We measure spin precession to benchmark the Ising interaction couplings. Equivalently
we measure the evolution of off-diagonal coherences between the |↑〉 and |↓〉 levels. Spontaneous-emission-induced decay of
these coherences is accurately modeled by Eq. (8) of Ref. [14]. We add this time dependence to the unitary evolution Û

(
ĤMF

I
)

discussed in Sec. IV. This results in the expression

P(|↑〉) = 1
2
(1+ exp(−Γ ·2τarm)sin(θ1)sin(2J̄ cos(θ1) ·2τarm)) , (11)

where P(|↑〉) is the probability of detecting a spin in |↑〉 at the end of the spin-echo sequence. The only difference with Eq. 10 is
the factor exp(−Γ ·2τarm) due to the decay of the off-diagonal elements of the density matrix. Here Γ accounts for decoherence
due to spontaneous emission. From [14], Γ = 1

2 (ΓRam +Γel) has contributions from both Raman scattering and elastic Rayleigh
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scattering. A straightforward atomic physics calculation relates Γ to the ODF laser beam intensity IR. In fits of Eq. 11 to
the spin-precession measurements, we fix Γ at the value determined by the laser intensity calibrations. For ∆R = −63.8 GHz,
φp =±65.3o, and IR = 1 W/cm2, we calculate Γ = 82 s−1.

With our present set-up we can achieve J̄ � Γ for detunings |µR −ω1| � 10 kHz. For these detunings it will be possible to
simulate quantum effects beyond mean field theory such as spin squeezing and spin-depolarization due to many-body interac-
tions. For example we calculate that with 4 mW/beam and an ODF beatnote detuning of |µR −ω1|= 2 kHz , J̄ ∼ 2π×0.5 kHz
and Γ/J̄ ∼ 0.06. The potential spin squeezing due to this interaction is 5 dB, limited by spontaneous emission. For many sim-
ulations it will be desirable to achieve J/N � Γ where J is a nearest-neighbor coupling strength. (J ∼ J̄ for small detunings
|µR −ω1|.) The most straight forward strategy to achieve this condition in our set-up appears to be to increase the angle θR
between the Raman beams. The ratio J̄/Γ scales as sin2 (θR/2). Therefore decoherence due to spontaneous emission can be
dramatically reduced with an order of magnitude increase in θR. We note that a large increase in θR will require implementation
of a sub-Doppler cooling scheme to remain in the Lamb-Dicke regime (see Sec. VII).

Different ODF laser detunings can likely help reduce the impact of spontaneous emission (with the complication that F↑ �=
−F↓), but very large laser detunings ∆ obtained by tuning the ODF laser beam frequencies outside the P1/2 −P3/2 manifold
appear unlikely to help. This is because both the interaction strength and spontaneous emission scale as 1/∆2 for our qubit,
which is not a clock transition. For trapped-ion experiments in low magnetic field, the impact of spontaneous emission is
typically minimized by tuning the ODF laser beam frequencies between the P1/2 and P3/2 manifolds. Because the 9Be+ P-
state fine structure (197 GHz) is comparable to the Zeeman splittings for our magnetic field (4.5 T), this approach does not
significantly help. However, it can help with heavier mass ions (e.g., Mg+). Reference [9] discusses a number of strategies that
can minimize the impact of spontaneous emission when the P-state fine structure is large compared to the Zeeman interaction
energy.

VII. LAMB-DICKE CONFINEMENT

Throughout this manuscript we implicitly assume that the applied state-dependent force, F↑,↓(z, t) = Fo↑,↓ cos(δk · z−µRt), is
constant across the spatial extent of an ion’s wave function. Specifically, for a planar array located at z = 0, we assume the force
on any ion is given by

F↑,↓ (z = 0, t) = Fo↑,↓ cos(µRt) . (12)

The extent to which this is true is quantified by the parameter

ηind,i ≡ δk · zrms,i (13)

where zrms,i is the root mean square (rms) axial extent of the wave function of ion i and δk ≡ 2π/λR, where λR = 3.7 µm for
θR = 4.8o. We note that ηind,i is a Lamb-Dicke confinement parameter for a individual ion (ind), not to be confused with the
usual Lamb-Dicke parameter that is defined in terms of the ground-state wave function. In the limit that the Coulomb interaction
energy between ions is a small perturbation to the axial potential of the trap, we can think of each ion as a single ion confined
in the external trap potential, and approximate zrms,i �

√
�

2Mωz
·
√

2n̄+1, where M is the mass of an individual ion. Recently we
have completed careful axial temperature measurements for single-plane ion crystals [16]. We find ∼ 1 mK for the axial COM
mode and ∼ 0.4 mK for the higher order transverse modes. For ωz = 2π ·795 kHz and conservatively assuming T = 1 mK, we
calculate n̄ � 26, zrms,i � 190 nm, and ηind,i � 0.32.

