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Phonon-mediated quantum spin simulator employing a planar ionic crystal in a Penning trap
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We derive the normal modes for a rotating Coulomb ion crystal in a Penning trap, quantize the motional
degrees of freedom, and illustrate how they can be driven by a spin-dependent optical dipole force to create
a quantum spin simulator on a triangular lattice with hundreds of spins. The analysis for the axial modes
(oscillations perpendicular to the two-dimensional crystal plane) follow a standard normal-mode analysis, while
the remaining planar modes are more complicated to analyze because they have velocity-dependent forces in the
rotating frame. After quantizing the normal modes into phonons, we illustrate some of the different spin-spin
interactions that can be generated by entangling the motional degrees of freedom with the spin degrees of freedom
via a spin-dependent optical dipole force. In addition to the well-known power-law dependence of the spin-spin
interactions when driving the axial modes blue of the phonon band, we notice certain parameter regimes in
which the level of frustration between the spins can be engineered by driving the axial or planar phonon modes
at different frequencies. These systems may allow for the analog simulation of quantum spin glasses with large
numbers of spins.
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I. INTRODUCTION

Richard Feynman motivated the idea of using analog
quantum simulation as a means to describe the behavior of
complex quantum-mechanical systems [1]. This idea has been
experimentally realized for the transverse-field Ising model
in cold ion traps in one dimension [2–6], in neutral atoms
driven to a nonequilibrium state [7], and with preliminary
results also available for cold ion traps in two dimensions
[8]. The tunability and precise quantum control of cold-ion
(or cold-atom) systems are unmatched in traditional (real-
material) condensed-matter systems and therefore they are
an ideal platform for examining idealized condensed-matter
systems and searching for nontrivial quantum ground states. In
addition, the isolation of the system from the environment with
long decoherence times (in milliseconds) also offers tremen-
dous opportunities for the study of nonequilibrium coherent
many-body dynamics in real time such as thermalization [9,10]
and quench dynamics [11,12].

Cold ions in traps have been proposed theoretically as
potential emulators for effective spin models [13]. For the
case of linear ion chains in Paul traps, the experimental
protocol has been well established [4–6]. However, there are
still difficulties in scaling up Paul-trap-based systems to more
than approximately 16 ions while maintaining good quantum
control, although next-generation traps are planned for up to
potentially 100 ions. Theoretically, phonon modes in linear
Paul traps have been well understood for a decade [14] and
are essential for the realization of the spin models in the
system (although effects of micromotion on two-dimensional
crystals in Paul traps are more complicated [15]). On the other
hand, ion crystals in Penning traps can be easily stabilized
with several hundreds of ions in a two-dimensional structure
and can potentially simulate quantum phases beyond what
modern computers can simulate. Recently, a feasibility study
has shown that it is possible to generate spin-spin interactions
in these systems that decay like a tunable power law for

long distances [8]. Similar to cold ions in linear Paul traps,
a theoretical understanding of phonon modes is needed as a
prerequisite for understanding the adiabatic state evolution of
these systems.

In this paper, we provide a complete theory for the
oscillatory normal modes in a Penning trap, tuned to param-
eters similar to those used in current experiments. We then
quantize these phonons and show how they can be used with
a spin-dependent optical dipole force to generate effective
spin-spin interactions. Recently, others have shown how to
find equilibrium positions for similar trapping potentials [16]
and have evaluated the phonon spectra using different methods
from the ones we employ [17].

The organization of the paper is as follows. In Sec. II, we
formulate the theory for the normal modes of cold ions in
Penning traps. We determine the ground state of the crystal
configuration by finding the static equilibrium of the system in
the rotating frame of a rotating crystal. The normal modes are
then found by harmonic expansion around the equilibrium
state. Because the Penning trap creates a rotating crystal,
the normal modes must be solved in the rotating frame,
and the longitudinal (planar) modes require the solution of
a quadratic eigenvalue problem because they have velocity-
dependent forces. The phonon Hamiltonian is then derived
by quantizing the normal modes. In Sec. II, we also discuss
quantum simulation based on spin-dependent forces arising
from laser-ion dipole interactions. The effective Ising models
mediated by the axial phonon modes and the planar phonon
modes are also described. In Sec. III, we show the numerical
results for phonon frequencies and for spin-spin interactions
for parameters relevant for current experiments. In Sec. IV, we
provide our conclusions.

II. THEORETICAL FORMULATION

We consider hundreds of spins, realized via the two hy-
perfine states |2S1/2,mJ = 1/2〉, |2S1/2,mJ = −1/2〉 of 9Be+
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FIG. 1. (Color online) Electrostatic potentials provided by elec-
trodes in a Penning trap have contributions from both the end-cap
electrodes [with the trapping potential φE(r) = V0z

2 that pushes
the atoms towards z = 0] and the cylindrical electrodes [with the
radial quadratic potential φC(r) = − V0

2 (x2 + y2), which tends to
push the ions out radially]. In addition, the repulsive Coulomb
potential between the ions tends to destabilize the system in the
trap. A static magnetic field B = Bzẑ(Bz > 0) is thus applied
along the axial direction to provide the radial confinement of the
ions. To lock the rotational angular frequency of the ions at a
specific rotational speed, a time-dependent clockwise quadrupole
potential φW (t) = VWρ2 cos 2(θ + �t) (� > 0) is applied to the ions
through ring electrodes so that the steady state of the ions (with a
rigid-body rotational speed �) can be phase locked. Note that the
rotating quadrupole potential is well implemented by ring electrodes
with just six sectors (as employed in the NIST Penning traps
[8,18,19]).

ions, localized in a two-dimensional plane. The setup of cold
ions in Penning traps is briefly illustrated in Fig. 1. Further
details can be found in the published literature [8,18]. In
current experiments, there also is a small number of impurities
such as BeH+, which forms via collision of the beryllium
ions with hydrogen molecules that are in the background
gas. Hence, a real system will have different mass particles
(which will tend to separate from one another as the centrifugal
force pushes the heavier particles to the outer regions of the
crystal). In this paper, we discuss the clean limit only and
ignore such defects. The effect of defects will be studied
elsewhere.

Given the above considerations, we form the ion Lagrangian
in the laboratory frame of reference as

L =
N∑

j=1

[
1

2
m|ṙj |2 − eφj + eAj · ṙj

]
, (1)

in which N is the total number of ions, e is the positive unit
charge of and m the mass of a 9Be+ ion, rj = (xj ,yj ,zj )
is the ion spatial configuration in Cartesian coordinates (we

also use cylindrical coordinates with ρj =
√

x2
j + y2

j the radial

coordinate and θj the angular polar coordinate), φj (t) is the
total scalar potential acting on the j th ion, and Aj = 1

2 (B × rj )
is the vector potential in the symmetric gauge for the axial
magnetic field B = Bzẑ(Bz > 0). The potential φj , includes
the harmonic trapping from the electrodes, the rotating wall
potential, and the Coulomb interaction between the ions. It
satisfies

φj (t) = V0

[
z2
j − 1

2
ρ2

j

]
+ VWρ2

j cos[2(θi + �t)]

+ kee
2

2

∑
k �=j

1

rkj

, (2)

in which V0 is the amplitude of the static potential from the
Penning trap electrodes, VW is the amplitude of the rotating
wall potential, � > 0 is the rotating wall angular frequency
� = �ẑ, ke is the Coulomb force constant, and rkj = |rk − rj |
is the interparticle distance between the kth and j th ions. With
the application of the quadrupole rotating wall potential φW (t),
the ion potential φj (t) is time dependent in the laboratory
frame of reference. However, in the corotating frame with
the angular speed �, the corresponding effective potential
becomes time independent and the problem can be understood
as an equilibrium problem [20]. The geometric configuration
of the ions under rotation in the steady state is simplified by
finding the (static) equilibrium ion configuration in the rotating
frame. In general, the coordinate transformation between the
rotating frame and the laboratory frame is described by the
O(2) rotational operator Rz(θ (t)) with the angle of rotation
θ (t): (

xj (t)

yj (t)

)
= Rz(θ (t))

(
xR

j (t)

yR
j (t)

)
, (3)

where the superscript R denotes the rotating frame of refer-
ence. The operator Rz(θ (t)) satisfies

Rz(−�t) =
(

cos(�t) sin(�t)

− sin(�t) cos(�t)

)
, (4)

with θ (t) = −�t . Accordingly, in the rotating frame, the
rotating wall potential φR

W does not depend on time and is

given by φR
W =∑j VW (xR

j

2 − yR
j

2
) by direct substitution. As

a consequence, the effective potential energy in the rotating
frame is then given by the expression

eφR
j = eV0

(
zR
j

)2 + 1

2
(eBz� − m�2 − eV0)

(
ρR

j

)2
+ eVW

[(
xR

j

)2 − (yR
j

)2]+ ke2

2

∑
k �=j

1

rR
jk

, (5)
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which now includes the potential terms from the centrifugal
and Lorentz forces as well.

Ions trapped in a Penning trap do not always crystallize
into a two-dimensional plane. The following approximate
confinement criterion has to be satisfied to guarantee it is
energetically favorable for ions to stay in the plane with z = 0:

β1 = 2eV0

(eBz� − m�2 − eV0)
� 1. (6)

In addition, when the rotating wall potential vanishes (VW →
0), the system is confined in the plane only if the radial potential
is attractive. In this case, the confinement criterion for zero
rotating wall potential is given by

β2 = eBz� − m�2 − eV0 > 0. (7)

For nonzero rotating wall potentials, the ion saddle potential
caused by the rotating wall potential VW breaks rotational
symmetry and leads to a confinement of ions only when the
coefficients of the trapping potential along the weak trapping
axis is positive. In other words, the following criterion has to
be satisfied to have a confined equilibrium state for all ions:

β3 = 1
2 (eBz� − m�2 − eV0) − e|VW | > 0. (8)

The above heuristic criteria narrow down the relevant param-
eter regime in which a stable planar ion crystal formation
is feasible for quantum simulation. Of course, the accurate
quantitative prediction of the stability of the ion crystals
must also include the Coulomb interaction between the ions.
The precise criterion can only be found by solving for the
equilibrium positions and showing that all normal modes have
real frequencies, so that the equilibrium is globally stable [21].

