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Theoretical basis for quantum simulation with a planar ionic crystal
in a Penning trap using a triangular rotating wall
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One of the challenges with quantum simulation in ion traps is that the effective spin-spin exchange couplings
are not uniform across the lattice. This can be particularly important in Penning-trap realizations where the
presence of an ellipsoidal boundary at the edge of the trap leads to dislocations in the crystal. By adding an
additional anharmonic potential to better control interion spacing, and a triangular-shaped rotating wall potential
to reduce the appearance of dislocations, one can achieve better uniformity of the ionic positions. In this work,
we calculate the axial phonon frequencies and the spin-spin interactions driven by a spin-dependent optical
dipole force, and discuss what effects the more uniform ion spacing have on the spin simulation properties of
Penning-trap quantum simulators. Indeed, we find that the spin-spin interactions behave more like a power law
for a wide range of parameters.
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I. INTRODUCTION

The idea of a quantum simulator, where a complex many-
body quantum system is emulated in a controlled analog
quantum computer and the results of the simulation are read
off of the computer by measuring different properties as a
function of time, originated with work from Feynman [1] in
the early 1980s. Cirac and Zoller [2] showed how ion traps
driven by a spin-dependent optical dipole force could realize
quantum computers. Porras and Cirac [3] further described
how one could perform quantum simulations in a Penning
trap. One of the issues with these quantum simulations is that
the ions are not spaced uniformly. On the one hand, this leads to
nonuniform effective spin-spin couplings between the ions; on
the other hand, in one-dimensional linear Paul traps, it leads
to the linear to zig-zag transition, which limits the number
of ions that can be held in the trap in a one-dimensional
linear configuration. It was quickly realized that by adding an
anharmonic potential, which pushes together the farther-out
ions preferentially when compared to the central ions, one can
achieve a more uniform arrangement, and the precise potential
for perfectly uniform trapping is known for the linear Paul
trap [4]. Surprisingly, one can achieve quite uniform crystals
by just adding a quartic potential on top of the conventional
quadratic trapping potential. This ideology has been extended
to the Penning trap by Dubin [5], where he also included a
triangular-shaped rotating wall potential to reduce dislocation
formation, which occurs in two-dimensional Penning traps
when the boundary potential does not have the same symmetry
of the underlying ionic lattice.

While quantum simulation has not yet been fully successful
in the Penning trap (initial steps to generate effective spin-spin
couplings notwithstanding [6]), the linear Paul trap has been
employed to simulate the transverse-field Ising model [7–9],
relativistic dynamics [10], and fermionic models [11]. Our
focus here is on employing the Penning trap as a spin-model
simulator.

In this paper, we extend the analysis of Dubin to determine
the behavior of different numbers of trapped ions, different
wall potentials, and different rotation rates to determine the
stability of these ionic crystals. We further calculate the
axial phonon modes and from them the effective spin-spin
interactions induced by a state-dependent optical dipole force.
We end by discussing the feasibility of the triangular wall for
quantum simulation with ionic crystals in the Penning trap.
The organization of this paper is as follows: in Sec. II, we
describe the theoretical background for the calculations. In
Sec. III, we present the numerical results for the calculations
of the spin-spin couplings of the ions. In Sec. IV, we present
our conclusions.

II. THEORETICAL FORMULATION

The Penning trap confines ions by using an electrostatic
potential that pushes the ions towards the plane with z = 0
and also pushes the ions outwards, radially. A large static
magnetic field curves the radial motion into circles, which
results in a trapped ion crystal (after taking into account the
Coulomb repulsion of each ion). An additional rotating wall
potential, with specified angular symmetry, is then applied to
control the shape of the crystal and its rotation rate. While
many different ions can be employed in a Penning trap, we
will focus on the realization with two hyperfine levels of 9Be+

ions, |2S1/2,mJ = 1/2〉 and |2S1/2,mJ = −1/2〉, localized to
a single plane. An extensive description of such a setup can be
found elsewhere [12]. Cold atoms condensing in such crystals
are candidates for building quantum simulators, owing to the
ease with which these systems can be prepared for a large
number of ions and the precise quantum control of individual
ions which these systems afford [6].

In actual experiments, the ionic crystal often acquires an
increasing number of impurities as a function of time, such
as BeH+ that form due to collisions of the beryllium ions
with hydrogen molecules that are in the dilute background
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gas. While a theoretical treatment that includes the effect of
these impurities is possible [13], we consider only the clean
limit here, where there are no impurities. This simplifies the
analysis below. In addition, experimental protocols to purify
the systems may make this effect less important [14].

The theoretical treatment of the equilibrium positions
and normal modes of the Penning trap requires a careful
analysis, employing standard classical mechanics and then
an appropriate quantization scheme. Details of how to do this
have already been published [15–17]. Here, we provide a quick
summary of that formalism to establish our notation and to
show how the approach needs to be modified for the more
uniform triangular crystals that can be generated in an extra
anharmonic potential with a rotating triangular wall. We begin
with the ion Lagrangian in the laboratory reference frame,
which satisfies