For the benchmarking measurements described here we typically set the rotation frequency of the ion array about ∼ 0.5 kHz
below the rotation frequency of the 1 ↔ 2 plane transition, determined experimentally from side-view images [2]. In this case,
the spectrum of the transverse (axial) modes is broad, and we underestimate zrms,i in the above analysis. An improved estimate
of zrms,i is obtained by summing the contributions from all of the transverse modes m

zrms,i =

(
∑
m
(bi,m)

2 �
2Mωm

(2n̄m +1)
)1/2

, (14)

where n̄m � kBT/�ωm is the mean thermal occupation of mode m. We assume here that every mode is characterized by the same
temperature T. For N = 217 and ωz = 2π×795 kHz, the rotation frequency of the 1 ↔ 2 plane transition is ωr = 2π×46.1 kHz.
For ωR = 2π× 45.6 kHz, the spectrum of the axial modes ranges from 795 kHz down to 224 kHz. With Eq. 14 we calculate
zrms,i � 520 nm in the center of the array, decreasing to zrms,i � 250 nm at the array edge, corresponding to ηind,i � 0.89 for i
near the array center and ηind,i = 0.42 for i near the array boundary.

The wavefront alignment discussed in a previous section can be viewed as achieving a type of Lamb-Dicke confinement.
Let θerr denote the angle of misalignment between the planar array and the ODF 1D lattice (Fig. 3). Relative to the ODF
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lattice wavefronts, the rotation of the array produces a time-dependent shift in the axial position of an ion that can be written
as z(t) = Rsin(θerr)sin(ωrt +ϕ). Here R is the distance of the ion from the center of the array, and ϕ is determined by the
azimuthal position of the ion in the array. The force on this ion is then

F↑,↓ (t) = Fo↑,↓ cos(δkRsinθerr · sin(ωrt +ϕ)−µRt) . (15)

For Eq. 15 to approximate Eq. 12, we desire δk · 2RP sinθerr < 1, where RP is the array radius. For Rp � 200 µm (typical for
N = 200) and θerr � 0.05◦ (see Wavefront alignment section), we calculate δk ·2RP sinθerr ≈ 0.6.

VIII. ION LATTICE CONFIGURATION AT EQUILIBRIUM AND TRANSVERSE NORMAL MODES

The ion equilibrium positions�ri at zero temperature are calculated by minimizing the Euler-Lagrange action for the Penning
trap potentials and the constraint that the ions lie in a plane (at z = 0). The solution is a triangular lattice with a lattice constant
that increases as one moves radially outward, that has a smooth unfaceted edge and exhibits a degradation in orientational order
near the crystal perimeter. The transverse (along ẑ) phonon modes (ωm,�bm) are obtained by Taylor expansion of the potential
about the ion equilibrium positions �ri. In-plane modes (along x̂, ŷ) can also be calculated, by solving a quadratic eigenvalue
problem (due to inclusion of the centrifugal and Coriolis forces). The details of the transverse mode calculation is discussed in
this section. The problem has also been solved for longitudinal and transverse modes in 1D (e.g., [20, 21]).

In general, the Lagrangian for a collection of N ions with charge q and mass M in an electromagnetic field φi −�A(�ri) is

L = T −V =
N

∑
i=1

{
1
2

M�̇r
2
i −q

(
φi −�A(�ri) ·�̇ri

)}
, (16)

where�ri = (ri,θi,zi) is the coordinate of ion i. In a Penning trap, the field consists of a uniform magnetic field in the ẑ-direction
(�B = B0ẑ) and a harmonic trapping (anti-trapping) electric potential in the ẑ-direction (r̂-direction) with frequency ω1. Lastly,
an additional external time-dependent electric quadrupole potential (the “rotating wall”, amplitude Vwall at the ions) is applied
to control the ion’s rotation frequency in the trap [22]. Thus, the scalar potential for ion i is

qφi = qφtrap,i +qφwall,i +qφCoulomb,i
= 1

2 Mω2
1(z

2
i − r2

i /2)+Vwallr2
i cos2(θi +ωrt)+ 1

2 k ∑N
j �=k q2/|�r j,k|,

(17)

where the ion-ion separation is�r j,k =�r j −�rk and k = 1/4πε0. Since �B is uniform, the vector potential energy is

q�A(�ri) =−q
2
�ri ×�B. (18)