Based on the invariance of the Lagrangian, we derive the
Lagrangian in the rotating coordinates from Eq. (1) as

LR =
N∑

j=1

[
1

2
m
∣∣ṙR

j

∣∣2 − eBeff[�]

2

(
ẋR

j yR
j − ẏR

j xR
j

)− eφR
j

]
,

(9)

in which the second term will produce the Lorentz force term
with the effective magnetic field Beff[�]ẑ for the j th ion in
the rotating coordinates with the magnitude Beff[�] = Bz −
2�m/e, which depends on the rotational angular frequency
� > 0. The modification of the magnetic field is due to the
Coriolis force for the moving ions in the rotating frame. There
is no Coriolis force present for ions when the ions are in
equilibrium in the rotating frame but the Coriolis force can
have effects on the oscillating normal mode motion away from
equilibrium. The centrifugal force originates from the term
− 1

2m�2(ρR
j )

2
in the effective potential energy eφR

j in Eq. (5).

A. Stable configurations and normal modes
in the rotating frame

It has been well established experimentally that ions in
Penning traps reach different static equilibrium states in the
rotating frame of reference (steady state in the laboratory frame
of reference) for different values of the adjustable rotating
angular frequency given by a rotating wall potential φW [22].
Therefore, we can find the stable spatial configuration of the
ions by determining the local minima of the effective potential

energy in the rotating frame of reference. In general, such
a minimization problem is difficult to solve for the absolute
minimum in two or higher dimensions, because many different
configurations can be competitive for the lowest energy state
and there can be large potential barriers between them. To
find an experimentally viable solution, we are guided by
the experiments themselves, which typically observe the ions
arranged in an approximate triangular lattice in a single plane.

Our strategy is to construct the trial configurations based
on a “closed-shell” construction analogous to finding stable
electronic configurations in an atom as detailed in the numer-
ical discussions. Even though we cannot guarantee that the
stable configuration we find is the global minimum, the NIST
experimental systems seem to find the same local minimum
which validates our approach. In further support of the strategy,
we have successfully predicted the phonon mode spectra and
spin-spin interaction observed in the NIST experiments [8,23].

In the following, we discuss the collective phonon exci-
tations about the previously determined equilibrium configu-
ration. Based on the equilibrium configuration, normal mode
dynamics of ions near the equilibrium structure can be fully
captured by the full system Lagrangian L expanded around
this minimal ion spatial configuration to quadratic orders by
a Taylor series. We use the following notation for the ion
coordinates rj (t) = R0

j + δRj (t) and for the ion velocities
ṙj (t) = ˙δRj (t) in the rotating frame. Since the equilibrium
configuration is the local minimum of the classical action of the
system S = ∫ dtL, the first-order terms in δRj (t) and ˙δRj (t)
do not contribute to the expansion by construction. Therefore,
the system Lagrangian can be expanded to quadratic order as

L = L0 + 1

2

N∑
j,k=1

[(
δRj · ∂

∂Rj

)(
δRk · ∂

∂Rk

)

+
(

˙δRj · ∂

∂Ṙj

)(
˙δRk · ∂

∂Ṙk

)

+ 2

(
δRj · ∂

∂Rj

)(
˙δRk · ∂

∂Ṙk

)]
L

∣∣∣∣
0

, (10)

where the first term L0 is the Lagrangian from the equilibrium
state and the second term is the Lagrangian Lph due to
fluctuations away from the equilibrium state. One can isolate
the planar motions of the ions in the xy plane from the
axial motions along the z axis based on the consideration
that the Lorentz force due to the external magnetic fields acts
only in the crystal plane and the potentials are separable in
cylindrical coordinates; hence, there is no harmonic coupling
between planar and axial degrees of freedom (anharmonic
effects can couple normal modes together but are ignored
here). Therefore, we can study the axial and planar modes
independently.

The Lagrangian which governs the axial motions of the ions
is described as

LA
ph = 1

2

N∑
j=1

mδṘz
j δṘ

z
j − 1

2

N∑
j,k=1

Kzz
jkδR

z
j δR

z
k, (11)
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in which the symmetric stiffness matrix Kzz is a real Hermitian
matrix Kzz

jk = Kzz
kj and the matrix elements Kzz

jk are given by

Kzz
jk =

⎧⎨
⎩

2eV0 −∑N
l=1,l �=j

kee
2

(R0
lj )3 j = k,

kee
2

(R0
jk )3 j �= k,

(12)

where R0
jk = |R0

j − R0
k| is the distance between two ions in

equilibrium (in the rotating frame). Similarly, we derive the
Lagrangian for the planar normal modes

LP
ph = 1

2

N∑
j=1

∑
α

m(δṘα
j )2 − 1

2

N∑
j,k=1

∑
αβ

K
αβ

jk δRα
j δR

β

k

+
N∑

j=1

eBeff[�]

2

[
δRx

j δṘ
y

j − δR
y

j δṘx
j

]
, (13)

in which Beff[�] = Bz − 2�m/e is the effective magnetic
field in the rotating frame with angular frequency � and α

and β run over the planar coordinate directions x and y only.
The real Hermitian stiffness matrix Kαβ satisfies the relation
K

αβ

jk = K
αβ

kj = K
βα

jk = K
βα

kj . We derive the stiffness matrix
Kαβ for the planar modes as

Kxx
jk =

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎪⎩

m�2 + e�Beff[�] − eV0 + 2eVW

−kee
2

N∑
l=1,l �=j

(
R0

j l

)2
−3
(
x0

j −x0
l

)2(
R0

j l

)5 j = k,

kee
2

(
R0

jk

)2
−3
(
x0

j −x0
k

)2(
R0

jk

)5 j �= k,

K
yy

jk =

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎪⎩

m�2 + e�Beff[�] − eV0 − 2eVW

−kee
2

N∑
l=1,l �=j

(
R0

j l

)2
−3
(
y0

j −y0
l

)2(
R0

j l

)5 j = k,

kee
2

(
R0

jk

)2
−3
(
y0

j −y0
k

)2(
R0

jk

)5 j �= k,

K
xy

jk =

⎧⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎩

3kee
2

N∑
l=1,l �=j

(
x0

j −x0
l

)(
y0

j −y0
l

)(
R0

j l

)5 j = k,

−3kee
2

(
x0

j −x0
k

)(
y0

j −y0
k

)(
R0

jk

)5 j �= k,

(14)

where the equilibrium configuration is represented by the ion
coordinates R0

j = (x0
j ,y

0
j ,z

0
j ) for j = 1,2, . . . ,N . Notice that

the off-diagonal matrix elements Kxy have nonzero values,
indicating the collective nature of the planar motional degrees
of freedom, which couple the motion in the two coordinate
directions together.

B. Axial phonon modes

Phonon modes are the quantized modes corresponding to
the classical normal modes discussed earlier. In this section,
we solve the classical normal mode problem and then find
the quantized Hamiltonian of the axial phonons, which is
most relevant for the description of conventional quantum
simulation in a Penning trap.

By minimizing the action δ
∫

dtLA
ph = 0, the classical

equation of motion for the ion displacement along the axial
(+z) axis can be written as

mδR̈z
j +

N∑
k=1

Kzz
jkδR

z
k = 0, j = 1,2, . . . ,N. (15)

The axial normal modes are found by direct substitution into
Eq. (15) of the eigenvector solution δRz

j (t) = bzν
j cos[ωzν(t −

t0)] after initial time t0, where the eigenvectors bzν
j are N -tuples

of real numbers with unit norm. The following eigenvalue
equation must therefore be satisfied:

N∑
k=1

[
mω2

zνδjk − Kzz
jk

]
bzν

k = 0, j,ν = 1,2, . . . ,N, (16)

where the N axial eigenvectors are the eigenvectors of the
stiffness matrix Kzz (whose eigenvalues are λzν) but with
different eigenvalues ωzν = √

λzν/m (since all eigenvalues λzν

are real, the frequencies are either real or pure imaginary).
Note that this eigenvalue problem is the simplest quadratic
eigenvalue problem, but because one can immediately solve it
by this mapping onto a linear Hermitian eigenvalue problem,
we need not discuss this point further here. For the planar
phonons, the analysis is more complicated, as shown below.

The planar crystal system is stable against a one-to-two
plane transition when all the eigenfrequencies ωzν are real,
which is analogous to case of stability against the well-
known zigzag transition for ions in linear Paul traps. If the
eigenfrequencies ωzν are imaginary, then the two-dimensional
planar equilibrium that was found is an unstable equilibrium
and will not form in experiment. A detailed numerical analysis
of this instability can tell us the parameter regimes where a
single sheet of ion crystals is energetically stable [21].

The procedure for the quantization of axial normal modes
is the standard procedure. One identifies the generalized
coordinates Qν and momentum Pν for each phonon mode ν

as canonically conjugate variables, which satisfy the relation
given by the Poisson bracket {Qν,Pν ′ } = δνν ′ . The quanti-
zation of phonon modes can be implemented by promoting
the relation {Qν,Pν ′ } = δνν ′ to the commutation relations
[Q̂ν,P̂ν ′ ] = ih̄δνν ′ for operators. To identify the canonically
conjugate variables for the axial motional degrees of freedom,
the Lagrangian for the axial phonon modes can be recast into
the form in Eq. (17) (as long as the system is in the parameter
regime in which the planar crystal configuration is stable with
Im[ωzν] = 0 for all modes ν). We let δRz

j (t) =∑ν ξν(t)bzν
j

be the displacements, where the quantum dynamics due to the
phonon mode ν is given by the real generalized coordinate
ξν(t). The Lagrangian becomes

LA
ph = 1

2

N∑
ν=1

m
[
ξ̇ 2
ν − ω2

zνξ
2
ν

]
. (17)

The corresponding generalized momentum for the phonon
mode ν is then given by the expression

P A
ν = ∂LL

ph

∂ξ̇ν

= mξ̇ν. (18)
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As a consequence, the Hamiltonian for the axial phonon modes
HA

ph is represented by the summation over N independent
harmonic modes

HA
ph =

N∑
ν=1

[
P A2

ν

2m
+ 1

2
mω2

zνξ
2
ν

]
. (19)

Therefore, the second quantized form of the Hamiltonian ĤA
ph

for the axial phonon modes simply becomes

ĤA
ph =

N∑
ν=1

h̄ωzν

(
n̂zν + 1

2

)
, (20)

in which n̂zν = â
†
zν âzν is the number operator for the phonon

mode ν and the phonon creation and annihilation operators are
related to the generalized coordinates via

âzν =
√

mωzν

2h̄

(
ξν + i

mωzν

P A
ν

)
,

â†
zν =

√
mωzν

2h̄

(
ξν − i

mωzν

P A
ν

)
. (21)

The phonon creation and annihilation operators are related
to the quantum fluctuations of ions along the axial direction
via

δR̂z
j =

∑
ν

bzν
j

√
h̄

2mωzν

[âzν + â†
zν]. (22)

It is obvious that the Hamiltonian ĤA
ph is invariant in the

rotating frame and the laboratory frame since each phonon
mode oscillates along the rotation axis ẑ and hence they are
not influenced by the overall rotation of the coordinate system.

