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Intrinsic phonon effects on analog quantum simulators with ultracold trapped ions
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Linear Paul traps have been used recently to simulate the transverse-field Ising model with long-range spin-spin
couplings. We study the intrinsic effects of phonon creation (from the initial phonon ground state) on the spin-state
probability and spin entanglement for such quantum spin simulators. While it has often been assumed that phonon
effects are benign because they play no role in the pure Ising model, they can play a significant role when a
transverse field is added to the model. We use a many-body factorization of the quantum time-evolution operator
of the system, adiabatic perturbation theory, and exact numerical integration of the Schrödinger equation in
a truncated spin-phonon Hilbert space followed by a tracing-out of the phonon degrees of freedom to study
this problem. We find that moderate phonon creation often makes the probabilities of different spin states
behave differently from the static spin Hamiltonian. In circumstances in which phonon creation is minor, the
spin dynamics state probabilities converge to the static spin Hamiltonian prediction at the cost of reducing the
spin entanglement. We show how phonon creation can severely impede the observation of kink transitions in
frustrated spin systems when the number of ions increases. Many of our results also have implications for quantum
simulation in a Penning trap.
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I. INTRODUCTION

Complex states of matter like spin liquids are suspected to
exist in quantum spin models with frustration due to geometry
or due to the nature of the spin-spin interaction [1–3]. Spin
liquids are complicated quantum many-body states that exhibit
significant entanglement of their wave functions without
symmetry breaking and could also exhibit emergent quantum
phenomena within their low-energy excitation spectra. Clas-
sical computation, such as exact diagonization and quantum
Monte Carlo simulation, or conventional theories based on
local order parameters fail to describe these systems without
bias. For example, exact diagonalization studies are limited
to small lattices and hence usually have strong finite-size
effects, while quantum Monte Carlo simulations can suffer
from the sign problem or have a large computational expense
to describe long-range interactions and hence cannot reach
the low temperatures needed to see the predicted exotic
phases.

Feynman proposed that one could use controlled quantum-
mechanical systems with few quantum gates to simulate
many-body problems [4,5] as a useful quantum computation
before achieving universal quantum computation. In recent
years, there has been significant success in trying to achieve
this goal by quantum simulation of desired spin models
through analogous cold atom systems [6–8]. We focus here on
one platform for performing analog quantum computation, the
simulation of interacting quantum spins via manipulation of
hyperfine states of ions in a linear Paul trap [9–13], although
many ideas presented here can be generalized to adiabatic
quantum-state computation in the two-dimensional Penning
trap as well [8]. In the Paul trap systems, clock states of the ions
(states with no net z component of angular momentum) are the
pseudospin states, which can be manipulated independently
by a pseudospin-dependent force driven by laser beams. The
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lasers couple the pseudospin states to the lattice vibrations of
the trapped ions, which leads to effective spin-spin interactions
when the phonon degrees of freedom are adiabatically elim-
inated [10,14,15] based on the idea of the geometric phase
gate [16] or Mølmer-Sørensen gate [17]. Theoretically, the
analog ion-trap simulators can be described as nonequilibrium
driven quantum systems with both spin and phonon degrees of
freedom. Sufficiently small systems can be treated numerically
in an exact fashion by truncating the phonon basis and taking
into account all possible quantum states in the solution of
the time-dependent Schrödinger equation. Experimentally,
ion traps have been used to simulate the transverse-field
Ising model with a small number of ions [9,11,12] based
on simulated quantum annealing [18] (see Ref. [19] for a
review). It has been known experimentally that moderate
phonon creation is commonplace (of the order of one phonon
per mode) [11], even when the system is cooled to essentially
the phonon ground state prior to the start of simulation. In
addition, the role phonons play is intrinsic and essential for
the mediated spin-spin interaction in trapped ion systems,
especially in the presence of a noncommuting magnetic-field
Hamiltonian in addition to the spin Hamiltonian of interest.
Therefore, an understanding of the role phonons play in the
spin simulator is crucial to understanding its accuracy.

The organization of this paper is as follows. In Sec. II, we
describe the microscopic Hamiltonian for ion-trap-based sim-
ulators and then show how one can factorize the time-evolution
operator into a pure phonon term, a coupled spin-phonon term,
a pure spin-spin interaction term, and a complicated term that
primarily determines the degree of entanglement of the spins.
Next we use adiabatic perturbation theory to determine how
adiabatic state evolution can be used to reach a complicated,
potentially spin-liquid-like ground state and detail under what
circumstances the evolution is not adiabatic (i.e., is diabatic).
In Sec. III, we show numerical comparison studies in various
relevant circumstances based on a direct integration of the
time-dependent Schrödinger equation, including both spin
and phonon degrees of freedom (the latter in a truncated
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basis). In Sec. IV, we conclude with discussions and possible
experimental limitations and improvements.

II. THEORY

A. Microscopic Hamiltonian

When N ions are placed in a linear Paul trap [9,10,20]
with harmonic trapping potentials, they form a nonuniform
(Wigner) lattice, with increasing interparticle spacing as one
moves from the center to the edge of the chain. The ions vibrate
in all three spatial dimensions about these equilibrium posi-
tions [21] with 3N normal modes. Two hyperfine clock states
(relatively insensitive to external magnetic-field fluctuations
because the z component of the total angular momentum is 0)
in each ion are the pseudospins (and are split by an energy
difference h̄ω0). Hence, the bare Hamiltonian H0 including
the pseudospin and motional degrees of freedom for the ion
chain is given by

H0 =
∑

j

h̄ω0

2
σ z

j +
∑
αν

h̄ωαν

(
a†

ανaαν + 1

2

)
, (1)

where σ z
j is the Pauli spin matrix at the j th ion site and

the second term is the phonon Hamiltonian Hph with the
phonon creation operator of the normal mode ν along the
three spatial directions α ∈ X,Y,Z. The notation x,y,z refers
to the pseudospin orientation in the Bloch sphere. The αth
spatial component of the j th ion displacement operator
δR̂α

j is related to the αth phonon normal mode amplitude
(unit norm eigenvector of the dynamical matrix) bαν

j and

the αth phonon creation and annihilation operator via δR̂α
j =∑

ν bαν
j

√
h̄

2Mωαν
[aαν + a†

αν], with M the mass of the ion and

ωαν the normal-mode frequency.
A laser-ion interaction is imposed to create a spin-

dependent force on the ions by using bichromatic laser beams
to couple these clock states to a third state via stimulated
Raman transitions [22]. Effectively, this process is equivalent
to an off-resonant laser coupling to the two clock states by
a small frequency detuning μ determined by the frequency
difference of the bichromatic lasers. The ions are crystallized
along the easy axis (Z axis) of the trap, with hard axes in
the X and Y directions, where the transverse phonons lie.
Then coupling the Raman lasers in the transverse direction
minimizes the effects of ion heating and allows for an identical
spin axis for each ion [15]. By accurate control of the locked
phases of the blue-detuned and red-detuned lasers with similar
Rabi frequencies, an effective laser-ion Hamiltonian [22,23]
along the spin direction σx can be engineered in the Lamb-
Dicke limit, �k|δR̂j (t)| � 1:

HLI(t) = −h̄

N∑
j=1

�e
j�k · δR̂j (t)σx

j sin(μt), (2)

where the effective Rabi frequency �e
j is generated by

one effective blue-detuned beam and one red-detuned beam
simultaneously (refer to Appendix A for details).

In experiments, one uses adiabatic quantum state evolution
to evolve the ground state from an easily prepared state to the
desired complex quantum state that will be studied. For spin

models generated in an ion trap, it is easy to create a fully
polarized FM state along the z direction via optical pumping
and then apply a spin rotation (for instance, with a pulsed laser)
to reorient the FM state in any direction (usually chosen to be
the y direction). Then, if one introduces a Hamiltonian with a
magnetic field in the direction of the polarized state, it is in the
ground state of the system. By slowly reducing the magnitude
of the field and turning on the spin Hamiltonian of interest, one
can adiabatically reach the ground state of the Hamiltonian (at
least in principle). Hence, one has an additional Zeeman term
with a spatially uniform time-dependent effective magnetic
field B(t) coupled to the different Pauli spin matrices as

HB(t) =
N∑

j=1

B(t) · σ̂j (3)

(the magnetic field has units of energy here, since we absorbed
factors of the effective magnetic moment into the definition of
B, and it can also be expressed in units of frequency if we use
units with h̄ = 1). Note that we are using an unconventional
sign for the coupling to the magnetic field, since this is the sign
convention often used in the ion-trapping community. In this
case, the ground state of the magnetic-field Hamiltonian has
spins aligned opposite to that of the field, while the highest
energy state has them aligned with the field. The magnetic
field B(t) is made in the y direction by directly driving a
resonant radio-frequency field with frequency ω0 between the
two hyperfine states to implement the spin flips [23] or by
indirect Raman coupling through a third state to effectively
couple the two hyperfine states [22]. The full Hamiltonian is
then H(t) = Hph + HLI(t) + HB(t).

B. Factorization of the time evolution operator

We solve for the quantum dynamics of this time-dependent
Hamiltonian by calculating the evolution operator as a
time-ordered product U (t,t0) = Tt exp[−i

∫ t

t0
dt ′H(t ′)/h̄] and

operating it on the initial quantum state |ψ(t0)〉. For the
adiabatic evolution of the ground state, we start our system
in a state with the spins aligned along the magnetic field and
the system cooled down so that there are no phonons at time
t0: |ψ(t0)〉 = |↑y↑y · · · ↑y〉 ⊗ |0〉ph. This means that we will
be following the highest excited spin state of the system, as
described in more detail below. While it is also possible to
examine incoherent effects due to thermal phonons present at
the start of the simulation, we do not do that here and, instead,
focus solely on intrinsic phonon creation due to the applied
spin-dependent force.

In time-dependent perturbation theory, one rewrites the
evolution operator in the interaction picture with respect to
the time-independent part of the Hamiltonian. This procedure
produces an exact factorized evolution operator,

U (t,t0) = e− i
h̄
Hph(t−t0)UI (t,t0), (4)

which is the first step in our factorization procedure [the first
factor is called the phonon evolution operator, Uph(t,t0).] [Note
that Hph is time independent and it is multiplied by the factor
(t − t0) in the exponent.] The second factor is the evolution
operator in the interaction picture, which satisfies an equation
of motion given by ih̄∂UI (t,t0)/∂t = [VI (t) + HB(t)]UI (t,t0),
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with VI (t) = exp[iHph(t − t0)/h̄]HLI(t) exp[−iHph(t −
t0)/h̄] since [HB(t),Hph] = 0. The only difference between
HLI(t) and VI (t) is that the phonon operators are replaced by
their interaction picture values: aαν → aαν exp[−iωαν(t − t0)]
and a†

αν → a†
αν exp[iωαν(t − t0)].

We now work to factorize the evolution operator further.
Motivated by the classic problem on driven harmonic os-
cillators [24], we factorize the interaction picture evolution
operator via UI (t,t0) = exp[−iWI (t)/h̄]Ū (t,t0), with WI (t)
defined by WI (t) = ∫ t

t0
dt ′VI (t ′) (we call the factor on the left

the phonon spin evolution operator U ph-sp = exp[−iWI (t)/h̄],
and the one on the right is the remaining evolution operator).
The key step in this derivation is that the multiple commutator
satisfies [[WI (t),VI (t ′)],VI (t ′′)] = 0. This fact greatly simpli-
fies the analysis below.

The equation of motion for the remaining evolution operator
Ū (t,t0) satisfies

ih̄
∂

∂t
Ū (t,t0) = H̄(t)Ū (t,t0), (5)

in which the operator H̄(t) is given by the expression

H̄(t) = e
i
h̄
WI (t)[−ih̄∂t + HB(t) + VI (t)]e− i

h̄
WI (t). (6)

The operator H̄(t) can then be expanded order by order as

e
i
h̄
WI (t)VI (t)e− i

h̄
WI (t) = VI (t) + i

h̄
[WI (t),VI (t)], (7)

e
i
h̄
WI (t)HB(t)e− i

h̄
WI (t)

=
N∑

j=1

{
B(t) · σ̂j + i

h̄
[WI (t),B(t) · σ̂j ] + · · ·︸ ︷︷ ︸}

Residual terms

, (8)

e
i
h̄
WI (t)ih̄∂t e

− i
h̄
WI (t) = VI (t) + 1

2

i

h̄
[WI (t),VI (t)], (9)

where we used the facts that ∂WI (t)/∂t = VI (t) and
[[WI (t),VI (t ′)],VI (t ′′)] = 0. Explicit calculations then yield

VI (t) = −
N∑

j=1

N∑
ν=1

∑
α

h̄�jηανb
αν
j (aανe

−iωαν t + a†
ανe

iωαν t )

× sin(μt)σx
j , (10)

in which ηαν = δαXδkα
√

h̄/2Mωαν is the Lamb-Dicke pa-
rameter for the phonon mode αν with the αth component
of the laser momentum δkα . When the terms in Eq. (8) vanish,
virtually excited phonons will be shown to play no role on
the spin-state probabilities as a function of time, but in the
presence of a transverse field, due to the noncommuting nature
of quantum operators, phonon creation can significantly affect
the spin-state probabilities. This fact has not been considered
in detail before and involves one of the most important results
of our work, as detailed below.