L =
N∑

j=1

[
1

2
mṙ2

j − eφj (t) + eA · ṙj

]
, (1)

where N is the total number of ions, e is the (positive) unit
charge of an electron, and m is the mass of a 9Be+ ion. The
symbol rj = (xj ,yj ,zj ) is the position vector for the j th ion in
Cartesian coordinates, φj (t) is the total scalar potential acting
on the j th ion (including the rotating wall potential), and Aj =
(B × rj )/2 is the vector potential in the symmetric gauge for
the uniform axial magnetic field B = Bzẑ with (Bz > 0). The
scalar potential φj (t) includes the potentials that trap the ions
and the mutual Coulomb repulsion between the ions. It can be
expressed as follows:

eφj (t) = V0

[
z2
j − 1

2
ρ2

j

]
+ 1

2
mω2

effC4ρ
4
j

+VWρ3
j cos[3(θj + �t)] + kee

2

2

∑
k �=j

1

rkj

, (2)

where ωeff =
√

ωc� − �2 − eV0
m

is the effective trapping
frequency in the rotating frame of the crystal with ωc = eBz/m

(see below), V0 is the amplitude of the static quadratic potential
from the Penning-trap electrodes, C4 is the strength of the
additional fourth-order anharmonic trapping potential (also
coming from the Penning-trap electrodes), VW is the amplitude
of the triangular rotating wall potential, � > 0 is the rotating
wall angular frequency (which rotates about the z axis),
and ke is the Coulomb force constant. Here, rkj = |rk − rj|
is the interparticle distance between the kth and j th ion
and is given by

√
(xk − xj )2 + (yk − yj )2 + (zk − zj )2, ρj

is the polar coordinate radius for the j th ion and is given

by ρj =
√

x2
j + y2

j , and θj is the polar angular coordinate

for the j th ion which is given by θj = tan−1(yj/xj ). The
rotating wall potential makes the potential φj time dependent
in the laboratory frame. The solution for the ion positions
is simplified by transforming to the equivalent equilibrium
problem in the rotating frame with angular speed � (where
the effective trapping potential becomes time independent).
Transforming to the rotating frame, we arrive at the following
time-independent rotating-frame potential for the j th ion

(which is confined to the plane with z = 0):

eφj = 1

2
mω2

eff

[(
ρR

j

)2 + C4
(
ρR

j

)4]
+VW

[(
xR

j

)3 − 3xR
j

(
yR

j

)2] + kee
2

2

∑
k �=j

1

rR
jk

, (3)

where rR
j = (xR

j ,yR
j ,zR

j ) is the transformed set of coordinates
for the rotating frame. The � dependence of the effective
trapping frequency is due to the way velocities transform for
rotating frames, which now includes the effects of potential
terms from the centrifugal and Lorentz forces as well.

Comparing Eq. (3) with a similar expression appearing
in Ref. [17], we see the following differences: (i) there is
an additional anharmonic, fourth-order term that causes the
ions in the outer regions of the crystal to be pushed in more
strongly, and hence counteracts some of the inhomogeneities
that occur due to increasing interion distances as we move
outwards; and (ii) the angular shape of the rotating wall term
has now been adjusted to an l = 3 angular harmonic as the
crystal condenses into a triangular lattice and there is less
frustration at the edges if the rotating wall has a symmetry
that matches that of the underlying crystal facets [5]. We note
that the additional or modified terms retain their form under a
transformation from the laboratory frame to the rotating frame.
We also remark that the unconventional choice of 1

2mω2
effC4ρ

4
j

(with the coefficient dependent on �) for the anharmonic term
was made in anticipation of the simpler and rather standard
form we get in Eq. (3).

The ions in a Penning-trap crystal do not always crystallize
in a two-dimensional plane. The following approximate
criterion is usually required to be satisfied for a planar-only
configuration:

2eV0

(eBz� − m�2 − eV0)
� 1, (4)

which basically ensures that the restoring force in the axial
direction is several orders of magnitude bigger than in the
radial direction, and the crystal lies in the z = 0 plane only.

The triangular rotating wall also introduces an anisotropy
in the radial potential, with deconfinement along certain
directions which, if strong enough, can lead to particle loss.
For the more familiar case of l = 2, this is reflected in the
increasing eccentricity of the elliptical equilibrium structures
that suggests deconfinement along the “weak” axis. This is
expressed in terms of an approximate criteria in Ref. [17] for
the simplest rotating wall. For l = 3, this becomes difficult
to express in terms of a single criterion and we resort to
a numerical calculation to find the triangular “separatrix,”
i.e., the contour lines of the radial part of the gradient
of the potential function in Eq. (3), with the Coulomb
repulsion terms ignored. These are shown for varying ratios
of strengths of the rotating wall term to the effective radial
confinement strength, VW/ω2

eff , in Fig. 1. We notice that
unlike the quadrupole rotating wall potential, deconfinement
happens for the triangular wall at large enough distances for
all wall amplitude strengths. We see that as the strength of
the triangular rotating wall increases, the separatrix moves
closer to the center of symmetry of the crystal, with apparent
deconfinement centered along the θ = 0, 2π/3, and 4π/3 axes.
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FIG. 1. (Color online) Contour plot of the magnitude of the radial
restoring force Fr = 0, for parameterized values of the strength of the
rotating wall potential (given by 3VW/ω2

eff = 0.508, 0.608, or 0.908).
The values of this strength have been indicated by appropriately
colored labels near each curve. The separatrix radius is roughly the
shortest distance to the contour from the center of the graph, and we
see that the separatrix radius decreases as we increase the strength of
the rotating wall term.

This has a noticeable effect on the “shape” of the Penning-trap
crystals, which reduces the dislocations in the crystal and
helps maintain the uniformity. Of course, a full description
of stability of these planar structures requires inclusion of
the Coulomb terms. The accurate quantitative description
of stability requires solving for the equilibrium positions
presupposing a planar arrangement of ions, and then showing
that the eigenvalues of the normal modes of oscillation about
these equilibrium positions are all positive; that is, the phonon
normal-mode frequencies are all real.