C. Planar phonon modes

So far, the planar phonon modes have not been utilized for
quantum simulation due to the complexity of the normal modes
as well as the complication introduced by the rotation of the ion
crystals as observed in the laboratory frame. We plan to give a
detailed explanation of the nature of the planar phonon modes
and hope this will stimulate further insights toward quantum
simulation. Our procedure is based on previous work on
Coulomb crystals in a magnetic field, but not in a rotating frame
[24–27]. Let us expand the Lagrangian LP

ph in terms of the 2N

eigenmodes of the Hermitian stiffness matrix K in Eq. (14),
which are labeled by the index ν with 1 � ν � 2N (note that
these eigenvectors are not the normal mode eigenvectors for
the planar motion, they are a convenient basis to use for the
normal mode equations of the planar motion, except for the
one case noted below). These eigenvectors bαν

k satisfy∑
kβ

K
αβ

jk b
βν

k = m
(
ων

0

)2
bαν

j , (23)

where the spatial indices j = 1, . . . ,N,k = 1, . . . ,N are the
site indices for each ion, α,β = x or y denote the directions
of the spatial displacements of the phonons in the plane, and
m(ων

0)2 are the real eigenvalues of the real-symmetric matrix
K for the stable ion configuration. These eigenvectors do
become the eigenvectors for the planar modes only in the case
when Beff = 0 (which occurs when the rotating frequency is

equal to half the cyclotron frequency), where the eigenvalue
problem simplifies to the traditional form for a phonon. This
fact has been used for an analysis of the phonons in a Penning
trap [17]. The basis vectors bαν

k can be chosen to be real
and they are also orthonormal

∑
iα bαν

i bαν ′
i = δνν ′ . Therefore,

the component of the displacement of the j th ion in the αth
direction, δRα

j (t), can be expanded in this basis as

δRα
j (t) =

2N∑
ν=1

ζν(t)bαν
j , j = 1,2, . . . ,N, (24)

where ζν(t) is the dynamic variable. The Lagrangian LP
ph

for the planar normal modes in this basis can be rewritten
following Eq. (13) as

LP
ph = 1

2m
[
ζ̇ 2
ν − ων

0
2ζν

2
]− 1

2ζν ζ̇ν ′Tνν ′ , (25)

where the Einstein summation convention is used for repeated
indices and the matrix elements Tνν ′ are related to the
antisymmetric matrix T

αβ

jk by the unitary transformation

Tνν ′ = bαν
j T

αβ

jk b
βν ′
k in which T

αβ

jk = − e
2Beff[�]δjkεαβ =

−T
βα

kj (where εxy = −εyx = 1 and all others vanish), due to the
velocity dependent term in Eq. (13). Based on the Lagrangian
LP

ph, we can identify that the canonical momentum P ν for
mode ν is related to the mechanical momentum �ν = mζ̇ν by

P ν = ∂LP
ph

∂ζ̇ν

= �ν − 1

2
ζν ′bαν ′

j T
αβ

jk b
βν

k = �ν − 1

2
ζν ′Tν ′ν .

(26)

Finally, we arrive at the Hamiltonian for the planar modes as

HP
ph = P νζ̇ν − LP

ph = 1

2m
�ν2 + 1

2
m(ων

0)2ζν
2. (27)

Notice that the Hamiltonian HP
ph is not diagonal in the

canonical conjugate variables P ν and ζν but is diagonal in the
variables �ν and ζν . We need to perform a canonical transfor-
mation in order to diagonalize the Hamiltonian HP

ph in the new
canonical conjugate variables and we then can proceed with the
standard quantization procedure (as in the axial phonon case).

Our strategy is to first quantize the Hamiltonian with respect
to the canonical variables and then choose a nonstandard
linear combination of coordinate and momentum to create
the appropriate raising and lowering operators (this strategy
was described by Baiko [27]). Hence, we use the fundamental
commutation relations

[ζν,ζν ′ ] = 0, [P ν,P ν ′
] = 0, [ζν,P

ν ′
] = ih̄δνν ′ , (28)

which lead to the following commutation relations for the
mechanical momenta

[�ν,�ν ′
] = [P ν, 1

2ζν̄b
αν̄
j T

αβ

jk b
βν ′
k

]+ [ 1
2ζν̄b

αν̄
j T

αβ

jk b
βν

k ,P ν ′]
= −ih̄Tνν ′ �= 0, (29)

in which the antisymmetric property Tνν ′ = bαν
j T

αβ

jk b
βν ′
k =

−bαν ′
k T

βα

kj b
βν

j = −Tν ′ν is used. To diagonalize the Hamil-
tonian in the conventional second quantized form HP

ph =∑2N
λ=1 h̄ωλ(â†

λâλ + 1
2 ) with 2N collective mode frequencies

ωλ > 0 for the stable ion configurations, we look for the
phonon creation operator â

†
λ in the presence of the magnetic
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field as the unconventional superposition of the operators �ν

and ζν ,

â
†
λ = αν

λ�
ν + βν

λζν, aλ = αν∗
λ �ν + βν∗

λ ζν, (30)

with α and β (possibly complex) numbers. The operators âλ

and â
†
λ must satisfy the commutation relation [âλ,â

†
λ′ ] = δλλ′ .

As a consequence, the Hamiltonian HP
ph is required to satisfy

the commutation relation[
HP

ph,â
†
λ

] = h̄ωλâ
†
λ, (31)

with ωλ the normal mode frequency for the planar phonon
(no summation convention on the right-hand side). By direct
substitution of Eq. (30) into Eq. (31), the coefficients αν

λ and
βν

λ must satisfy the following coupled eigenvalue equations:

ωλα
ν
λ = − i

m
βν

λ − i

m
Tνν ′αν ′

λ , (32)

ωλβ
ν
λ = imων

0
2
αν

λ. (33)

Equation (33) can be solved for β in terms of α via βν
λ =

im
ων

0
2

ωλ
αν

λ . Substituting into Eq. (32), we find the α coefficients
satisfy a quadratic eigenvalue problem (QEP)(

mω2
λδνν ′ + iωλTνν ′ − mων

0
2
δνν ′
)
αν ′

λ = 0 (34)

for the eigenvalue ωλ, which is chosen to be a non-negative
frequency. Since QEPs are not so common in physics, we
discuss how to solve them in the Appendix (see also Ref. [28]).
In the simple form in Eq. (34), we can map the QEP onto a
conventional linear Hermitian eigenvalue problem in twice as
many dimensions, which then allows us to use orthonogonality
of eigenvectors and completeness to derive a number of
nontrivial identities of the α eigenfunctions. Details can be
found in the Appendix. For example, if we consider two
different positive eigenvalues ωλ and ωλ′ , the corresponding
eigenvectors satisfy the following orthogonality relation:

2N∑
ν=1

(
ωλωλ′ + ων

0
2)

αν∗
λ αν

λ′ = 0, λ �= λ′, (35)

which is derived in the Appendix. The normalization of αν
λ is

fixed by the following commutation relation:

[âλ,â
†
λ′ ] = −ih̄αν∗

λ Tνν ′αν ′
λ′ + h̄mων

0
2
(

1

ωλ

+ 1

ωλ′

)
αν∗

λ αν
λ′

= h̄mαν∗
λ αν

λ′

[
ων

0
2

ωλ

+ ωλ′

]
= δλλ′, (36)

which has been simplified by using Eqs. (34) and (35).
We are interested in representing the operator ζν in terms

of the raising and lowering operators âλ and â
†
λ so we can

relate the displacement δRα
j in the plane to the collective mode

operators âλ and â
†
λ. Using Eq. (30), ζν is related to âλ and â

†
λ

via

αν∗
λ â

†
λ − αν

λâλ = (αν∗
λ βν

λ − αν
λβ

ν∗
λ

)
ζν = 2i

mων
0

2

ωλ

∣∣αν
λ

∣∣2ζν

(37)

= i

h̄
ζν, (38)

in which the relation βν
λ = imων2

0 αν
λ/ωλ, Eq. (A6), and

Eq. (A7) are used. Hence,

ζν = −ih̄
∑

λ

(
αν∗

λ â
†
λ − αν

λâλ

)
. (39)

This expression is crucial for the discussion of the planar
modes in a quantum simulation. The β component of the
ion displacement associated with phonon coherent state in
the Heisenberg picture can be evaluated as〈

δR
β

j

〉 = 2h̄
∑

λ:ωλ>0

∑
ν

Re
{
iαν

λb
βν

j φλe
iωλt
}

(40)

= −2h̄
∑

λ:ωλ>0

|φλ|
∣∣αβλ

j

∣∣ sin(ωλt + δλ), (41)

where φλ is the complex eigenvalue for the coherent state |φ〉
(aλ|φ〉 = φλ|φ〉), δλ is the phase angle for mode λ, |φλ| is the
average phonon occupation for mode λ, and α

βλ

j =∑ν αν
λb

βν

j

is the projection of λ state at site j along the β orientation.