The position of the ions at equilibrium is calculated as follows. We move to a rotating frame where the ions’ coordinates
are stationary by using the coordinate transformation�r′i = (r′i,θ′i,z′i) = (ri,θ+ωrt,zi), a counterclockwise rotation. The ions’
equilibrium positions�r′i can be found by solving the transformed Euler-Lagrange equations L′. To seed the numerical solution,
we supply an initial guess for the 2D crystal: a regular, triangular lattice. Consistent convergence requires ion numbers N
corresponding to closed shells (e.g., N = 127 has six closed shells). We find ion equilibrium positions that deviate from a perfect
triangular lattice near the crystal periphery and which have an overall ellipticity due to Vwall .

Given �r′i, the crystal’s transverse eigenmodes can be calculated by Taylor expansion of the potential about the equilibrium
positions�r′i. The Lagrangian is

L′ =
1
2

N

∑
i=1

Mż′iż
′
j −

1
2

N

∑
i, j=1

Ki jz′iz
′
j (19)

where z′i is the axial displacement of i-th ion and Ki j = Kji is the symmetric stiffness matrix evaluated for the equilibrium
configuration as

Ki j =




Mω2
1 −

N

∑
n=1

kq2

|z′ni|
3 i = j,n �= i

kq2

|�r′i j|
3 i �= j

. (20)
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By minimizing the action δ
´

dtL′ = 0 with respect to the rotating frame axial coordinates z′i, we obtain N equations of motion

z̈′i +
N

∑
j=1

Ki j

M
z′j = 0, for i = 1,2, ...,N. (21)

Following standard normal mode analysis, the solution is obtained by calculating the eigenmodes of the matrix Ki j/M. The
result is N eigenvalues ω2

m, for m = 1,2, ...,N (with corresponding frequencies ω).

IX. LIMITS TO THE VALIDITY OF MEAN FIELD THEORY

Here we calculate the domain over which a mean field theory (MF) treatment of Ĵ2
z is valid. In the special case of uniform

Ising coupling (e.g., 0 < µR −ω1 � ω1 −ω2), we have

ĤI =
2χ
N

(
N

∑
i=1

σ̂z
i/2

)(
N

∑
j=1

σ̂z
j/2

)
=

2χ
N

Ĵ2
z , (22)

where we have neglected a constant offset and Ĵz = ∑N
i=1 σ̂z

i/2 is the z-component of the total composite spin of the system. The
interaction strength χ is independent of ion-ion separation and is given by

χ ≈
F2

0
�2M

1
µ2

R −ω2
1
. (23)

We start each experiment with N spins all prepared in the |↑〉 state. Here we use the composite spin picture where this state

is labeled |J = N/2, MJ = N/2〉. (Formally |J,MJ〉 labels a state that is an eigenstate of �̂J
2

and Ĵz with eigenvalues J(J + 1)
and MJ , where �̂J = ∑i

�̂σi/2 is the total system spin.) The first pulse of the spin-precession measurement sequence rotates the
composite Bloch vector by an angle θ1. After the rotation by θ1 the state can be written as

|ψ〉=
N/2

∑
MJ=−N/2

C(J, MJ) |J, MJ〉 , (24)

where the coefficients C(J, MJ) are significantly non-zero for a small range ∆MJ centered on M(0)
J , where M(0)

J ≈ N
2 cosθ1. For

a coherent spin state, ∆MJ �
√

N.

We want to establish that a Ĵ2
z interaction looks like precession ∝ M(0)

J , at least over short durations. A precession by an angle φ
about the z-axis is obtained with the operation e−iφĴz ,

e−iφĴz |ψ〉= ∑
MJ

C(J, MJ)e−iφĴz |J, MJ〉 . (25)

We measure expectation values of the total system spin −̂→J . It is sufficient therefore to consider how these expectation values
transform under the rotation eiφĴz ,

〈ψ| Ĵy |ψ〉 → 〈ψ|eiφĴz Ĵye−iφĴz |ψ〉 . (26)

For simplicity, only matrix elements of the total spin in the ŷ-direction Ĵy are considered. Identical expressions are also obtained
for Ĵx.