The full, transformed Lagrangian for the rotating frame is

LR =
N∑

j=1

[
1

2
m

∣∣ṙR
j

∣∣2 − eBeff(�)

2

(
ẋR

j yR
j − ẏR

j xR
j

) − eφR
j

]
,

(5)

where Beff(�) = Bz − 2�m/e is the �-dependent effective
magnetic field in the rotating frame. The modification of
the magnetic field is due to velocity-dependent terms in
the laboratory-frame Lagrangian. This affects the oscillating
normal modes of the planar motion when the ions are far
from their equilibrium positions. However, as we will see
below, this does not have an effect on the axial modes. This
observation greatly simplifies the normal-mode analysis for
the axial modes.

To find the stable spatial configuration of the ions, we
minimize the effective potential energy in the rotating frame
of reference. This is a challenging optimization problem to
solve in two (and higher) dimensions, especially since different

configurations, separated by large potential barriers, can have
local minima in the potential-energy function with small
energy differences to the global minimum. We follow the
previous treatments of this problem, where the experimental
indication of the fact that the ions condense in a triangular
lattice in a single plane is used to construct the optimized
solution that lies close to a perfect triangular lattice.

We construct an initial, trial solution based on the “closed-
shell” approximation as in Ref. [17], but with the important
difference that the overall shape is triangular and not hexag-
onal, as it was in the previous solutions. This is to reflect the
fact that the overall shape of the crystal is dictated by the
equipotential lines of the rotating wall term, which in this case
is triangular.

We then proceed to calculate the collective normal-mode
excitations of the crystal. The ion Lagrangian (in the rotating
frame, all R superscripts are dropped for clarity) is expanded
via a Taylor series about the previously calculated equilibrium
positions of the ions up to quadratic order. The ion coordinates
are, for the purpose of the expansion, written as rj (t) = R0

j +
δRj(t), while for the ion velocities, we write ṙj(t) = δṘj(t).
Because we are expanding about equilibrium, we can drop the
linear terms in the coordinates, and we find

L = L0 + 1

2

N∑
j=1

[
δRj · ∂

∂Rj

+ δṘj · ∂

∂Ṙj

]2

L
∣∣∣∣
0

, (6)

where the L0 is due to the equilibrium state and the quadratic
terms are due to fluctuations away from equilibrium, which
we henceforth call Lph for the phonon Lagrangian. The
Lorentz force due to the external magnetic field lies in
the xy plane, and the potential energy φj is clearly seen
to be separable in cylindrical coordinates. This means that
the axial phonon Lagrangian can be decoupled from the
planar phonon Lagrangian, and there is no harmonic coupling
between the planar and axial degrees of freedom. Therefore,
we can study the axial and planar modes independently
(Lph = Laxial

ph + Lplanar
ph and we can solve just the equations

of motion for the axial or the planar modes, independent of the
other).

We examine only the axial modes in this work. This is due
to the fact that the planar modes have a complex structure
owing to a coupling of the ion motion in the x and y

directions, the appearance of velocity-dependent forces, as
well as complexities introduced by rotation of the ion crystals
as observed in the laboratory frame. The fact that there is
no harmonic coupling between axial and planar directions of
the crystal allows us to exclude the planar modes from our
discussion henceforth. Restricting to the axial modes only
is further supported by the fact that the simplest form of
quantum simulation works on driving the axial modes with
a state-dependent optical dipole force.

One might be concerned about whether or not there might
be some energy transfer between the axial and the planar
phonon modes, especially since some of the planar phonon
modes may not be cooled to too low of a temperature in
current Penning-trap experiments. But it turns out that the
main pathway for relaxation of energy from the planar to
the axial modes is via a nonlinear resonance, as discussed
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in Ref. [18], where there is a resonance between different
phonon frequencies. Since the phonon modes of the Penning
trap separate into the cyclotron modes with energies typically
ten times those of the axial modes and a narrow bandwidth, and
so-called E × B modes with energies 20 or more times lower
than the axial center-of-mass mode frequency, such resonances
are likely to be at least quartic order in the anharmonicity for
the Penning trap, and hence we expect the axial phonon modes
to be quite separated from the planar modes, even if one takes
nonlinear couplings into account to some low order in the
anharmonicity. Even in the quartic case, where one has the
sum of an axial mode plus a planar mode frequency equal
to the sum of a different axial and planar mode frequency as
the resonance condition, the energy transfer in such inelastic
resonances will be small due to the small bandwidths of the
planar phonon frequencies, leading again to small effects.
Accurately estimating the effects of intrinsic quartic couplings
between phonon modes is a significant numerical challenge for
ion crystals with hundreds of ions, and will not be undertaken
here.

The axial Lagrangian is then given by

Laxial
ph = 1

2

N∑
k=1

m
(
δṘz

k

)2 − 1

2

N∑
j,k=1

Kzz
jkδR

z
j δR

z
k, (7)

where the spring constants satisfy

Kzz
jk = − ∂2L

∂Rz
j ∂Rz

k

∣∣∣∣
0

. (8)

The absence of cross terms in the velocity part of the La-
grangian can be easily seen from the sum-of-squares structure
of the kinetic energy along the z direction and the fact that
there are no velocity-dependent forces in the z direction.