C. Ising spin models and Mølmer-Sørensen gate for a vanishing
transverse magnetic field

With a vanishing transverse magnetic field, the Hamiltonian
H̄ can be greatly reduced to the spin-only Hamiltonian
Hspin(t) = i

2h̄ [WI (t),VI (t)]. Because the spin operators sx
j in

WI and VI commute, one can exactly derive the following
Ising spin Hamiltonian [14,15]:

Hspin(t) =
N∑

j,j ′=1

Jjj ′ (t ′)σx
j σ x

j ′ . (11)

Then the expression for the spin exchange interaction Jjj ′ (t)
is

Jjj ′ (t) = h̄

2

N∑
ν=1

�j�j ′η2
Xνb

Xν
j bXν

j ′

μ2 − ω2
Xν

[ωXν − ωXν cos 2μt

− 2μ sin ωXνt sin μt], (12)

which can be uniformly antiferromagnetic (Jjj ′ (t) > 0) or
FM (Jjj ′(t) < 0) for the instantaneous ground state of the
Hamiltonian Hspin(t) when the laser detuning μ is detuned
close to the center-of-mass (CM) mode frequency ωCM. How-
ever, the interaction Jjj ′ (t) > 0 can also be inhomogeneous
and frustrated when the laser is detuned in between phonon
modes, with the details depending on the properties of the
nearby phonon modes ωXν , bXν

j , and bXν
j ′ .

The Mølmer-Sørensen gate [17] was originally proposed to
disentangle phonon effects from the spins in ion-trap quantum
computing. It was discovered that because the phonons are
harmonic, one could operate on the spins in such a way
that the phonon state is unmodified after the gate operation
(irrespective of the initial population of phonons). But one
needs to keep in mind that this gate has no transverse field
present, which can modify it because the transverse-field
operator does not commute with the Ising Hamiltonian. We
begin our discussion by assuming that the laser is closely
detuned to the transverse CM mode with angular frequency
ωCM (|μ − ωCM| � μ) and the addressing laser intensity
for each ion is uniform and moderate (�j = � � μ). In
this situation, the time-dependent term with the frequency
μ + ωCM in the interaction VI can be neglected. Therefore,
the interaction VI (t) and the operator WI (t), which are
proportional to the collective spin operator Sx = ∑N

j=1 sx
j , can

be reduced to the forms

VI (t) = i
h̄ηCM�

2
√

N
Sx[e−i(ωCM−μ)t aCM + H.c.], (13)

WI (t) = h̄ηCM�

2
√

N (�CM − μ)
Sx[(1 − e−i(ωCM−μ)t )aCM + H.c.],

(14)

where ηCM is the Lamb-Dicke parameter for the FM mode and
t0 = 0 is chosen.

There are two parameter regimes where phonon effects
disappear. In the weak-coupling regime ηCM� � μ − ωCM,
the operator WI (t) almost vanishes and the time evolution
operator UI is solely determined by the spin-only Hamiltonian
because the phonon dynamics are adiabatically eliminated.
Any extra phonon-state redistribution takes a long time to
be experimentally observable and therefore phonon effects are
under control. Outside the weak-coupling regime, one can also
prevent phonon effects by preparing spin states determined
by the spin Hamiltonian Hspin(t) at a particular waiting time
interval t = T . The idea is to choose the time interval T such
that the operator is periodic with integer K cycles so that
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WI (KT ) = WI (0). Therefore, the initial phonon state at the
start of the simulation will be revived at the time intervals
(ωCM − μ)T = K × 2π as can be clearly seen from Eq. (14)
when we start with phonon ground state |0〉, for example, but
it is generally true for any occupancy of the phonon states.

D. Effective spin Hamiltonian with a transverse field

The presence of a transverse magnetic field modifies our
ideas on the Mølmer-Sørensen gate. While it is tempting to
claim that the residual spin-phonon terms in the magnetic field
are irrelevant in the Lamb-Dicke limit ηαν � 1, it is difficult to
quantify this if the residual terms are relevant in the presence of
the time-dependent magnetic field B(t) · σ̂j , which can be large
in magnitude. In fact, phonon effects often modify the time
evolution of the spin states when a transverse field is present.
However, one can say that in cases where the integral of the
field over time is small (which occurs when the field is small
or when it is rapidly ramped to 0) or when the B field lies along
the x direction only (or vanishes), the residual terms in Eq. (8)
are irrelevant. For a large detuning (weak-coupling regime),
where |WI (t)|/h̄ � 1 or ηXν�j � ωXν − μ, the residual
terms are always higher-order perturbations with respect to the
leading transverse-magnetic-field term B(t) · σ̂j in the course

of the quantum simulation. On those occasions, one can also
consider the system as described by only the quantum Ising
spin model in a transverse magnetic field. In general, though,
we need to determine how large the residual terms are, which
often can only be done with numerical calculations. We illus-
trate this for a number of cases below. The residual terms are

Hres(t) = exp[iWI (t)/h̄]HB(t) exp[−iWI (t)/h̄] − HB(t).