〈ψ| Ĵy |ψ〉
= ∑M′

J ,MJ
C(J, M

′
J)

�C(J, MJ)
〈

J, M
′
J

∣∣Ĵy
∣∣J, MJ

〉

= ∑MJ

{
C(J, MJ −1)�C(J, MJ)〈J, MJ −1| Ĵy |J, MJ〉

+C(J, MJ +1)�C(J, MJ)〈J, MJ +1| Ĵy |J, MJ〉
}
.

(27)
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The double sum is eliminated by making use of the property that Ĵy has only non-zero matrix elements between states with
M

′
J −MJ =±1. C(J, MJ ±1) can be defined to be 0 if MJ −1 =−N/2−1 or MJ +1 = N/2+1. Similarly

〈ψ|eiφĴz Ĵye−iφĴz |ψ〉
= ∑M′

J ,MJ
C(J, M

′
J)

�C(J, MJ)eiM
′
Jφe−iMJφ

〈
J, M

′
J

∣∣Ĵy
∣∣J, MJ

〉

= ∑MJ

{
C(J, MJ −1)�C(J, MJ)e−iφ 〈J, MJ −1| Ĵy |J, MJ〉

+C(J, MJ +1)�C(J, MJ)eiφ 〈J, MJ +1| Ĵy |J, MJ〉
}
.

(28)

This is to be compared with the same matrix element under the HI =
2χ
N Ĵ2

z interaction,

〈ψ|ei 2χ
N Ĵ2

z t Ĵye−i 2χ
N Ĵ2

z t |ψ〉

= ∑M′
J ,MJ

C(J, M
′
J)

�C(J, MJ)e
i 2χ

N

(
M

′
J

)2
t e−i 2χ

N (MJ)
2t
〈

J, M
′
J

∣∣Ĵy
∣∣J, MJ

〉

= ∑MJ

{
C(J, MJ −1)�C(J, MJ)e−i 2χ

N (2MJ−1)t 〈J, MJ −1| Ĵy |J, MJ〉

+C(J, MJ +1)�C(J, MJ)ei 2χ
N (2MJ+1)t 〈J, MJ +1| Ĵy |J, MJ〉

}
.

(29)

Equation 29 approximates a rotation about the ẑ-axis (that is, approximates Eq. 28) if
2χ
N t (2M j −1)≈ 2χ

N t (2M j +1)≈ 2χ
N t ·2M(0)

J for all MJ for which C(J, MJ) is significantly non-zero. This is satisfied for short
periods t satisfying 2χ

N t ·2(∆MJ)� 1. For the initial coherent spin state, ∆MJ �
√

N, which puts a limit

χt �
√

N
4

(30)

on the period t for which the Ĵ2
z interaction can be approximated as a precession ∝ M(0)

J . The precession frequency predicted by
the Ĵ2

z analysis, 2χ
N ·2M(0)

J = 2χ
N ·2 N

2 cosθ = 2χcosθ, is in agreement with the precession frequency predicted by the MF
analysis.

Equation 30 provides a limit on the period for which the MF analysis is valid. We confirm this limit through explicit calculation
of the spin precession benchmarking sequence for the ĤI =

2χ
N Ĵ2

z interaction with N = 5, 50 and 100 spins. The exact calculation
is possible because the system remains in the symmetric subspace (dimension of Hilbert space is 2N+1). Figure 7(a) shows the
results of the calculation for five spins. Reasonable agreement between the MF precession formula (Eq. 11 with Γ = 0) and the
exact calculation is obtained for χt = 0.2, but not for χt = 0.8 and 1.6, as expected from Eq. 30. Figures 7(b) and 7(c) compare
the exact calculation with the MF formula for N = 50 and 100 spins. Excellent agreement between the MF formula and the
exact calculation is obtained for χt = 0.2 and 0.8. Some differences are observed at χt = 1.6. These differences decrease as N
increases.
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Figure 7.
〈
Ĵz
〉

vs initial polar angle θ1 for an initial coherent spin state of N spins. t = 2τarm in the legend is the total interaction period. The
solid line is the exact calculation. The open circles are from the MF precession formula (Eq. 11, with Γ = 0). (a) N = 5. (b) N = 50. (c)
N = 100.
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