An explicit calculation for the matrix elements of the Kzz

gives the following:

Kzz
jk =

⎧⎪⎨
⎪⎩

2eV0 − kee
2 ∑N

k′,k′ �=j
1(

R0
jk′

)3 , j = k

kee
2 1(

R0
jk

)3 , j �= k,
(9)

where R0
jk = |R0

j − R0
k| is the distance between ions located at

their respective equilibrium positions in the rotating frame. We
see that the axial stiffness matrix is Hermitian and symmetric,
and is independent of the anharmonic or wall potentials (since
they have no z dependence, only ρ dependence).

To solve for the axial ion normal modes, we apply the
Euler-Lagrange equations to the axial phonon Lagrangian in
Eq. (7),

mδR̈z
j +

N∑
k=1

Kzz
jkδR

z
k = 0, j = 1,2, . . . ,N, (10)

which, on substitution of the eigenvector solution ansatz
δRν

j (t) = bzν
j cos[ωzν(t − t0)], gives

N∑
k=1

[
mω2

zνδjk − Kzz
jk

]
bzν

k = 0, j,ν = 1,2, . . . ,N, (11)

where ωzν is the normal-mode eigenfrequency and bzν
k is the

νth axial normal-mode eigenvector. The eigenvalue problem

is quadratic, but we can easily map it onto a linear eigenvalue
problem by setting the eigenvalue according to λzν = mω2

zν .
We can then solve for the eigenvalues and eigenvectors
numerically in MATLAB. The eigenvectors bzν

j are real, N-
tuples whose norm has been set to unity by convention. The
eigenvalues λzν are positive for stable normal modes and
negative for unstable normal modes.

The quantization of the normal modes is completely
standard: we first identify the positions Qν and momenta Pν as-
sociated with each phonon mode as canonically conjugate, and
promote the relation given by the Poisson bracket {Qν,Pν ′ } =
δνν ′ to the commutation relation for the operators Q̂ν and
P̂ν ′ , [Q̂ν,P̂ν ′ ] = i�δνν ′ . To calculate the canonically conjugate
variables for the phonon modes, we make the transformation
δRz

j (t) = ∑
ν ξν(t)bzν

j , where ξν are the normal coordinates for
each phonon mode ν. We see that the Lagrangian assumes the
following diagonal form:

Laxial
ph = 1

2

N∑
ν=1

m
(
ξ̇ 2
ν − ω2

zνξ
2
ν

)
. (12)

Hence, we calculate the conjugate momenta as follows:

P axial
ν = ∂Laxial

ph

∂ξ̇ν

= mξ̇ν. (13)

The Hamiltonian is then expressed as

Haxial
ph =

N∑
ν=1

[(
P axial

ν

)2

2m
+ 1

2
mω2

zνξ
2
ν

]
. (14)

To quantize the normal modes, we identify that the Hamilto-
nian H axial

ph is a sum of simple harmonic modes with frequencies
ωzν . We now introduce creation and annihilation operators as
follows:

âzν =
√

mωzν

2�

(
ξν + i

mωzν

P axial
ν

)
(15)

and

â†
zν =

√
mωzν

2�

(
ξν − i

mωzν

P axial
ν

)
. (16)

Hence, the quantized Hamiltonian operator can be ex-
pressed as

Ĥ axial
ph =

N∑
ν=1

�ωzν

(
n̂zν + 1

2

)
, (17)

where n̂zν = â
†
zν âzν is the number operator. The operator for

displacement along the z direction can be expressed in terms
of the creation and annihilation operators as follows:

δR̂j =
N∑

ν=1

bzν
j

√
�

2mωzν

[â†
zν + âzν]. (18)

We also note that the form of the Hamiltonian derived for the
axial modes here is invariant when we transform coordinates
from the laboratory to the rotating frame, since the ion
oscillations are only along the rotation axis (z direction) and
hence are not influenced by rotation of the coordinate axes.
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We now need to calculate the effective spin-spin cou-
pling between the ions, generated by the spin-dependent
optical dipole force. This analysis has been done in detail
elsewhere [3,19,20], which we utilize here. The effective
spin Hamiltonian is dictated by a time-dependent Ising spin
Hamiltonian,

H(t) =
N∑

j,j ′=1

Jjj ′ (t)σ z
j σ z

j ′ , (19)

where the Ising spin-spin coupling between sites j and j ′ is
given by

Jjj ′ (t) = F 2
O

4m

N∑
ν=1

bzν
j bzν

j ′

μ2 − ω2
zν

[
1 + cos(2μt)

− 2μ

ωzν

sin ωzνt sin μt

]
. (20)

Here, FO is the magnitude of the optical dipole force, and
μ is the beat-note frequency corresponding to the frequency
difference of the two off-resonant laser beams being applied
to the trapped ion crystal. We see that this expression relates
the strength of the Ising-like coupling between ions to the
phonon mode properties ωzν , bzν

j , and bzν
j ′ , which are calculated

from the classical, normal-mode analysis described above.
The time-averaged spin-spin couplings are given by the first
term in Eq. (20). We can think of the effective spin-spin
Hamiltonian as the expression in the parentheses of Eq. (19)
with the time-dependent spin-spin interactions replaced by the
time-averaged ones.

III. NUMERICAL RESULTS AND ANALYSIS

We consider 9Be+ ions localized in a plane by the Penning-
trap potential defined in Eq. (2). We characterize the strength
of the end-cap potentials V0 that affect the axial trapping by
a characteristic angular frequency ωz, such that eV0 = 1

2mω2
z .