(15)

The equation of motion for Ū can be written as

ih̄
∂

∂t
Ū (t,t0) =

{
i

2h̄
[WI (t),VI (t)] + HB(t) + Hres(t)

}
× Ū (t,t0). (16)

We perform the final factorization by writing Ū (t,t0) =
Uspin(t,t0)Uent(t,t0), where the spin evolution operator satisfies
ih̄∂tUspin(t,t0) = {i[WI (t),VI (t)]/2h̄ + HB(t)}Uspin(t,t0) and
the entangled evolution operator satisfies

ih̄
∂

∂t
Uent(t,t0) = U †

spin(t,t0)Hres(t)Uspin(t,t0)Uent(t,t0). (17)

The spin evolution operator Uspin(t,t0) becomes

Uspin(t,t0) = Tt exp

⎡
⎣− i

h̄

∫ t

t0

dt ′

⎛
⎝ N∑

j,j ′=1

Jjj ′ (t ′)σx
j σ x

j ′ + B(t ′)
N∑

j=1

σ
y

j

⎞
⎠

⎤
⎦ = Tt exp

[
− i

h̄

∫ t

t0

dt ′Hspin(t ′)
]

, (18)

which is the third factor for the evolution operator of the
Ising model in a transverse field and we define Hspin(t) in the
exponent. The spin exchange terms Jjj ′ (t) = J 0

jj ′ + �Jjj ′ (t)
as given in Eq. (12) include a time-independent exchange
interaction between two ions J 0

jj ′ and a time-dependent
exchange interaction �Jjj ′ (t). The time-independent term
can be thought of as the effective static spin-spin Hamiltonian
that is being simulated, while the time-dependent terms can
be thought of as diabatic corrections, which are often small
in current experimental setups but need not be neglected. For
simplicity, we set the initial time t0 = 0.

The entanglement evolution operator Uent is a complicated
object in general, but it simplifies when one can approximate
the operator Uent as Uent ≈ 1 for the special situations
discussed at the end of the last subsection. In general, this
evolution operator involves a coupling of spins to phonons in
all directions and has a very complicated time dependence.
If one evaluates the first few terms in the series for the
time-ordered product, one finds that it involves multispin inter-
actions, spin-phonon coupling, and spin exchange interactions
in all spatial directions. But the net weight of all of the terms
is governed by the integral of the magnetic field over time,
so if that integral is small, then this factor will also be small.
Therefore, the adiabatic elimination of phonons based on the
Mølmer-Sørensen gate [17] can be justified only in the case of a
vanishing transverse magnetic field. With a constant magnetic
field, the entanglement between spins and phonons can be

periodic so that phonon effects can continue to be nulled at
integer multiples of certain appropriate period. But such a
procedure would be more complicated than the standard gate
and is not relevant for adiabatic-state creation simulations,
so we do not discuss it further here. From a mathematical
standpoint, because the entanglement evolution operator is on
the far right of the factorization, its main effect is to modify
the state from an initial spin state in the direct product with the
phonon vacuum to a state that will typically involve some
degree of entanglement between the phonon and the spin
degrees of freedom.

We can use this factorization to show that in cases where
the spin-entanglement evolution operator can be approximated
by the unit operator, then phonons have no observable effects
on the probability of product states (regardless of the number
of coherent phonons created during the simulation), so this
result is similar in spirit to the original Mølmer-Sørensen
gate but is different because it holds in the presence of a
transverse field and requires no special times for periodic
variations to recur. To do this, we need one final identity. We
further factorize the entangled phonon-spin evolution operator
exp[−iWI (t)/h̄] into the product exp[−i

∑
ν ∗

Xν(t)a†
xν]

exp[−i
∑

ν Xν(t)axν] exp[−(1/2)
∑

ν Xν(t)∗
Xν(t)], with

the spin operator defined to be ∗
Xν(t) = ∑

j γ ν
Xj (t)σx

j ,
and its complex conjugate is Xν(t), while the function
γ ν

Xj (t) satisfies γ ν
Xj (t) = �jηXνb

ν
Xj/(μ2 − ω2

Xν) ×
[exp{−iωXνt}(iωXν sin μt + μ cos μt) − μ].
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At this stage, we have factorized the evolution operator
into four main terms, each term being an evolution operator
evolving the system from time t0 to time t . We have explicit
values for the first three factors, but the last term (the
entanglement evolution operator) can be quite complicated; we
have also described situations where the exponent of that term
is small and can be neglected. In this case, the probabilities
to observe any of the 2N product states with a quantization
axis along the Ising axis (|β〉 = |↑xor↓x〉 ⊗ |↑x or ↓x〉 ⊗ · · ·
for the N ionic spins) is unaffected by the presence of
an arbitrary number of real excited phonons (which are
excited by the phonon-spin evolution operator). Using the
fundamental axiom of quantum mechanics, the probability
Pβ(t) of observing a product spin state |β〉 starting initially
from the phonon ground state |0〉 and not measuring any of
the final phonon states involves the trace over all possible final
phonon configurations,

Pβ (t) =
∞∑

nX1=0

· · ·
∞∑

nXν=0

· · ·
∞∑

nXN=0

|〈β|

⊗〈nX1 · · · nXν · · · nXN |U (t,t0)|0〉 ⊗ |�(0)〉|2, (19)

where |�(0)〉 is any initial spin state (it need not be a product
state) and nXν denotes the number of phonons excited in
the νth mode in the X direction. The operator in the matrix
element entangles the phonons and the spins, so we evaluate
the matrix element in two steps: (1) we evaluate the phonon

part of the operator expectation value, and then (2) we evaluate
the spin part. Note that since the pure phonon factor of the
phonon evolution operator exp[−iHpht/h̄] is a phase factor,
it has no effect on the probabilities when evaluated in the
phonon number operator basis, so we can drop that factor.
Next, the term exp[−i

∑
ν Xν(t)aXν] gives 1 when operating

on the phonon vacuum to the right, so it can be dropped.
We are thus left with three factors in the evolution operator.
One involves exponentials of the phonon creation operator
multiplied by spin operators (and is essentially a coherent-state
excitation for the phonons with the average phonon excitation
number determined by the spin state being measured), one
involves products of spin operators that resulted from the
factorization of the coupled phonon-spin evolution operator
factor, and one is the pure spin evolution factor Uspin. The
two remaining factors that appear on the left involve only σx

j

spin operators, and hence the product-state basis is an
eigenbasis for those operators. This fact allows us to di-
rectly evaluate the expression in Eq. (19). We expand
the evolution of the initial state at time t in terms
of the product-state basis |�(t)〉 = Uspin(t,t0 = 0)|�(0)〉 =∑

β ′ cβ ′ (t)|β ′〉, where |β ′〉 denotes each of the 2N product-
state basis vectors and cβ ′ (t) is a (complex) number. Us-
ing the fact that the product states satisfy the eigenvalue
equation σx

j |β ′〉 = mx
jβ ′ |β ′〉 with eigenvalues mx

jβ ′ = +1 (for
|↑x〉) or −1 (for |↓x〉), we arrive at the expression for the
probability:

Pβ(t) = |cβ(t)|2 exp

[
−

∑
νjj ′

γ ν
Xj (t)γ ∗ν

Xj ′(t)mx
jβmx

j ′β

] ∞∑
nX1···nXN=0

N∏
ν=1

[
1

nXν!