D. Effective spin Hamiltonian with axial phonon modes

We discuss the generation of effective spin-spin couplings
from an optical dipole force within the context of the Penning
trap experiment at NIST, which uses ions of beryllium
(modifications for other systems would be straightforward,
but are omitted here). Consider the hyperfine qubit states
|↑Z〉=| 2S1/2,mJ = 1/2〉 and |↓Z〉=| 2S1/2,mJ = −1/2〉 in a
9Be+ ion. The qubit level splitting in the presence of a magnetic
field of magnitude Bz = 4.46 T (due to Zeeman effects) is
approximately 2π × 124 GHz. Even though the 9Be+ nuclear
spin is not a spin singlet, the nuclear spin dynamics can be
completely frozen out by optically pumping the nuclear spin
to the single nuclear spin state mI = +3/2 throughout the
duration of an experiment [8,18,22], which is what we assume
is done here.

A spin-dependent force along the Z axis of the Bloch sphere
is generated through a σZ gate [29], which is implemented by
a coupling of the qubit states with the excited states (|↑Z〉
↔| 2P3/2,mJ 〉 and |↓Z〉 ↔| 2P3/2,mJ 〉) via two off-resonant
laser beams with different angular frequencies ωU,ωL and
wave vectors kU,kL, respectively. The ac Stark shift due to the
interference of two linear-polarized beams for an ion labeled by
j generates the following spin-dependent force (after adjusting
the polarization of the laser beams) [8]:

ĤOD = −
N∑

j=1

FO

δkz

cos(δkzẑj − μt)σZ
j , (42)

where the transverse wave number |kU − kL| = δkz ≈
2k sin(θR/2)(|kU | = k ≈ |kL|) is determined by the magnitude
of the wave vector difference between the two beams, θR/2
is the angle between the beam with respect to the tangential
orientation of the two-dimensional crystal plane, μ = ωU −
ωL is the beat-note frequency given by the frequency difference
of the two beams, and ẑj = δR̂z

j is the displacement of the
transverse phonons along the axial direction z. The Pauli
spin operator shows that the force is equal in magnitude,
but opposite in direction for each of the two spin states of
the beryllium ion (hence, it is known as a spin-dependent
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force). In the Lamb-Dicke limit, we have |δkzδR̂
z
j | 
 1, so the

interaction HOD can be further reduced to the form

HOD = −
N∑

j=1

FOδR̂z
j sin(μt)σZ

j (43)

after dropping a term with no δR̂z
j dependence. In this limit,

the spin-dependent force −FO sin μtσ z
j is spatially uniform.

The effective spin Hamiltonian and the time dependent
evolution of the wave function from the Hamiltonian ĤOD

have been rigorously studied when the system is cooled to
low temperature to start from the phonon vacuum [13,30]
immediately before the onset of the quantum simulation. The
evolution of the entangled spin-phonon states is captured by
the time evolution operator

U (t,t0) = exp
[−iHT

ph(t − t0)/h̄
]

exp[−iŴI (t)/h̄]Uspin(t,t0),

(44)

with the operator ŴI (t) determined by ŴI (t) = ∫ t

t0
dt ′V̂I (t ′)

where the interaction V̂I (t ′) is the optical dipole interaction
term expressed in the Heisenberg picture of the bare phonon
states (also called the interaction picture) via

V̂I (t) = exp
[
iĤT

ph(t − t0)/h̄
]
HODF (t)

× exp
[− iĤT

ph(t − t0)/h̄
]
, (45)

in which ĤT
ph is the (time-independent) bare planar phonon

Hamiltonian given in Eq. (20). As a consequence, we find the
effective spin Hamiltonian Uspin(t,t0) is dictated by an Ising
spin Hamiltonian,

Uspin(t,t0) = Tt exp

⎡
⎣− i

h̄

∫ t

t0

dt ′

⎛
⎝ N∑

j,j ′=1

Jjj ′ (t ′)σZ
j σZ

j ′

⎞
⎠
⎤
⎦ ,

(46)

with time-dependent exchange integrals.
These spin-spin exchange integrals are given by [13]

Jjj ′ (t) = F 2
O

4m

N∑
ν=1

bzν
j bzν

j ′

μ2 − ω2
zν

[
1+ cos 2μt− 2μ

ωzν

sin ωzνt sin μt

]
.

(47)

The detailed phonon mode properties ωzν , bzν
j , and bzν

j ′
determine the values of the different spin-spin interactions. The
sign of the effective spin-spin interaction Jjj ′(t) depends on
the redness or blueness of the laser detuning μ with respect to
each phonon mode and the range of the interaction can be tuned
depending upon the magnitude of the laser detuning away from
all the axial phonon modes. In our numerical discussion, we
will show these effects with direct numerical calculations.

Note that the analysis becomes more complicated if there
is a transverse magnetic field present in addition to the spin-
dependent optical dipole force. This is needed for quantum
simulations that employ adiabatic state creation. Nevertheless,
we do not discuss the evolution of the system further here
when there is a transverse magnetic field present. Details of
the case of the Paul trap can be found in Ref. [30].

E. Spin-dependent interaction by planar modes

Let us now discuss the situation where the momentum
transfer from the two laser beams lies in the crystal plane.
One complication of this setup is due to the rotation of
the crystal with respect to the laser beams in the laboratory
frame of reference. Examining the planar-mode coupling is
also important in order to estimate the errors for a quantum
simulation mediated through the axial phonon modes when the
momentum difference h̄(kU − kL) of the two Raman beams is
not oriented precisely along the z axis due to laser alignment
errors. Nevertheless, one can also involve the planar modes on
purpose for quantum simulation, which may be useful when
the planar modes are far away from the axial modes in energy.
To simplify our discussion, let us choose the orientation of
the planar spin-dependent forces due to the off-resonant laser
beams to be along the x axis in the laboratory frame.

Analogous to the earlier discussion for axial phonon modes,
the ac Stark shift along the x axis for the planar phonon modes
is associated with the effective momentum transfer h̄δkxx̂ due
to the photons via

ĤOD = −
N∑

j=1

FO

δkx

cos[δkxx̂j (t) − μt]σZ
j . (48)

Notice that the ion coordinates x̂j (t) = x0
j (t) + δR̂x

j (t) in the
laboratory frame are determined by the rigid-body rotation of
the ion crystals with the x axis chosen along the orientation
of the effective wave vector kU − kL = δkxx̂ in the laboratory
frame and fluctuations δr̂x

j (t) in the laboratory frame. Hence,
in the Lamb-Dicke limit |δkxδr̂

x
j | 
 1, the optical dipole

interaction ĤOD is described by

ĤOD =
N∑

j=1

FOδr̂x
j (t) sin

[
δkxx

0
j (t) − μt

]
σZ

j , (49)

where the phase δkxx
0
j (t) − μt for the planar modes is modu-

lated by the rotation of the crystal for the ion coordinates in the
laboratory frame given by x0

j (t) = R0
j cos(−ωt + φ0

j ) with the
static phase φ0

j determined by the equilibrium configuration
in the rotating frame with respect to the orientation of the
spin-dependent force acting along the direction x̂ at the initial
time t0 = 0. Hence, the optical dipole interaction in Eq. (49)
can be expanded in harmonics of �. We expect the effective
spin-spin interaction due to the planar modes to be sensitive to
the rotational angular frequencies and the laser detuning μ. The
value of the spin-spin interaction is sensitive to the structure
of the different planar modes. Using the standard partial wave
expansion [31], we can expand the function sin[δkxx

0
j (t) − μt]

in harmonics of � as

sin
[
δkxx

0
j (t) − μt

]
=
∑

l

fl(t)jl(δkxR
0
j )Pl

[
cos
(− �t + φ0

j

)]
, (50)

where the function fl satisfies fl(t) = il(2l + 1) sin μt for
an even integer l, and fl(t) = il−1(2l + 1) cos μt for an odd
integer l. The function jl is the spherical Bessel function
of the first kind, and the function Pl[cos(−�t + φj )] is the
Legendre polynomial in harmonics of �. Notice also that the
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fluctuations δr̂x
j are related to the fluctuations due to phonons

in the rotating frame as δr̂x
j = δR̂x

j cos �t + δR̂
y

j sin �t . It is
tempting to simplify the discussion further based on the belief
that one can tune the laser such that only one targeted planar
mode is closest in energy. Considering the narrow bandwidth
of the planar modes, which is roughly an order of magnitude
narrower than the bandwidth of the axial modes, the optical
dipole interaction due to the planar phonon modes cannot
usually be described by a single phonon mode even when
the laser detuning is close to that mode. Therefore, we do
not take this strategy for the planar modes. In the following
discussion, our derivation of the effective spin Hamiltonian is
not restricted to any particular laser detuning or phonon band.

Following the procedure we mentioned earlier, the effective
spin Hamiltonian due to the optical dipole interaction can be
extracted by the commutation relation as

Ĥspin = i

2h̄
[ŴI (t),V̂I (t)], (51)

in which the definitions V̂I (t) =
exp[iĤ P

pht/h̄]ĤOD(t) exp[−iĤ P
pht/h̄] and ŴI (t) =∫ t

0 dt ′V̂I (t ′) are applied again. After tedious algebra, we
arrive at the following expression for the effective Ising
spin Hamiltonian Ĥspin =∑jj ′ Jjj ′ (t)σZ

j σZ
j ′ with spin-spin

interactions given by

Jjj ′ (t) = h̄F 2
O

∑
νν ′ll′ββ ′λ

jl

(
δkxR

0
j

)
jl′
(
δkxR

0
j ′
)
b

βν

j b
β ′ν ′
j ′

× Im
{[

g
λ′β
j ′l′ (t) + (1 − δββ ′)hλ′β ′

j ′l′ (t)
]
αν ′

λ αν∗
λ

}
× fl(t)Pl

[
cos
(− �t + φ0

j

)]
, (52)

in which the indices β, β ′ run through x,y components of the
normal modes and the time-dependent functions h

λβ

j,l,g
λβ

j,l are
defined by the following expressions:

gλx
j,l ≡ cos(�t)

∫ t

0
dt ′fl(t

′) cos(�t ′)eiωλt
′
Pl

[
cos
(−�t ′ + φ0

j

)]
,

g
λy

j,l ≡ sin(�t)
∫ t

0
dt ′fl(t

′) cos(�t ′)eiωλt
′
Pl

[
cos
(−�t ′ + φ0

j

)]
,

hλx
j,l ≡ cos(�t)

∫ t

0
dt ′fl(t

′) sin(�t ′)eiωλt
′
Pl

[
cos
(−�t ′ + φ0

j

)]
,

h
λy

j,l ≡ sin(�t)
∫ t

0
dt ′fl(t

′) sin(�t ′)eiωλt
′
Pl

[
cos
(−�t ′ + φ0

j

)]
.