This is fixed for the purpose of all our numerical calculations
at the value ωz = 2π × 795 kHz, a typical value used in
experiments. We normalize subsequent frequencies in terms
of ωz. The experiments at NIST typically run at rotational
frequencies � = 0.0579ωz, and we have concentrated on
regions close to this value in our calculations for experi-
mental relevance. The cyclotron frequency ωc associated with
the magnetic field is defined as ωc = eBz/m. Fixing Bz =
4.5 T, we get ωc = 9.645ωz. The beryllium atom has an
atomic mass m = 9.012182 a.u. and a positive unit charge
e = 1.60217646 × 10−19 C.

For the strength of the anharmonic term, we use the value in
Ref. [5], where C̃4 = 1 in the following form of the potential
ε:

ε =
N∑

i=1

⎡
⎣ 1

2
mω2

eff

(
ρ2

i + 3

8
C̃4

ρ4
i

r2
p

)
+ kee

2

2

∑
j,i �=j

1

rij

+ VWall

r3
p

ρ3
i cos(3θi)

]
, (21)

where rp is the plasma radius parameter whose value is taken
to be rp = 0.01049 cm. We now define a typical length and

energy scale,

l0 =
(

kee
2

mω2
z

) 1
3

and E = mω2
z l

2
0 . (22)

Henceforth, we express all lengths in units of l0 and all energies
in units of E. The potential then becomes

ε̃ = ε

E
=

N∑
i=1

⎡
⎣1

2
ω2

eff

(
ρ2

i + C4ρ
4
i

) + 1

2

∑
i �=j

1

rij

+ VW

(
x3

i − 3xiy
2
i

)]
, (23)

where the dimensionless parameters C4 and VW are given by
the relations C4 = 3l2

0C̃4/(8r2
p) and VW = VW l0/(mω2

z r
3
p). All

lengths (l0), energies (E), and frequencies (ωz) appearing in
Eq. (23) are expressed in dimensionless units. For the choice of
C̃4 = 1, we have C4 = 0.002472. For the strength of the wall
potential, we use two different values, V l

W = 0.0025 and V h
W =

0.0040. These have been chosen to clearly show the effect of
variation in the wall strength on key ion-crystal characteristics,
while also ensuring that all crystal structures have a stable
equilibrium.

We report the rotational frequency � in terms of ωeff =√
ωc� − �2 − 1/2, normalized with respect to ωz. We stick

to regions close to the experimental value of � = 0.0579ωz,
which translates as ωeff = 0.2339ωz. We use values for ωeff in
the range 0.21 − 0.25ωz in our analysis.

It is also useful to consider the stability of the crystal under
the trap potentials that we have used. Because the rotating wall
potential varies as the third power of the coordinates, there is no
deconfinement frequency as in the case of the quadrupole wall,
l = 2 trap. To probe the stability under deconfining forces, we
look at the radial component of the force on the ith ion due to
the trap potential, excluding the Coulomb potential. which is
given by

Fr = −ω2
eff

[
ρi + 2C4

ω2
eff

ρ3
i + 3VW

ω2
effρi

(
x3

i − 3xiy
2
i

)]
. (24)

If we plot the locus of points where this function becomes
zero for various values of VW , we see that we get three regions,
each centered along the θi = −π/3, π/3, and π axes. For
increasing strength of the rotating wall potential, they move
closer to the origin and the radius of the separatrix (the smallest
distance to these unstable zones along any axis) is seen to
decrease. Hence, the deconfinement increases for very high
values of the rotating wall potential, which is what we expect.
In our analysis, we stay in regions where the extent of crystal
is much smaller than the separatrix radius.

We also need to exclude unstable equilibrium configura-
tions (which are indicated by the nonpositivity of the eigen-
values λzν of the stiffness matrices of the axial vibrations). We
examine this in detail below, where we discuss our results on
the axial phonon modes.

To find the equilibrium configurations, we need to minimize
the Hamiltonian of the crystal in the rotating frame, which
boils down to finding the best minimum of the transformed
potential function of Eq. (23) near a triangular lattice. We
only concentrate on the solution we obtain starting from the
closed-shell construction. In this case, we start with a seed
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FIG. 2. Equilibrium structures found for varying ωeff and VW . (a)–(d) The succession of crystal structures obtained by increasing ωeff with
VW = 0.0025ω2

z . (e)–(h) The structures for higher VW = 0.0040ω2
z for the same corresponding values of ωeff .

lattice where we arrange ions in closed, triangular shells while
also respecting the triangular lattice symmetry. The shell is
closed if we can put all of the ions in these complete shells.
We relate the number of shells S to the number of total ions in
the crystal N as

S =
[√

2(N − 1)

3
+ 1

4
− 1

2

]
. (25)

If we cannot put the N ions in an integer number of shells,
we put the outermost ions in an incomplete triangular ring
according to the minimal potential energy at each of the
outer ring sites. For the purpose of our discussion here, we
pick N = 85 and hence S = 7. We arrive at the minima
guaranteed under such a consideration of the seed lattice
using a trust-region algorithm of the MATLAB Optimization
Toolbox. The minimization procedure requires us to specify
a locally calculated gradient of the potential, which can
be input analytically by taking derivatives of the potential.
The procedure iterates the minimization steps until the local
minimum is found.