{ ∑
jj ′

γ ν
Xj (t)γ ∗ν

Xj ′(t)mx
jβmx

j ′β

}nXν
]
. (20)

We used the matrix element

〈nX1 · · · nXν · · · nXN |e−i
∑

ν ∗
Xν (t)a†

Xν |0〉 = (−i)nX1+···nXν+···nXN

√
nX1! · · · nXν! · · · nXN !

∗
X1(t)nX1 · · · ∗

Xν(t)nXν · · · ∗
XN (t)nXN (21)

in the derivation. The summations become exponentials,
which exactly cancel the remaining exponential term and,
finally, yield Pβ(t) = |cβ(t)|2, which is what we would have
found if we evaluated the evolution of the spins using just
the spin evolution operator Uspin and ignoring the phonons
altogether. Hence, the coherently excited phonons have no
observable effects on the probability of product states for the
transverse-field quantum Ising model when we can neglect
the entanglement evolution operator. If we do not measure the
probability of product states, then the terms from the coupled
spin-phonon evolution operator remain spin operators, and one
can show that the probabilities are changed by the phonons. In
other words, it is because the spin-phonon evolution operator is
diagonal in the product-space basis for phonons and spins that
we are able to disentangle the phonon and spin dynamics. In
cases where this cannot be done, we expect the phonon and spin
dynamics to remain entangled. In other words, phonons have
observable effects on any spin measurement which introduces
spin operators away from the Ising quantization axis such as
most entanglement witness operator measurements. Finally,

we may ask, what does the entanglement evolution operator
do to the system? It is difficult to find any simple analytic
estimates of the effect of this term, but it acts on the initial state,
which has the spins aligned along or opposite to the magnetic
field and has no phonons. During the evolution of that operator,
new terms will be created which involve entanglement of
spin states with states that have created phonons. If the
amplitude of those extra terms is low, they will not have a
large effect, but if it is not, then one has no other recourse but
to examine the full problem numerically, which is what we
do next. First, we examine a perturbation-theory treatment,
and then we consider the full numerical evolution of the
system.

E. Diabatic effects from time-dependent spin-spin interaction

One may have noticed that the spin evolution operator was
not the evolution of a static Ising spin model. There were
additional time-dependent factors in the evolution operator
that arose from the additional time dependence of the exchange
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operators, which was inherited by the phonons when they were
“adiabatically” removed from the problem. In this section, we
use adiabatic perturbation theory (reviewed in Appendix B)
to analyze the effect of those extra time-dependent terms on
the spin evolution of the system. In an adiabatic quantum
simulation, one initially prepares the system in a certain
pure state |n(t0)〉 of the initial Hamiltonian H (t0) with the
occupation αn(t0) = 1 and the probability amplitudes in all
other states vanishing [αm(t0) = 0]. Thereafter, the proba-
bility amplitudes to be excited into the other states can be
approximated by

αm(t) ≈
∫ t

t0

dt ′
〈m(t ′)|∂t ′H (t ′)|n(t ′)〉

Em(t ′) − En(t ′)
ei[θm(t ′)−θn(t ′)] (22)

for later times, as long as the transition amplitudes |αm(t)| are
much lower than 1 during the time evolution. This is the main
expression we use to evaluate the diabatic effects due to the
time-dependent exchange interactions Jjj ′ (t). Here Em,n(t ′)
are the instantaneous eigenstates of the spin Hamiltonian
Hspin(t) with a static exchange interaction Jj,j ′ (t) = J 0

j,j ′ and
θm,n(t ′) are the corresponding dynamic phases given by the
integrals θm,n(t) = ∫ t

t0
dt ′ Em,n(t ′)

h̄
, and we assume that there are

no degeneracies in the instantaneous spectrum as a function of
time.

Let us briefly describe the experimental protocol for
a typical trapped ion quantum simulator restricted to the
spin-only Hamiltonian Hspin(t) = HIs(t) + HB(t) defined in
Eq. (18). The system is initially prepared in a spin-polarized
state |↑y · · · ↑y · · · ↑y〉 along (or opposite to) the direction
of the transverse magnetic field B(t) = B(t)ŷ by optical
pumping followed by a π/2 spin rotation. The spin-only
Hamiltonian is then turned on with a maximum effective
transverse magnetic field |B| = Bm � |Jjj ′ (t)| followed by
an exponential ramping-down of the magnetic field to a final
value Bme−t/τ at time t (τ is the exponential ramping time
constant for the decay of the magnetic field). After evolving
to time t , the projection of the spin states along the x axis of
the Ising Hamiltonian is taken to find the probability to be in
a particular spin state at time t (in actual experiments another
π/2 pulse is applied to rotate the x axis to the z axis where the
measurement is made).

If the system is perfectly adiabatic during the evolution,
the outcome of the quantum state would be the highest
excited state of the Ising Hamiltonian HIs(t) if the simulation
starts out in the highest excited state of the magnetic-field
Hamiltonian Bm

∑
j σ

y

j at time t = t0 = 0, which corresponds
to the spins aligned along the y axis. This procedure is
theoretically identical to the ground-state passage of the
spin-polarized state |↓y · · · ↓y · · · ↓y〉 to the ground state of
the negative of the Ising Hamiltonian −HIs(t), with the system

Hamiltonian being modified as H (t) → −H (t) [11]. In a
typical trapped ion quantum simulator, the frequency μ is
sufficiently far from any phonon frequencies such that the
condition ηXν�i � |μ − ωXν | holds to avoid the heating of
the system away from the initial phonon vacuum state during
the simulation. In addition, the maximum magnetic-field
strength is much larger than the time-independent exchange
interactions |Bm| � |J 0

jj ′ | to ensure that the system initially
starts in an eigenstate of the initial Hamiltonian. To optimize
the adiabaticity of the simulation, the ramping time constant
τ for the magnetic field has to be chosen to be much greater
than the largest characteristic time scale of the system, which
is shown below to be the minimum of the inverse of the
frequencies |μ − ωXν |,Bm/h̄.