(53)

It is possible that results drawn from these general formulas
could be examined in benchmarking experiments such as the
measurement of the spin-echo response or an average spin-spin
interaction, when the laser beams have an effective wave vector
parallel to the crystal plane.

Another interesting limit is the occasion in which the
simulation time T is much shorter than the inverse of the
rotational frequency �T 
 1. In this limit, the optical dipole
interaction is given by

ĤOD = −
N∑

j=1

FOδR̂x
j sin

(
δkxR

0
j cos φ0

j − μt
)
σZ

j , (54)

in which the relation x0
j (t) ≈ R0

j cos φ0
j is used. By direct

evaluation of the effective spin Hamiltonian in Eq. (51), the
effective Ising Hamiltonian Ĥspin can be cast into the form

Ĥspin = h̄F 2
O

∑
jj ′λνν ′

Im
[
αν∗

λ αν ′
λ f λ

j (t) sin (φ0
j ′ − μt)e−iωλt

]
× bxν

j bxν ′
j ′ σZ

j σZ
j ′ ,

f λ
j (t) ≡

∫ t

0
dt ′eiωλt

′
sin
(
φ0

j − μt ′
)
. (55)

Since the contribution from fast oscillatory frequency compo-
nents in Ĥspin is expected to be small because the contribution
to the quantum phases are averaged out, we disregard the high-
frequency modes ±2μ under the rotating wave approximation.
We arrive at the main conclusion that the effective spin
simulator in the slow limit (�T 
 1) can be described by the
static Ising model with the interaction Ĥspin =∑jj ′ J

0
jj ′σ

Z
j σZ

j ′
in which the static Ising coupling is given by the expression

J 0
jj ′ =

∑
λνν ′

h̄F 2
O

2(μ2 − ω2
λ)

[
ωλ cos φjj ′Re

{
α∗ν

λ αν ′
λ

}
−μ sin φjj ′ Im

{
α∗ν

λ αν ′
λ

}]
bxν

j bxν ′
j ′ , (56)

and the angle φjj ′ = φ0
j − φ0

j ′ is determined by the ion
equilibrium configuration. Because the function sin θjj ′ is odd
for the permutation j ↔ j ′ and the expression

∑
νν ′ b

xν
j bxν ′

j ′

after the permutation ν ↔ ν ′ is unchanged, only the first term
in J 0

jj ′ contributes to the effective Ising Hamiltonian Ĥspin after
the summation over the indices j and j ′. We therefore arrive
at the main conclusion for the planar mode spin Hamiltonian
Hspin =∑jj ′ J

0
jj ′σ

Z
j σZ

j ′ at slow rotation �T 
 1, where the
spin-spin interaction is described by

J 0
jj ′ =

∑
λνν ′

h̄ωλF
2
ORe{α∗ν

λ αν ′
λ }

2
(
μ2 − ω2

λ

) bxν
j bxν ′

j ′ cos φjj ′ . (57)

The effects of the distribution of the ion equilibrium positions
from the interaction in Eq. (54) can be interpreted as a varying
phase fluctuation due to the external symmetry breaking from
the laser beams. In our later numerical discussion, we show
two planar mode branches. One branch has much lower energy
than the other branch. The quantum simulation with phonons
in the lower branch is particularly relevant for experimental
realization when the laser is closely detuned from that branch.
In this case, the larger spin-spin exchange interaction [which
is inversely proportional to μ2 − ω2

λ ≈ 2ωλ(μ − ωλ), where
μ ≈ ωλ] guarantees that the simulation can be realized at
a much shorter time scale before the decoherence from the
environment takes place.

III. NUMERICAL RESULTS

We have discussed above the theoretical formulation for
the description of phonon-mediated quantum spin dynamics.
Due to the inhomogeneity and finiteness of the experimental
systems, numerical studies are necessary to understand the
behavior and facilitate a detailed understanding of current and
future cold-ion experiments in Penning traps.

013422-8



PHONON-MEDIATED QUANTUM SPIN SIMULATOR . . . PHYSICAL REVIEW A 87, 013422 (2013)

FIG. 2. One-to-two plane transition frequency for different num-
bers of ions N . The vertical dashed line shows the deconfinement
frequency for VW = 0. For larger values of VW , the vertical line
moves to the right, reducing the frequency range for the rotating wall,
where the single plane is stable, while the one-to-two plane transition
line hardly changes.

A. Typical system parameters

We consider 9Be+ ions trapped in a static magnetic field
with a rotating wall potential VWρ2 cos 2(θ + �t) (� > 0).
The axial trapping frequency due to the end-cap potentials
eV0 = 1

2mω2
z is fixed at the value ωz = 2π × 795 kHz (in units

of rad/s) as typically applied in experiments. We measure all
angular frequencies in units of ωz. For example, we define the
frequency scale ωW associated with the rotating wall potential
VW by the relation ωW = √

2e|VW |/m. We choose cases with
very weak, weak, and strong rotating wall potentials given by
the corresponding values ωW = 0.01ωz,0.04ωz, and 0.07ωz.
The cyclotron frequency ωc associated with the magnetic field
is ωc = eBz/m. With the magnetic field Bz = 4.5 T, the value
of the cyclotron frequency is given by ωc = 9.645ωz. The
beryllium ion has an atomic mass m = 9.012 182 u, where u
is the atomic mass unit, and has a positive unit charge e =
1.602 176 46 × 10−19 C.

Based on our theoretical discussion above, the system is
energetically stable when the rotational frequency � due to
the rotating wall potential lies between the deconfinement
transition frequency ωdc and the one-to-two plane transition
frequency ω12. The deconfinement frequency ωdc is deter-
mined by the criterion β3 = 0. This deconfinement criterion
can be recast into the following form:

ωdc = ωc

2
−
√

ω2
c

4
− ω2

z

2
− ω2

W . (58)

The one-to-two plane transition frequency ω12 needs to be
reliably determined numerically by the instability of the axial
phonon frequencies. We can map out the one-to-two plane
instability by calculating when the axial phonon frequencies
first become imaginary, as shown in Fig. 2 for VW = 0. The
one-to-two plane transition frequency depends only weakly on
the wall potential via the change of the equilibrium coordinates
due to the presence of the wall.

In our numerical discussion, we choose three rotation
frequencies � = ω12 − �, � = 0.5(ω0

dc + ω12), � = ωdc +

�[ωdc depends on VW ] with the frequency offset � =
2π × 200 Hz where the frequency ω0

dc is the deconfinement
frequency at zero rotating wall potential (VW = ωW = 0).
Equivalently, instead of the rotational frequency, we report
the effective trapping frequency in the crystal plane ωeff =√

ωc� − �2 − eV0
m

, where the relation eV0 = 0.5mω2
z is used.

Thus, we can report the corresponding scaled effective fre-
quency ωh = 0.21ωz for the high-rotational-frequency case
ω12 − �, the corresponding mean effective trapping fre-
quency ωm = 0.16ωz for the mean-rotational-frequency case
0.5(ω0

dc + ω12), and the low effective trapping frequencies
for the low-frequency case � = ωdc + � with very weak,
weak, and strong rotating wall potentials as ωV W

l = 0.05ωz,
ωW

l = 0.06ωz, and ωS
l = 0.09ωz, respectively. We have three

cases for the low-frequency case because the deconfinement
frequency depends strongly on the wall potential near the low
frequency, so it must change with the wall potential; for the
other two cases the dependence is so small that we ignore it.

B. Equilibrium configurations

To seek for the equilibrium configuration of crystallized
ions in the trap, we generate a seed lattice of finite size, which
takes the form of a triangular lattice near the center and has
the boundary as a closed hexagonal shell, with six facets. We
look for a stable equilibrium configuration which minimizes
the Hamiltonian in the rotating frame, assuming none of the
ions are moving. We find this procedure always guarantees that
we find a local minimum that looks like a triangular lattice in
the center, just as is found in experiment but has an elliptical
boundary which is shaped by the equipotential of the effective
trapping potential (this approach appears to be similar to that
in Ref. [16], but we use a different potential by including the
rotating wall, while it is different from the approach used in
Ref. [17]). The minimization procedure employs both a locally
calculated gradient and a locally calculated Hessian matrix,
similar to the method described in Ref. [32]. We used the
MATLAB optimization toolbox and our own code to calculate
these minimal configurations, and results between the two
codes agreed very well.

The construction of the seed lattice is based on a closed-
shell construction analogous in spirit to closed-shell electron
configurations for atoms. More specifically, for any particle
number such as N = 217, we first determine how many closed
hexagonal shells can be created with that number of ions. The
lattice is a closed hexagonal lattice if the boundary of the initial
seed lattice forms a perfect hexagonal shape. The number of
the closed hexagonal shells S is related to the number of ions
N for the seed lattice by

S =
⌊√

9 + 12(N − 1) − 3

6

⌋
. (59)

If the number of ions N cannot fill an integer number
of hexagonal shells, the outermost ions are placed on an
incomplete outer hexagonal ring according to the minimal
potential energy at each of the outer-ring sites (the energies
are different because the outer ring is not elliptical in shape,
especially when VW is nonzero). For the case with N = 217,

013422-9



C.-C. JOSEPH WANG, ADAM C. KEITH, AND J. K. FREERICKS PHYSICAL REVIEW A 87, 013422 (2013)

−10 −5 0 5 10
−8

−6

−4

−2

0

2

4

6

8

x/l
0

y/l
0

FIG. 3. (Color online) Spatial configuration for a seed lattice with
N = 217 ions. The spatial dimension is scaled by the characteristic
length in the axial direction ẑ as l0 = ( kee

V0
)

1
3 = ( 2kee

2

mω2
z

)
1
3 . The red cross

denotes the point where the external potential due to the electrodes
vanishes. The minimal ion configuration often, but not always, has
an ion located at this energy minimum.

an integer number of closed hexagonal shells are generated in
the seed lattice (S = 8), which is shown in Fig. 3.