The equilibrium configurations we obtain from such a
procedure behave as we might expect (see Fig. 2). We obtain
structures that form a nearly perfect triangular lattice close to
the center, and smoothly transition to the shape of the contour
lines of the effective potential as we move radially outward to
the edges. The edge effects cause the interionic distances to
change as we move outwards. Our strategy to counter these
effects is twofold, as discussed earlier: (i) We introduce a weak
anharmonic term whose strength is characterized by C4 and
(ii) we match the symmetry of the rotating wall with that of
the condensed crystal. The first effect has been incorporated
and fixed at a particular value, as discussed earlier. However,
we keep the strength of the rotating wall variable, as it is only
for a certain range of values of the strength of the rotating
wall potential that the contour lines of the effective potential

are triangular and hence become least likely to cause edge
distortions of the ionic crystal.

This is clearly seen in Fig. 2, where we show the progression
of these structures for different values of the effective radial
trapping strength ωeff , for V l

W = 0.0025 and V h
W = 0.0040. For

the low-strength rotating wall, the structures in Figs. 2(a)–2(d)
are nearly triangular and uniformly spaced, whereas the higher
value of the rotating wall strength corresponds to the more
distorted structures of Figs. 2(e)–2(h). For a fixed number
of ions and fixed C4, we see the destabilizing effect of the
decrease in separatrix radius with increasing rotating wall
strength clearly on these crystal structures. We note here that
in the limit of vanishing wall strength or high effective radial
trapping frequency, the structures become more isotropic in the
crystalline shape, with uniformly decreasing nearest-neighbor
distances as we move towards the edges. At the other extreme
(very small radial trapping frequency or high strength of
rotating wall), the equilibrium configuration we obtain from
a closed-shell construction shows that the ions are reduced
to (three) pockets of stability and the structure is no longer
closed. A detailed normal-mode analysis (see below) shows
that these structures are in unstable equilibrium, and hence
we can discard them. Another important observation is that
a given progression of structures (for differing values of the
radial trapping strength and increasing values of VW ) displays
similar structures to those found at smaller trapping strengths,
for higher values of the rotating wall strength. This fact will
be important to arrive at structures that show the maximum
uniformity of the ion-ion spacing and also exhibit a stable
equilibrium.

Note that in these calculations, we fix the wall potential
and then vary ωeff . In doing so, we find that we are limited by
how many ions we can hold in stable equilibrium. Because the
radial deconfinement decreases as the rotational frequency ωeff

decreases, the effect of the rotating wall will become stronger
if it also remains fixed. We have done this here to reduce the
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FIG. 3. (Color online) Nearest-neighbor distances d vs the dis-
tance of the ion from the trap symmetry axis ρ, where all distances
have been normalized against the length scale l0. The red circles plot
this for the l = 3 triangular wall with an additional anharmonic po-
tential for VW = 0.0025ω2

z and ωeff = 0.25ωz [equilibrium positions
shown in (b)], while the blue squares represent this for the original
l = 2 rotating wall with just a harmonic potential for ωeff = 0.06ωz

[equilibrium positions shown in (c)]. The parameters for the former
trap are chosen so as to minimize the variance in nearest-neighbor
distances, while a moderate wall potential is chosen for the latter for
a valid comparison. The variance in the triangular wall lattice (b) is
much smaller than in the quadrupole wall lattice (c).

parameter space we explore. But, if one wants to examine
larger crystals, then one needs to carefully tune the rotating
wall strength as the rotational frequency is changed, as well
as the strength of the quartic potential, to be able to continue
to maintain stable equilibrium. These issues are discussed in
Ref. [5].

The equilibrium structures we obtain are markedly uniform,
and this is born out in Fig. 3 where we plot the distance to
the nearest neighbor for each ion in the crystal as a function
of the central ions’ distance from the trap symmetry axis.
These results are for the most uniform stable structures we
could obtain for both the l = 2 and l = 3 rotating walls.
The nearest-neighbor distances have been calculated based
on the Delaunay triangulation algorithm. Each point in the
figure represents the distance of the ion in question to an ion in
the first nearest-neighbor shell. We focus on the first circle of
nearest neighbors only. The values of the relevant parameters,
for both the l = 2 (quadrupole) and the l = 3 (triangular) wall
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FIG. 4. (Color online) Variation of the axial normal-mode fre-
quencies (in units of ωz) with ωeff , for two wall strengths: (a)
VW = 0.0025ω2

z and (b) VW = 0.0040ω2
z .

crystals, are indicated in the caption to Fig. 3. The larger spread
of values for the quadrupole wall tells us that, on average, the
triangular wall crystal is indeed more uniform spatially than the
quadrupole wall crystal. Note that there are the same number
of blue squares and red circles in Fig. 3; the uniformity of the
triangular lattice has many of the symbols overlap.

We next discuss the features of the normal modes of small
oscillations of the ions. We first examine the positivity of the
eigenvalue spectrum of the stiffness matrix of axial vibrations
Kzz as a function of effective trapping strength, for high and
low rotating wall potential strengths, in Fig. 4. We see that the
eigenvalue spectrum is real and positive for only a “band” of
values of ωeff (indicated in blue in the figure), and this band
shrinks for the higher-amplitude rotating wall potential. The
positivity of all of the eigenvalues indicates stability of the
corresponding structures.

This behavior is fundamentally different from that seen in
the usual Penning-trap crystals where we do not see a lower
bound to the strength of the radial trapping, characterized by
ωeff , where the structures become unstable, although there is
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an upper limit. Hence, we can only talk of stable structures
for certain ranges of ωeff for the l = 3 rotating wall (with an
additional quartic potential), and this range gets narrower for
increasing wall strength. A similar effect is seen if the number
of ions in the trap is increased, in that the band of stability
shrinks as we increase the number of ions in the trap. The
value of N = 85 was the maximum number of ions we found
that could be trapped with reasonably large bands of stability
for the particular ranges of parameters that we chose. Note that
more ions can be trapped by carefully choosing the rotation
frequency ωeff , the rotating wall potential amplitude, and the
strength of the quartic potential, but we do not discuss these
cases in detail here.