We now discuss the effects of the time-dependent exchange
interaction �Jjj ′ (t). For concreteness, we follow the highest
energy state, starting from the spin state aligned along the
direction of the magnetic field. Starting with the expression
for the transition probability amplitude αm(t) in Eq. (22),
we find that the dominant diabatic transition is to the state,
with the minimum energy difference �E = Em(t0) − En(t0)
with the initial spin-polarized state |↑y · · · ↑y · · · ↑y〉, assum-
ing that the matrix element in the numerator does not depend
too strongly on 〈m|, which is true when HB(t) � HIs(t). At
the initial time t = 0, where the Ising couplings Jjj ′ (t = 0)
can be shown to always vanish, all of the spin states with one
spin flipped along the y axis are degenerate. This degeneracy
will be broken by the Ising Hamiltonian HIs at finite time
t > t0. Due to spin-spin interaction in HIs(t), the states along
the y axis of the Bloch sphere, called |m〉, have nonzero
matrix components 〈m|∂t ′HIs(t ′)|n〉, with the lowest energy
gap �E ≈ −2B(t0) with respect to the initial spin state |n〉 =
|↑y · · · ↑y · · · ↑y〉.

To approximately evaluate the transition amplitude αm from
the initial state to the two spin-flipped states |m〉, we do
not actually need to know the state |m〉. The only relevant
information we need is that it is one of the two spin-flipped
states, which tells us what the denominator is. Hence, we can
approximate

〈m(t ′)|∂t ′HIs(t ′)|n(t ′)〉
Em(t ′) − En(t ′)

≈ −〈m|∂t ′HIs(t ′)|n〉
2B(t)

. (23)

Using similar reasoning, we approximate �θ (t ′) as

�θ (t ′) ≈ −
∫ t ′

0
dt

2Bm

h̄
e− t

τ = −2ωBτ (1 − e− t ′
τ ), (24)

in which ωB = Bm

h̄
is the magnetic angular frequency. The

operator ∂t ′HIs(t ′) = ∑
j,j ′ ∂t ′Jj,j ′ (t ′)σx

j σ x
j ′ consists of modes

with frequencies ωXν + μ, ωXν − μ, and 2μ with the time
derivative ∂t ′Jj,j ′ (t ′) given by

∂t ′Jj,j ′ (t ′) = h̄

N∑
ν=1

�j�j ′η2
Xνb

Xν
j bXν

j ′

μ2 − ω2
Xν

μωXν

[
sin 2μt ′ − cos ωXνt

′sin μt ′ − μ

ωXν

sin ωXνt
′ cos μt ′

]
.

≈ h̄

2

N∑
ν=1

�j�j ′η2
Xνb

Xν
j bXν

j ′

μ2 − ω2
Xν

μωXν

(
1 − μ

ωXν

)
sin (ωXν − μ)t ′. (25)
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The latter approximate expression is derived by keeping the
contribution from the slow mode ωXν − μ and dropping the
high-frequency modes ωXν + μ and 2μ because the detuning
μ > 0 is closely detuned to certain phonon modes in the
quantum simulation.

As a consequence, the probability amplitude αIs
m,ν(t) in-

duced by a single-phonon mode is given by the expression

αIs
m,ν(t) = − i

8

∑
jj ′

[
μ�j�j ′η2

Xνb
Xν
j bXν

j ′

ωB(μ + ωXν)

]
〈m|σx

j σ x
j ′ |n〉f (t).

(26)

The function f (t) = 2i
∫ t

0 dt ′ sin (ωXν − μ)t ′ei�θ(t ′)+ t ′
τ can be

approximated in experiments [when ωXν − μ is much larger
than ωB at slow ramping (ωXν − μ)τ � 1] as

f (t) ≈ 2

i(ωXν − μ)
[ei�θ(t)+ t

τ cos (ωXν − μ)t ′|t0]. (27)

We therefore reach the conclusion that the probability ampli-
tude αIs

m,ν(t) is given by

αIs
m,ν(t) = −1

4

∑
j,j ′

〈m|σx
j σ x

j ′ |n〉μ�j�j ′η2
Xνb

Xν
j bXν

j ′

ωB

(
ω2

Xν − μ2
) ei�θ(t)+ t

τ

× [1 − cos(ωXν − μ)t]. (28)

We note that diabatic effects manifested in αIs
m,ν due to time-

dependent Ising couplings grow exponentially in time as et/τ ,
signifying that the theory is only accurate for short times. To
suppress the diabatic effects, the criterion that has to hold for
all phonon modes ν is∣∣∣∣1

4

∑
ν

∑
j,j ′

〈m|σx
j σ x

j ′ |n〉μ�j�j ′η2
Xνb

Xν
j bXν

j ′

ωB

(
ω2

Xν − μ2
) e

t
τ

∣∣∣∣ � 1. (29)

Based on this expression, when the laser is closely detuned to
one of the phonon resonance frequencies ωXν , the transition
probability between states caused by Jj,j ′ (t ′) becomes large
(diabatic). In addition, a stronger magnetic field is required to
suppress the diabatic transitions with smaller detuning μ. This
is supported by the numerical discussion in Sec. III C. Note that
the above expression should be a reasonable estimation as long
as the condition B(t) � max|Jj,j ′ (t)| = Jmax applies at time t

after the beginning of the quantum simulation. We can estimate
the maximal time tc for which B(t) � max|Jj,j ′ (t)| = Jmax

holds. The cutoff tc is set by B(tc) = Jmax, where Jmax is the
absolute value for the maximum exchange interaction Jj,j ′ (t)
between the spins. As a result, the cutoff time tc is proportional
to the ramping time constant τ with a logarithmic factor given
approximately by

tc = τ ln

[
Bm

Jmax

]
. (30)

In the parameter regime where Bm/Jmax � 1, in which our
theory holds, tc can be extended somewhat beyond the ramping
time constant τ . Based on our numerical discussion, the dia-
batic effects are largest when the magnetic field is ramped
through the transition from a paramagnetic state to other tar-
geted spin states, which is also accompanied by larger phonon

creations due to the shrinkage of the spin gap near the
transition.

III. NUMERICAL RESULTS

In this section, we focus on showing the circumstances in
which quantum emulators can or cannot be described by the
transverse-field Ising model with high fidelity. Since our goal
is to understand under what circumstances the effect of the
phonons is small, we consider different cases for the time
evolution of the system including various detunings and initial
transverse-magnetic-field strengths.