In Fig. 4, we show spatial equilibrium configurations at
different rotational frequencies with the same fixed weak
rotating potential ωW = 0.04ωz. We expect that the anisotropy
introduced by the rotating wall potential ωW is minimal when
the effective trapping potential dominates over the rotating
wall potential ωW . As shown in the Fig. 4(c), we clearly
observe that the ions are arranged much more isotropically
with a much higher density than Figs. 4(a) and 4(b) due to the
large effective trapping in the plane. Note how the seed lattice
smoothly evolves from a nice triangular lattice in the center
to a boundary that takes the minimal, elliptical shape, of the
potential at the edges, in the stable equilibrium positions.

To further quantify the change in isotropy, we define the
distortion of the crystal as the aspect ratio of the major axis
to the minor axis of the elliptical edge. Figure 5 shows the
dependence of this distortion on the rotational frequencies ωeff

and rotating wall potential ωW . With a fixed rotating wall
potential, we observe that the lattice is more distorted with a
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FIG. 4. (Color online) Equilibrium structures for different rotat-
ing frequencies. (a) Low effective trapping frequency ωW

l = 0.06ωz.
(b) Medium effective trapping frequency ωm = 0.16ωz. (c) High
effective trapping frequency ωh = 0.21ωz. The wall potential is
ωW = 0.04ωz for all cases.
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FIG. 5. (Color online) Dependence of the crystal distortion ratio
(or aspect ratio) on the rotational frequency ωeff and the rotating
wall potential ωW . The black solid curve represents a strong
rotating wall with ωW = 0.07ωz. The green dashed curve is a weak
rotating wall potential with ωW = 0.04ωz. The red dotted curve is a
very weak rotating wall potential with ωW = 0.01ωz. The colored dots
are the principle cases we examine with more detailed calculations
for much of the remaining numerical work.

weaker effective frequency ωeff . The effect is much larger for
the strong rotating wall potential ωW . This shows that the role
of the rotating wall potential is not always negligible. Its effect
can only be neglected when the ratio between the potential and
effective trapping frequency ωW/ωeff is smaller than one.

Figure 6 shows how the ion spacing of the equilibrium
structure changes as a function of the distance from the origin.
To compute the lattice spacing for a given ion, we find its
nearest neighbors using a Delaunay triangulation algorithm

FIG. 6. (Color online) Ion spacing dependence as a function of
the distance ρ from the origin. The black, green, and the red symbols
denote, respectively, the data with a strong rotating wall potential
ωW = 0.07ωz, a weak rotating wall potential ωW = 0.04ωz, and a
very weak rotating wall potential ωW = 0.01ωz. The values of the
corresponding effective trapping frequencies ωeff are shown in the
legend. The same parameter sets as in Fig. 5 are used.
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FIG. 7. (Color online) Eigenfrequencies of the upper (cyclotron-
like) branch of the planar modes. The same parameter sets and
notation are used as in Fig. 5.

and then calculate the mean distance from that ion to those
nearest neighbors. Each data point represents the mean nearest-
neighbor ion spacing for each ion at a different radius ρ. When
we have a strong rotating wall and a weak effective potential,
we expect the ions are more widely spread out and are pushed
more along the weakly confined direction. This can be seen
in the data sets with colored triangles, which have a larger
mean nearest-neighbor distance and a larger spread about the
average. For the data sets with colored squares and circles
(weaker rotating wall potential), we observe much smaller
mean nearest-neighbor distances with much less spread.

C. Normal modes

In this section, we discuss the nature of the normal
modes including the energy spectrum and properties of the
eigenvectors. Here we present the eigenfrequencies from each
of the three phonon branches (one branch from the axial
degrees of freedom and two branches from the planar degrees
of freedom). We find in general that the three branches
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FIG. 8. (Color online) Eigenfrequencies of the axial modes. The
same parameter sets and notation are used as in Fig. 5.
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FIG. 9. (Color online) Eigenfrequencies of the lower (magnetron-
like) branch of the planar modes. The same parameter sets and
notation are used as in Fig. 5.

are well separated in energies with the bandwidth strongly
dependent on the equilibrium configuration of the ions. The
upper planar modes (shown in Fig. 7) have the character
of the high-frequency cyclotron motion renormalized by the
Coulomb interaction between ions and the lower planar modes
(shown in Fig. 9) have the character of the low-frequency
magnetron motion. The eigenfrequencies of the axial mode
branch shown in (Fig. 8) lie between the two planar mode
branches. In each figure, the modes are sorted by ascending
frequency. In general, eigenfrequencies depend mostly on the
effective frequency ωeff and are less sensitive to the small
perturbation due to the rotating wall potential ωW even though
the character of the eigenvectors can be quite sensitive to the
rotating wall potential.

In Fig. 7, the dependence of the cyclotronlike eigenfrequen-
cies on the rotating wall potential and rotational frequency
is shown for the nine typical cases we examine in our
numerical results. Cases are represented by the same color
for the same ωW with the same symbol shape for the same
ωeff . Note how it is the effective frequency that primarily
determines the frequency spectrum, with a separation due
to the rotating wall potential only becoming clearly visible
when that potential is strong. In addition, note the lowering
of the lowest eigenfrequency with large ωeff , which signals
a collective feature due to Coulomb interactions (colored
circles).

In Fig. 8, we observe one axial mode (the highest one) which
has a universal eigenfrequency with ω = ωz independent of
the parameter sets. This is due to the fact that the uniform
center-of-mass motion along the axial direction does not cost
any Coulomb energy and has the same trapping energy in
the axial direction so it is independent of the rotating wall
potential applied in the crystal plane. This is shown as the
intersection of the highest axial modes for all the parameter
sets at the highest axial frequency (ω = ωz). The other phonon
modes have lower eigenfrequencies than the center-of-mass
(c.m.) mode. This can be interpreted as the reduction of
the Coulomb interaction due to the increase of the average
ion spacing from the phonon displacement when the wave
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vector is nonzero (for the c.m. mode, the phonon does not
change the relative displacement of the ions, so the Coulomb
interaction is unchanged). This interpretation also agrees with
the observation that the axial mode branches for large ωeff lie
lower in energy as most explicitly shown with the colored circle
data. The phonon frequencies near the c.m. mode have been
verified against experimental measurements using a technique
that can measure the effective temperature per phonon mode
and the actual frequency of each phonon mode [23].

In Fig. 9, we plot the lowest (magnetronlike) planar
modes for the same nine cases. When there is no rotating
wall potential, the lowest-frequency mode is that of a rigid
rotation, which costs no energy since the potential in the plane
depends only on the radius in that case. This zero-energy
mode is the Goldstone mode due to the spontaneous rotational
symmetry breaking of the equilibrium configuration. As we
break the rotational symmetry by turning on a wall potential,
the Goldstone mode “acquires mass” and becomes nonzero,
but often remains a very-low-frequency mode with a near rigid
rotation character. The bandwidth of this branch of planar
modes is quite sensitive to the effective trapping frequency
ωeff as can be shown by examining the the colored circle and
colored square cases. The bandwidth is only slightly dependent
on the rotating wall potential, as can be seen with the colored
triangular cases.

As the rotational frequency is increased relative to the axial
frequency, the confinement in the plane becomes tighter and
tighter until, suddenly, the system becomes stabilized in a two-
plane configuration. As we approach this critical frequency,
the axial mode phonon bandwidth grows tremendously, as
the lowest axial frequency marches down and eventually
becomes lower than the maximal magnetronlike planar phonon
frequency (which increases with the rotational frequency but
not as rapidly), as shown in Fig. 10. The overlap occurs
(at ωeff = 0.2189ωz), quite close to the critical one-to-two-
plane transition (ωeff = 0.2202ωz) for a rotating wall potential
corresponding to ωW = 0.04ωz.

We now discuss the nature of the eigenvectors for the
different phonon modes. In general, we find phonon modes
to either be collective, where all of the ions move with a long
wavelength, similar to the drumhead modes of the continuum,
or to be localized, where the motion is confined primarily to
a small fraction of the ions. It is the long-wavelength modes
that are most important for quantum simulation, so we focus
on them. For the axial branch, these modes lie close to the c.m.
mode (at high frequency), while for the magnetronlike branch,
they are close to the rigid rotation mode, at low frequency. In
Fig. 11, we show the four highest frequency modes of the axial
branch and in Fig. 12, we show the two lowest frequency modes
of the upper (cyclotronlike) branch and lower (magnetronlike)
branch planar modes, all for the same parameters as in
Fig. 4. Unlike Fig. 4, our focus is on the character of the
eigenvectors instead of the absolute size of the equilibrium
configurations, so we have rescaled the positions to make the
ion positions have similar widths in all panels. Similarly, the
color scales used for the axial modes and the arrow lengths
used for the planar modes are both adjusted for each panel
to highlight the details of the motion and should not be
used to compare relative ion displacements from one panel to
another.

FIG. 10. (Color online) Comparison of the phonon bandwidths
for the axial (red) and lower (magnetronlike) planar (blue) branches
for a fixed weak rotating wall potential. As the effective trap frequency
increases, the lowest frequency of the axial mode decreases as the
largest (magnetronlike) lower-branch planar frequency increases until
they overlap very near the one-to-two plane transition. The uppermost
axial mode is fixed, while the lowest planar mode does not change
significantly with ωeff .