Next, we plot the numerically obtained eigenfrequencies
against their mode numbers, for crystal structures correspond-
ing to two values of (stable) ωeff , for both high and low
rotating wall potentials. Roughly, we can see a trend similar to
that of the quadrupole-wall crystal normal modes, where the
primary dependence is on ωeff and not on VW . However, there
are important distinctions to be made. The band structure of
the eigenvalue spectrum causes the structure of these curves
to change, and quite significantly at that, when we vary the
rotating wall from low to high strength. We see this in Fig. 4,
where for ωeff = 0.20ωz, the lower edge of the instability of the
band shown in Fig. 4 shifts to the right when the strength of the
rotating wall is increased, and this causes the eigenfrequencies
for the higher wall strength to drop abruptly to values very
close to zero. In this fashion, we see that the dependence on
ωeff is now superimposed on a dependence on the strength of
the rotating wall due to a VW -variable bandwidth.

The highest axial mode has a universal eigenfrequency
equal to the angular frequency of the trapping strength, ωz

for all values of ωeff and VW , and we see that all of the
branches converge to this point. This behavior is identical to
that of the quadrupole-wall rotating crystal. The corresponding
eigenmode is the well-known center-of-mass mode, where all
ions move equal displacements that are in phase with each
other. This is because the center-of-mass motion does not cost
any additional Coulomb energy and all ions have the same
axial trapping energy, and hence their motion is independent
of the strength of the rotating wall potential applied in the
crystal plane. Also, other axial phonon modes will have
frequencies lower than the center-of-mass mode, as the average
distance between the ions increases when the wave vector is
nonzero and there is a reduction in energy due to the Coulomb
repulsion. This is also why the axial eigenfrequency branches
for higher ωeff lie roughly lower in Fig. 5.

Next, we discuss the eigenvectors of the axial mode
phonons, which we can calculate immediately from the
diagonalization of the stiffness matrix that yields the eigen-
frequencies. Modes close to the center-of-mass mode are
collective, where ions move with a long wavelength. It is
these long-wavelength modes that are important for purposes
of quantum simulation, and we concentrate on these in
our discussion here. In Fig. 6, we show maximum axial
displacements of the ions, corresponding to the highest three
axial modes, with the displacements normalized to unity and
color coded as indicated in the adjacent color bar. We do this
for the two different strengths of the radial trapping strength
ωeff , for both the high and the low rotating wall potentials
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FIG. 5. (Color online) Eigenfrequencies of the axial phonon
modes. The green and red symbols represent data for a strong
rotating wall, VW = 0.0040ω2

z , and a weak wall, VW = 0.0025ω2
z ,

respectively. The values of the corresponding effective trapping
frequency ωeff are indicated by the labels near each curve (hollow
symbols: ωeff = 0.20ωz; solid symbols: ωeff = 0.26ωz). Note how
the strong rotating wall and high trapping frequency case is nearly
unstable.

VW . The highest axial mode corresponds to the center-of-mass
motion. The other two modes (so-called tilt modes) are nearly
degenerate and are seen to have similar nature even when
anisotropy due to the rotating wall is dominant. This is also
seen in Fig. 5, where we see that the two modes just below
the center-of-mass mode have the same eigenfrequencies. This
behavior of the penultimate axial modes is different from the
quadrupole-wall crystal, where this degeneracy of the modes
is lifted under the corresponding anisotropic rotating wall, and
an additional mode is sometimes introduced between them.

Finally, we examine the strength of the effective spin-spin
coupling that results from applying a spin-dependent dipole
optical force detuned close to the axial phonon modes. We
focus only on detuning frequencies δ = μ − ωz to the blue of
the center-of-mass mode (δ > 0), where we expect to find a
power-law dependence of the spin exchange on the distance
between the spins in the lattice [3]. This behavior has been
predicted and verified in experiments, and we expect it to hold
even for this triangular-wall anharmonic crystal. In fact, the
objective in making the lattice distances more uniform is to
also make the spin-spin couplings between adjacent spins more
uniform, and this would follow immediately if there exists a
power-law relation between the two (Jjj ′ � J0/|R0

j − R0
j ′ |α).

The parameters of axial phonon modes discussed already
are used to calculate the static spin-spin interaction Jjj ′ be-
tween the spins of ions j and j ′, based on Eq. (20). In Fig. 7, we
plot this static interaction strength (expressed on a logarithmic
scale) as a function of the distance between the ions, for various
values of detuning μ larger than the center-of-mass frequency.
We do this for the stable crystal structure exhibiting minimum
variance in the nearest-neighbor distances. We see a behavior
very similar to the quadrupole-wall potential. A uniform Jij ,
independent of rij indicates that the detuning laser excites
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FIG. 6. (Color online) Three highest-frequency axial eigenvectors for various trapping strengths ωeff and rotating wall potentials VW . (a)–(f)
Low rotating wall strength VW = 0.0025ω2

z . (a)–(c) Eigenmodes of the crystal structure corresponding to ωeff = 0.21ωz; (d)–(f) The crystal
structure for ωeff = 0.24ωz. (g)–(l) A stronger rotating wall strength VW = 0.0040ω2

z . (g)–(i) ωeff = 0.21ωz; (j)–(l) ωeff = 0.24ωz.
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FIG. 7. (Color online) Time-averaged spin-spin coupling coef-
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rij / l0 = |R0
i − R0

j |/l0 on a log-log plot. We plot the stable crystal
structure exhibiting minimum variance in nearest-neighbor distances,
corresponding to VW = 0.0025ω2

z and ωeff = 0.25ωz. The power-law
exponent α and the strength of the detuning away from the center-of-
mass mode δ are both indicated near each curve.