To isolate different effects, we compare two spin-only
models in the presence of the ramping magnetic fields with
the theoretically exact spin-phonon model based on numerical
diagonization. The first is the ideal spin model, which
considers the evolution of the system with a static Ising model
(spin exchange coefficients are the time-averaged exchange
coefficients) and a time-dependent magnetic field. While one
might think this is a purely adiabatic model, it has some
diabatic effects, since the fully polarized state is not generically
the ground state of the Ising plus magnetic-field Hamiltonian
because the (static) Ising exchange interactions are nonzero at
the initial time. Hence, one can invoke a sudden approximation
to the system initially and find that the initial state is a
superposition of different energy eigenstates. In addition, the
magnetic field varies in time and hence can cause additional
diabatic effects due to its derivative with respect to time.

The second is the effective spin model, which involves,
essentially, evolution of the spin system according to the spin
evolution operator only in Eq (18). Hence it has the static
Ising Hamiltonian, time-dependent Ising interactions, and a
time-varying transverse magnetic field. This model can have
its Schrödinger equation solved in a spin-basis only, since all
phonon effects are neglected except virtual phonon excitations.

The third model is the exact spin-phonon model, where
we evolve the system according to the original spin-phonon
Hamiltonian expanded in the Lamb-Dicke limit [Eq. (2)]. The
only approximation used in the model is the cutoff for phonons.
The strategy we use is to numerically integrate the Schrödinger
equation using a direct product basis which involves a spin
state in direct product with a phonon state. We do this because
the Hamiltonian only connects states that differ by plus or
minus one phonon number and, hence, is block sparse in this
basis. The spin states are chosen to include all possible Ising
spin states for the number of ions in the trap. The phonon basis
is chosen to have a cutoff of a maximal phonon excitation. The
maximal cutoff is always chosen to be larger than the average
occupancy of the phonons in each normal mode of the ion
chain. Of course, we expect more phonons to be excited into
the phonon modes closest to the beat-note frequency of the
lasers, so the cutoffs that are chosen will vary from one normal
mode to another. For example, we often find that we can set
the phonon cutoff to be 1 for some of the phonon modes far
from the driving frequency of the spin-dependent force.

To facilitate our discussion, we define the root-mean-square
average Jrms of the fully connected Ising interaction for N ions
as

Jrms =
√∑

j,j ′ |Jj �=j ′ |2
N (N − 1)

, (31)
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in which the static Ising interaction Jj �=j ′ is given by the static
term in Eq. (12) and the integer indices j, j ′ both range from
1 to N .

A. Symmetry and experimental protocols

Let us discuss the symmetry of the spin-only system first,
which is relevant for the exact diagonization of the spin-only
Hamiltonian. There is one spatial inversion symmetry (Rj →
−Rj ) in the ion chain, since the equilibrium ion positions
are distributed symmetrically about the origin in the trap
and all phonon modes involve symmetric or antisymmetric
displacements of corresponding ion positions. There is also a
spin reflection symmetry (σx → −σx , σy → σy , and σ z →
−σ z) in the spin-only models with a transverse magnetic
field B(t)

∑
j σ

y

j . This spin reflection symmetry preserves
all commutation relations of the spin operators and leaves
the Hamiltonian invariant. Therefore, there are four symmetry
sectors for the eigenstates of the spin model (even space, even
spin; even space, odd spin; odd space, even spin; and odd
space, odd spin).

If the static Ising couplings are all negative (positive), the
spin ground state is FM (antiferromagnetic) and the highest
spin eigenstate is the opposite, namely, antiferromagnetic
(FM). We focus on a detuning to the blue of the CM phonon
mode. In this case, all spin exchange couplings are positive and
the ground state is antiferromagnetic, while the highest excited
state is FM. We examine the adiabatic state evolution of the
highest eigenstate. With all the respected discrete symmetries,
we can construct the symmetric and antisymmetric FM states
of the spin-only Hamiltonian as 1√

2
(|↑x · · · ↑x〉 + |↓x · · · ↓x〉)

or 1√
2
(|↑x · · · ↑x〉 − |↓x · · · ↓x〉), which is in the (even, even)

or (even, odd) sectors, respectively.
The experimental protocol is to prepare the system initially

in a spin-polarized state, |↑y · · · ↑y〉 [which is the highest
eigenstate of the transverse magnetic field B(t)ŷ], by optical
pumping and a coherent spin rotation and then to gradually
turn off the magnetic field with an exponential ramp B(t) =
Bme−t/τ while keeping the spin-dependent laser force in the x

direction on during simulation time through stimulated Raman
transitions between the spin states. According to adiabatic
evolution, if the quantum state is initially prepared in the
highest eigenstate of the field-only Hamiltonian B(t)

∑
j σ

y

j ,
the outcome of the quantum simulation will adiabatically
follow the corresponding highest eigenstate of the Hamiltonian
(Ising spin Hamiltonian), if there are no level crossings (which
does not occur in this system). In the case with positive
static Ising coupling, the FM highest energy eigenstate is the
symmetrical FM entangled state (the so-called GHZ state)

1√
2
(|↑x · · · ↑x〉 + |↓x · · · ↓x〉), when B > 0.
There are two intrinsic errors which can impede the

quantum simulation in trapped ions. The first is diabatic
effects, which occur primarily either when parameters in the
Hamiltonian are changed too rapidly in time or when energy
gaps in the instantaneous eigenvalue spectrum become to
small. The second is the error induced by phonons in the
presence of time-dependent transverse magnetic fields. For
example, the phonon-spin Hamiltonian does not have spin
reflection symmetry because it is linear in the σx operators, and

hence the spin-phonon interaction breaks this Z2 symmetry.
One consequence of this is to couple the symmetric and
antisymmetric FM states, which is likely to reduce the spin
entanglement of the GHZ state. (Other errors such as phonon
decoherence effects due to spontaneous emission are not
considered here.)

B. Probability and GHZ-state entanglement measurements

Current experiments use atomic cycling transitions to
measure the spin state of the ion (which clock state the ion
is in) and do not measure the phonons excited in the system.
Hence, the experimental observables are the probability Pβ(t)
of a spin-polarized state after tracing out phonons in the tensor
product of the spin-phonon Hilbert space |spin〉 ⊗ |phonon〉,
as mentioned above in the discussion of Eq. (19). If one
performs rotations about the Bloch sphere prior to making the
measurement of the probabilities, then one can also measure a
number of different spin-entanglement witness operators.