We start with the axial modes in Fig. 11. The leftmost mode
is the c.m. mode which involves uniform motion of all of the
ions for all cases. If we start examining the next two modes in
Figs. 11(j) and 11(k) and Figs. 11(f) and 11(g), we see that they
are two nearly degenerate states due to the weak anisotropy

(a) (b) (c) (d)

(e) (f) (g) (h)

(i) (j) (k) (l)

 
 

0

1

−1

FIG. 11. (Color online) Four highest-frequency axial eigenvec-
tors for three different effective trapping frequencies with a weak
rotating wall potential ωW = 0.04ωz. Subplots (a)–(d) present the
case with a low effective trapping frequency ωW

l = 0.06ωz, (e)–(h)
present the case with a mean effective trapping frequency ωm =
0.16ωz, and (i)–(l) represent the case with a high effective trapping
frequency ωh = 0.21ωz. The color in the color bar represents the
scaled value of the normalized eigenvector bνz

j with respect to its
maximal positive component for the mode ν.
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(a) (b) (c) (d)

(e) (f) (g) (h)

(i) (j) (k) (l)

FIG. 12. A snapshot of the spatial eigenvectors for the lowest
two modes in each planar branch at the fixed rotating wall potential
ωW = 0.04ωz. Subplots (a) and (b), (e) and (f), and (i) and (j) show
the lowest two planar modes in the upper branch with the effective
trapping frequencies ωW

l = 0.05ωz, ωm = 0.06ωz, and ωh = 0.09ωz,
respectively. Subplots (c) and (d), (g) and (h), and (k) and (l) on the
right panel are the corresponding data for the lower branch of the
planar phonon modes.

generated by the rotating wall, and they are almost related by
a rotation by π/2. Interestingly, as the effective frequency gets
smaller in Figs. 11(b) and 11(d), we find that the anisotropy
forces another mode in Fig. 11(c) between these two closely
related modes. The remaining mode in Figs. 11(h) and 11(l) is
close to the next drumhead mode which has two lines of nodes.
This feature is lost with strong-enough anisotropy in Fig. 11(c).
The anisotropy increases because the slower rotating crystals
feel the effect of the wall potential more strongly. These first
few modes agree well with a continuum elastic theory for
the normal modes [33,34]. One interesting feature of all the
eigenstates is that the spatial variations are periodic along
the circumference of the ion cloud but there is no constraint
along the radial direction. The quantum dynamics of any axial
normal mode ν can be understood as the collective quantized
oscillation with the eigenfrequency ωzν along the ẑ axis with
the given snapshot of the eigenvector bzν

j shown in Fig. 11.
Due to the presence of the magnetic field, the ion displace-

ment in the xy plane is chiral arising from the coupling of the
dynamics between the x and y components of the same ion.
We show that the lower branch of the planar modes is the slow
collective renormalized magnetron modes inherited from the
single ion features under E × B drift. The higher branch of the
planar modes, however, are the fast renormalized cyclotron
modes mostly inherited from the the single-ion features under
the the strong static magnetic field Bzẑ. The snapshot of the
lowest two eigenmodes in the two branches are shown in
Fig. 12. The corresponding magnitude of the displacement
for a mode λ is represented by the length of the arrow and the
direction of the arrow represents the displacement of the ion
at the time when the snapshot is taken.

However, to understand the character for the planar mode
λ, it is revealing to show the time evolution of the snap-
shots based on the displacement of the phonon coherent
state due to the mode λ projected on the ion lattice po-
sitions (〈δRxλ

j (t)〉,〈δRyλ

j (t)〉) ∝ (|αxλ
j | cos ωλt,|αyλ

j | cos ωλt),
where the phase δλ can be chosen to be −π/2 in Eq. (41) for our
purpose. We provide a movie of this in the supplementary ma-
terial [35]. Here we summarize what we have observed for the
dynamics of the planar modes. Figures 12(b), 12(f), and 12(j)
show the lowest collective cyclotron modes for different
effective trapping frequencies. We observe that each ion shows
clockwise cyclotron motion around its equilibrium position
in the rotating frame. The second-lowest cyclotron modes
shown in Figs. 12(a), 12(e), and 12(i) also show clockwise
cyclotron motions for each ion around its equilibrium but with
nonuniform fluctuations on the magnitude of the displacement.
The quantum dynamics for the renormalized cyclotron modes
are described by the dynamics of the quantized cyclotron
orbits. Since these orbits have much higher energy than the
lower branch of the planar modes, the quantized cyclotron
orbits have much smaller average radius.

In Figs. 12(d), 12(h), and 12(l), we show the global shear
mode (lowest mode in the lower branch), which is adiabatically
connected to the global rotational mode at very weak rotating
wall potential, with zero frequency in the rotating frame. The
normal mode displacement, in principle, oscillates back and
forth infinitesimally slowly along the elliptical shell of the
equilibrium configurations. The snapshots of those modes
are taken at different initial conditions and therefore with
different orientations of the displacement. In Figs. 12(c), 12(g),
and 12(k), we observe multiple fragmented shear domains with
different signs of circulation. The circulation with one sign of
circulation is always suppressed at low energy.

D. Ising spin-spin interactions

Now that we have described the phonon properties, we are
ready to describe the properties of spin-spin interactions when
the laser is detuned close to different branches of the phonon
modes.

Let us focus on the axial phonon modes first which have
been used to benchmark the mean spin-spin interactions
between hundreds of spins in a Penning trap [8]. We calculate
the static spin-spin interaction Jij between ions i and j based
on Eq. (47).

In Fig. 13, the detunings δ = μ − ωz range from 0.0001ωz

to ωz, all detuned to the blue of the c.m. mode. In this
case, all of the interactions are antiferromagnetic and they
decay with a power law depending on the distance between
two spins (Jij ∝ r−α

ij ). The power law increases from α = 0,
when the detuning is very close to the c.m. mode to α = 3,
when the detuning is far away from the c.m. mode. We observe
that the case of weak effective trapping allows for a much
more rapid approach to the limit of dipole-dipole interactions
(α = 3) at large detuning, as shown by the data sets with
colored triangles.

We next examine what happens when we detune the
spin-dependent optical dipole force to lie in between different
axial modes. In this case, the interaction Jij does not reveal
well-defined power-law behaviors and is frustrated with
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FIG. 13. (Color online) Detuning above the axial modes (blue of
the c.m. mode). As in Fig. 2(b) of Ref. [8], a detuning μ = δ + ωz

above ωz yields a power-law-like decay of Jij ∝ r−α
ij as a function of

the ion distance, rij . The legend presents the values for the effective
trapping frequencies in units of ωz. Here we plot the exponent of the
fitted power law as a function of the detuning.

different signs; therefore, we report histograms of the spin-spin
interactions. We choose the following four detunings: the mean
of the first- and second-lowest frequency axial modes, the
mean of the 72th and 73th axial modes, the mean of the the
144th and 145th axial modes, and the mean of the first- and
second-highest frequency axial modes. In Fig. 14, we observe
the distribution of the interaction Jij is more symmetric about
zero when the detuning μ is located near the central part of
the axial modes such as cases (b) and (c). In addition, by our
more detailed studies, we found that the spin-spin interaction
Jij is randomly disordered with distance but is correlated
with the polar angle between ions. This can be interesting for
further studies of disordered spin dynamics with the spin-spin
interaction. However, the interaction Jij becomes asymmetric
when the detuning μ is located elsewhere. We also notice that
the fluctuations of Jij are larger when the detuning is closer to
the high-frequency portion of the axial modes.

Below the axial modes, the detunings are chosen with
an equal spacing from just below the lowest-frequency axial
mode, to 0.3ωz which is sufficiently far from the lower-branch
planar modes for the effective trapping ωm. For large detuning
|δ|, we still observe the majority of the spin-spin interaction
Jij follows the power-law scaling Jij ∝ 1/rα

ij except for
the case with very small detuning such as the case with
δ = −0.292 77ωz in Fig. 15.

Similar to calculating the spin-spin interaction Jij for the
axial modes, we use Eq. (57) to calculate the Jij for the planar
modes. In Fig. 16, we present the planar spin-spin interaction
Jij as a function of the distance r between ions. We show
that the couplings Jij do not follow a well-defined power-law
scaling, but the distribution better resembles the symmetric
histogram in Fig. 14(b). Detuning the lasers near the lowest
lower-branch planar mode at μ = 1 × 10−5ωz, between the
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FIG. 14. (Color online) Detuning inside the axial mode branch
with an effective trapping ωm = 0.16ωz and the weak rotating
wall potential ωW = ωW

l = 0.06ωz for N = 217. (a) Detuning δ =
0.005 67ωz below ωz exactly between the two highest modes with
99.93% of the Jij in the plot. (b) Detuning δ = 0.1174ωz below ωz

exactly between the �2N/3� and �2N/3� + 1 modes with 99.28%
of the Jij in the plot. (c) Detuning δ = 0.1921ωz below ωz exactly
between the �N/3� and �N/3� + 1 modes with 59.73% of the Jij in
the plot. (d) Detuning δ = 0.2926ωz below ωz exactly between the
two lowest modes with 63.65% of the Jij in the plot. The inset green
curves are generated from Fig. 8, with the arrow indicating where the
detuning lies.

lower- and upper-branch planar modes at μ = ωz, and above
the upper-branch planar modes at μ = 10ωz corresponds to
Figs. 16(a), 16(b), and 16(c), respectively. The darker colors
(red, green, blue) represent positive Jij and the lighter colors
(magenta, yellow, cyan) represent negative Jij values for the
same parameter set. One can observe that all Jij are almost

FIG. 15. (Color online) Dependence of the spin-spin interaction
as a function of the distance r between the ions for a detuning
below the axial modes (red of the lowest axial mode). The effective
trapping ωm = 0.16ωz and the weak rotating wall potential ωW =
ωW

l = 0.06ωz are used.
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FIG. 16. (Color online) Dependence of planar spin-spin interac-
tion as a function of the distance r between ions for various detunings:
(a) μ = 1 × 10−5ωz; (b) μ = ωz; (c) μ = 10ωz. The darker colors
illustrate positive Jij and the lighter colors illustrate negative Jij .
The effective trapping ωm = 0.16ωz and the weak rotating potential
ωW = ωW

l = 0.06ωz are used.

equally distributed among positive and negative values for all
the cases without showing any clear signature of power-law
behavior. The significant reduction of the Jij for large μ in
cases (b) and (c) is predominantly due to the large μ causing a
reduction to the contribution [μ2 − ω2

λ]−1 in Jij . Note also that
the factor of ωλ is roughly compensated by the normalization
of αλ in Eq. (36).