only the uniform center-of-mass mode. As we move away
from the center-of-mass mode, an increasingly large number of
eigenmodes participate in the coupling, and we see a clear trend
in the values, such that Jij ∝ r−α

ij . In the limit of large detuning,
we have dipole-dipole interactions where α tends to a value of
3. For small detunings, we have the all-to-all case of α → 0.
There are small departures from the power-law behavior for
intermediate detunings, while the very small and very large
values of detuning show excellent agreement with the power
law. Note that these results are indeed much more uniform
than what was found for a a quadrupole rotating wall [6].

In Fig. 8, we plot the fitted power-law exponent α versus the
strength of the detuning away from the center-of-mass mode.
The trend we see here is similar to the one seen in calculations
for the quadrupole-wall potential. We see a faster approach
to the dipole-dipole limit (α = 3) for both smaller effective
(radial) trapping frequencies, and weaker strengths of the
triangular rotating wall potential, just like for the quadrupole
rotating wall.

We have already noted that there are deviations from the
power-law behavior for intermediate values of detuning, and
this is apparent in the spread of values away from the linear
fit in Fig. 7 (especially for δ = 10−1ωz). To explore these
deviations in more detail, we plot the normalized root-mean-
square deviation (RMSD), defined by

normalized RMSD =
√∑

i<j

(
Jij − J fit

ij

)2

maxδ

√∑
i<j

(
Jij − J fit

ij

)2
, (26)

as a function of the detuning δ in Fig. 9. We see an adherence
to the power law (characterized by values of the normalized
RMSD close to 0) for both small and large detunings δ. More
importantly, we see the largest deviation in the normalized
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FIG. 8. (Color online) Fitted exponent of the power law α (of the
Jij coefficients as a functions of the distance rij ) plotted against the
strength of detuning away from the center-of-mass frequency, δ, for
the same set of trap parameters and notation as in Fig. 5.

RMSD parameter for strengths of detuning in the intermediate
range of 10−4ωz to 101ωz. We can understand this behavior
easily if we look at the structure of the static part of Eq. (20),
which relates the strength of the spin-spin coupling, Jij ,
to the normal-mode properties of the crystal. Each term
in the summation can be understood to correspond to an
eigenmode’s contribution to the coupling strength. When
the beat-note frequency μ is very close to ωz (δ ≈ 0), only
the center-of-mass mode (corresponding to uniform motion of
the ions) contributes, and the Jij does not depend on distance.
This behavior corresponds to a value of α = 0. For μ farther
away from the center-of-mass mode, the lower modes begin
to contribute increasingly. When only a few modes contribute,
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FIG. 9. (Color online) Normalized root-mean-square deviation
for the fits of the spin coupling constants to a power law for different
detunings to the blue of ωz.
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we cannot expect the power-law behavior to hold [21]. The
structure of the eigenvectors, as we see in Fig. 6, is clearly
not compatible with the power-law decay of Jij with distance.
For many ions sitting at opposite edges, there is a large Jij ,
whereas the coupling is virtually zero for other pairs separated
by much smaller distances. This is the origin of the spread of
spin-spin couplings in Fig. 7 and the increase in the value of the
normalized RMSD in Fig. 9. As we move towards larger values
of μ (and δ), we see that all of the modes begin to contribute
almost equally, and in the limit of dipole-dipole interactions,
we get a value of α very close to 3, with the normalized RMSD
close to 0.

We note that such behavior is independent of the details of
the crystal structure itself. The eigenvectors corresponding to
the first few modes will have a structure independent of the
details of the trap potential, and will cause a similar deviation
from the power-law behavior as we saw above. This deviation
implies that the spin-spin couplings are no longer correlated
with the distances between the ions, and hence an increase in
spatial uniformity of the crystal is not guaranteed to have a
bearing on the uniformity of the spin-spin interactions. This is
an important observation, as the increasingly uniform nearest-
neighbor distances for the triangular wall crystal would imply
a more uniform spin-spin coupling strength only for detuning
strength values that are moderately large. For intermediate
values of δ, it is important to consider the nature of modes
just below the center-of-mass mode to describe the spin-spin
coupling strength between ions corresponding to that strength
of detuning.

IV. CONCLUSIONS AND DISCUSSION

In this work, we have examined the properties of a Penning
trap with an additional anharmonic and triangular rotating wall
potential which provide a much more uniform ionic crystal for
use in quantum simulation. By performing a detailed analysis
of the equilibrium positions, the phonons, and the effective
spin-spin interactions, we find that indeed one can generally
obtain more uniform spin-spin coupling constants. As one
might have predicted, the relationship between ionic spacing
in the lattice and the uniformity of the spin-spin interactions is
not directly one to one. For small-α values, it is the character
of the phonon eigenmodes that lie close to the center-of-mass
mode that determine the behavior of the spin-spin couplings
more than the interparticle spacing. We hope that the result
of this work will be found to be useful in planning future
experiments with the Penning-trap platform that will employ
additional anharmonic trap terms and a triangular rotating wall
for a more uniformly spaced triangular lattice.
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