In Fig. 17, we examine whether there is any peculiar
spatial dependence to the Jij patterns for the case with
μ = 1 × 10−5ωz. In Figs. 17(a) and 17(c), we select the center
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FIG. 17. (Color online) Angular correlation of Jij with μ = 1 ×
10−5ωz. (a),(c) The subshell definition for the ion at the center and for
an outer ion. (b),(d) The spin-spin interaction Jij of these subshells
as a function of radius r . The effective trapping ωm = 0.16ωz and the
weak rotating wall potential ωW = ωW

l = 0.06ωz are used.

and an outer ion as the reference point respectively (shown
with the black star �) and calculate the interaction Ji� between
each ion i with respect to the reference ion. In order to study
the dependence of Ji� on the ion distance r , we define the
subshells of the crystal as ions that have a similar radius from
the reference ion. In Figs. 17(a) and 17(c), ions are in the
same subshell if they are illustrated with the same shape and
color. From this new origin, we define θi as the polar angle
with respect to the reference ion and plot the Ji� from each
subshell as a function of θi as shown in Figs. 17(b) and 17(d).
Each of these figures shows that the magnitude |Ji�| in each
shell increases with radius as shown by the largest amplitude
of the oscillations for the ions in the same shell (data points
with the same color data) and Ji� alternate in sign at a certain
fixed orientation θi . In addition, the interaction Ji� alternates
within the same subshell, which is very different from the axial
modes. These oscillatory correlations appear to exist for other
detunings such as μ = ωz or μ = 10ωz as well. Noticeably,
as shown in Fig. 17(c), the interaction Ji� is stronger for ions
situated along the orientation θi = π opposite to the orientation
of the laser wave vector δkx(θi = 0) due to the symmetry
breaking of the laser beam. So, in general, the spin model
realized by coupling to the planar modes creates frustration
due to randomness and long-range interaction for spins, which
can be potentially be used as a platform to explore spin-glass
physics, especially since hundreds of ions are accessible in the
Penning trap systems.

IV. CONCLUSION AND DISCUSSION

In this work, we have presented a thorough treatment of the
theoretical background for further development of cold ion
trap computation in a Penning trap, bringing the theory to a
similar level to what has been available for linear Paul trap
simulators for years [13,14]. In particular, we have shown how
to determine the equilibrium positions efficiently, how to find
the phonon modes for motion about the equilibrium positions,
and how to couple the phonon motion to spin-dependent forces
to determine the effective spin exchange between two different
ions. Our work focused on both axial and planar modes. The
latter are more involved because they have velocity-dependent
forces in the rotating frame due to the Coriolis force and
Lorentz force, and require more complicated methods to
perform the normal-mode analysis.

Our results show that in some cases the system is described
by relatively simple Ising models, which can have a transverse
magnetic field added in order to investigate adiabatic state
preparation. However, in many cases, the spin-exchange
patterns are quite complex and will require significant analysis
to understand their behavior. We were forced to restrict
ourselves to examine just a handful of different cases in this
work, because the parameter space is so huge. There may
very well be a number of interesting new results that can be
found by applying our approach to different situations than
what we examined. In any case, this formalism will be quite
important in analyzing the next generation of experiments on
Penning-trap-based cold ion computation, especially for cases
where one maps onto Ising-like models.

Fully understanding actual experiments will, of course,
require much deeper analysis than what was given here. There

013422-15



C.-C. JOSEPH WANG, ADAM C. KEITH, AND J. K. FREERICKS PHYSICAL REVIEW A 87, 013422 (2013)

are intrinsic errors with respect to the target spin Hamiltonian,
noise due to external environments, and spontaneous emission
effects, which may deteriorate the quantum simulation. For
example, in the presence of a transverse magnetic field in an
adiabatic state preparation protocol, it may not be possible to
completely keep the phonon degrees of freedom as only virtual
excitations during the simulation [30]. In addition, there are
errors in the initialization of quantum spin states and of the
phonon states. For example, when the crystal is not sufficiently
cold, there will be a background of phonons present prior to
the start of the simulation. Those can modify the fidelity of the
quantum simulation especially for the low-lying planar modes
and understanding how this works requires future study.
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APPENDIX: DETAILS FOR SOLVING THE QUADRATIC
EIGENVALUE PROBLEM

We discuss some of the general properties of the QEP here,
since this problem is not too well known within the physics
community. Our approach is closely related to the work of
Baiko [27], but generalizes his work to the case we need for
the Penning trap planar phonons. For a more mathematical
discussion, see Ref. [28].

The planar phonon Hamiltonian (in second quantized form)
is given by HP

ph =∑2N
λ=1 h̄ωλ(â†

λâλ + 1
2 ) with the phonon

frequencies all positive (ωλ > 0). In terms of the eigenvectors
αν

λ discussed in Sec. II C, we can solve the collective mode
problem by solving the following QEP and choosing solutions
with positive eigenvalues ωλ > 0:

(
mω2

λδνν ′ + iωλTνν ′ − mων
0

2
δνν ′
)
αν ′

λ = 0. (A1)

Here λ is the label for the different solutions and ν is
the matrix/vector index which is summed over. Hence, this
is a 2N × 2N QEP, with eigenvectors αν

λ . There are 4N

eigenvalues, and hence 4N associated eigenvectors. Because
the QEP is complex, it turns out that the eigenvectors are
not orthogonal, and hence the behavior is different from
a conventional linear eigenvalue problem. We derive the
relations that the eigenvectors do satisfy by mapping the
QEP onto a linear eigenvalue problem and using the well-
known properties of those solutions (this procedure is called
linearizing the QEP).

The QEP can be mapped onto a linear Hermitian eigenvalue
problem as follows:(

− i
m

Tνν ′ ων
0δνν ′

ων
0δνν ′ 0

)(
ωλα

ν ′
λ

ων ′
0 αν ′

λ

)
= ωλ

(
ωλα

ν
λ

ων
0α

ν
λ

)
. (A2)

The 4N × 4N matrix is Hermitian since T is real and
antisymmetric. Note that the QEP, and hence the corresponding
linear eigenvalue problem, both have positive and negative
eigenvalues; for the physical solutions we want, we restrict to
positive eigenvalues only.

It may seem odd that the eigenvalue appears as part of
the eigenvector for this solution, which might bring some
confusion about how one solves such a problem. If we let
Mνν ′ denote the matrix on the left-hand side of Eq. (A2)
and let xν

λ denote the eigenvector, then the equation is
a conventional eigenvalue problem Mνν ′xν ′

λ = ωλx
ν
λ . After

solving this conventional problem, the αν
λ vectors are extracted

from the explicit forms given in Eq. (A2). One might be
concerned about whether the eigenvectors can always be
written in this form, but this always follows from the specific
form of the matrix M .

By taking the complex conjugate of Eq. (A1), we find that
if αν

λ is the λth eigenvector of the QEP with eigenvalue ωλ,
then αν∗

λ is the eigenvector of the QEP with eigenvalue −ωλ.
Hence, the eigenvalues come in ± pairs, with corresponding
eigenvectors of the linear eigenvalue problem (ωλα

ν
λ ων

0α
ν
λ)T

with positive eigenvalue ωλ > 0, and (−ωλα
ν∗
λ ων

0α
ν∗
λ )T with

negative eigenvalue −ωλ < 0 as long as the eigenvalues ωλ and
ων

0 are real. As a consequence, there are 4N eigensolutions (as
expected for a 4N × 4N linear eigenvalue problem) and half
of them have positive eigenvalues ωλ > 0. We organize them
as follows with the positive eigenvalues (ωλ > 0) in the first
2N entries and the negative ones (−ωλ < 0) in the second 2N :

xν
λ =

[
ωλα

ν
λ/cλ for 1 � ν � 2N,

ων−2N
0 αν−2N

λ /cλ for 2N + 1 � ν � 4N,

for 1 � λ � 2N,

xν
λ =

[−ωλα
ν∗
λ /cλ for 1 � ν � 2N,

ων−2N
0 αν−2N∗

λ /cλ for 2N + 1 � ν � 4N,

for 2N + 1 � λ � 4N. (A3)

The eigenvectors xλ form a complete and orthonormal set.
The constants cλ = cλ−2N are chosen to provide the needed
normalization of the αλ eigenvectors, which are not orthogonal,
and are not normalized to unit norm, as described below.

Because the linear eigenvalue problem is Hermitian, its
eigenvectors are orthonormal, implying

∑
ν xν∗

λ xν
λ′ = δλλ′ . If

we choose λ and λ′ to both lie between 1 and 2N , we find

2N∑
ν=1

(
ωλωλ′ + ων2

0

)
αν∗

λ αν
λ′ = cλδλλ′ . (A4)

We choose cλ = ωλ/h̄m in order to satisfy the normalization
condition for the collective mode raising and lowering op-
erators [âλ,â

†
λ′ ] = δλλ′ in Eq. (36). We choose the exact same

positive value for cλ for the corresponding negative eigenvalue
solutions as well (cλ = cλ−2N ).

We can derive three more relations between the α eigen-
vectors by using the completeness of the x eigenvectors∑4N

λ=1 xν∗
λ xν ′

λ = δνν ′ . We start with ν and ν ′ both restricted
between 1 and 2N . This gives∑

λ:ωλ>0

ωλ

(
αν∗

λ αν ′
λ + αν

λα
ν ′∗
λ

) = h̄mδνν ′ . (A5)
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Next, taking 1 � ν � 2N and 2N + 1 � ν ′ � 4N yields

∑
λ:ωλ>0

(
αν∗

λ αν ′
λ − αν

λα
ν ′∗
λ

) = 0. (A6)

Finally, taking both ν and ν ′ to be larger than 2N gives∑
λ:ωλ>0

1

ωλ

(
αν∗

λ αν ′
λ + αν

λα
ν ′∗
λ

) = 1

h̄mων2
0

δνν ′ . (A7)

In all of these relations, the second terms in the parentheses
arise from the negative eigenvalue solutions of the QEP.
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