A spin-entanglement witness operator (for a target entan-
glement state) [25] is a mathematically constructed observable
that has a negative expectation value when the system is entan-
gled. No witness operator can measure general entanglement,
but instead a witness operator is constructed to measure a
specific type of spin entanglement. For example, the witness
operator WGHZ for an N -ion chain can be constructed as [25]

WGHZ = 3I − 2

[
S

GHZN
1 + I

2
+

N∏
k=2

S
GHZN
k + I

2

]
, (32)

with the stabilizing spin operators expressed in terms of the
Pauli spin operators by

S
GHZN
1 =

N∏
k=1

σ
y

k , S
GHZN
k = σx

k−1σ
x
k . (33)

Note that the target spin-polarized state in this paper is
along the Ising x axis in the Bloch sphere instead of the z

axis. Therefore, we modified the original expression [25] to
our problem by the transformation σ z → σx and σx → σy .
Based on the above construction, GHZ-state entanglement
measurements can be detected by the observable 〈WGHZ〉 =
Tr(ρWGHZ), with the density matrix ρ constructed by pure
states or mixed states during the quantum simulation. For
a perfect GHZ-state entanglement, one can show that the
entanglement witness operator satisfies 〈WGHZ〉 = −1 (refer to
Appendix C). Any deviation from perfect GHZ entanglement
would lead to a value greater than −1. Note that this is one
of the few cases of a witness operator where the degree
of entanglement is correlated with the magnitude of the
expectation value of the witness operator.

C. Transition to the ferromagnetic state when detuned
blue of the center-of-mass phonon mode

The systems we consider range from N = 4 to N = 8,
which is far from the thermodynamic limit. The quantum phase
transition (QPT) due to the discontinuity of the ground-state
wave function in the thermodynamic limit N → ∞ only
manifests itself as a state avoiding crossing in the energy
spectrum, which is adiabatically connected to the QPT at large
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TABLE I. Parameter set I.

Aspect ratio 0.2092
ωCM/2π 4.63975 MHz
Rabi frequency �/2π 369.7 kHz
Lamb-Dicke parameter ηCM 0.06
Transverse phonon mode

frequency (in ωCM) No. of ions, N

N = 4 N = 6 N = 8

1.0 1.0 1.0
0.9788 0.9788 0.9788
0.9482 0.9481 0.9480
0.9088 0.9083 0.9079

0.8589 0.8581
0.7988 0.7974

0.7236
0.6324

N . The system parameters and the higher set of transverse
phonon modes, which belongs to the higher branch of two
transverse motional degrees of freedom, for different numbers
of ions N are summarized in Table I. The trapping parameters
are given by the aspect ratio and the CM mode frequency ωCM

along the transverse (tight) axis. The axial (easy) trapping
frequency is given by the product of the aspect ratio and the
CM mode frequency ωCM. The choice of these parameters
comes from trap parameters and typical operating regimes of
the ion-trap experiment at the University of Maryland. Most
results are robust with moderate changes of parameters and
our choices do not intimate that fine-tuning of parameters is
needed to achieve the results we show.

Figures 1(a)–1(d) show the probability to be all spins up
or all spins down [PFM(t) = P↑x↑x ···↑x

(t) + P↓x↓x ···↓x
(t)] and

Figs. 1(e)–1(h) show the corresponding entanglement witness
operator expectation value 〈WGHZ〉 for the GHZ state with
four ions (N = 4), positive (blue) detuning (μ > ωCM), and
positive Ising coupling (J > 0). In this case, the highest
excited state is FM and the CM phonon mode produces nearly
uniform Ising coupfrlings between each spin (more uniform
the closer the detuning is to the CM frequency).

We begin by examining the effect of the magnitude of the
initial magnetic field on the adiabatic state evolution. In theory,
we want the magnetic field as large as possible, because the
larger it is, the better the initial state is an eigenstate of the
system. But this limit must be balanced against two competing
issues: first, we must complete the simulation in a finite time
period and we do not want parameters in the Hamiltonian
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FIG. 1. (Color online) Quantum simulation for different models (blue line, ideal spin model; green line, effective spin model; red line, exact
spin-phonon model). The average phonon occupation number n̄(t) is plotted by the solid black line in (e)–(h), which also show the expectation
value of the GHZ entanglement witness operator. The detuning μ is always chosen to be 1.0095ωCM, just slightly blue of the CM phonon mode,
while the exponential ramping time constant for the magnetic field is fixed at τ = 8 × 10−2 ms. The initial transverse magnetic field varies as
follows: (a) Bm = 23.64Jrms, (b) Bm = 47.28Jrms, (c) Bm = 94.56Jrms, and (d) Bm = 189.12Jrms. The average static Ising coupling (in units of
angular frequency) is given by Jrms = 1.5017 × 10−4ωCM (for the chosen ion trap parameters in Table I).
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to change too rapidly (to prevent large diabatic effects); and
second, the experimental setup can only create a magnetic
field of some finite maximum value. Hence, we must always
live with a finite initial magnetic field. If the field is too low,
then the sudden approximation tells us we will have larger
admixtures of excited states in the system, which will give rise
to oscillations in the measured probabilities and will reduce the
final probability to end up in the FM state. This is because the
initial state is not close to the initial eigenstate of the system.
If the field magnitude is much less than the spin coupling, then
the system never evolves to the ground state but remains in the
state ordered along the magnetic field.

The set of curves in Fig. 1(a) is at an intermediate value
of the magnetic field. Let us focus first on the ideal spin
model. One can see that the probability has initial oscillations,
which continue as the system evolves, but it produces a
nearly pure FM-state probability by the end of the simulation.
The corresponding witness operator shows that we achieve
excellent entanglement as well. If we add the time-dependent
exchange interactions as described by the effective spin model,
we see that the probabilities generate much larger diabatic
oscillations, and the final probability is strongly suppressed.
In addition, the witness operator gives an expectation value
shifted up significantly from −1. Finally, when we consider the
exact coupled spin-phonon model, we find that the oscillations

lie in between those of the ideal and those of the effective spin
model, but the probability for the FM state is nearly 1. The
witness operator, on the other hand, shows reduced entangle-
ment, similarly to the effective spin model. This is easier to
understand for the spin-phonon model, because the presence
of phonons breaks the Z2 symmetry of the spin reflection, and
hence the classification of states as even or odd is lost, so those
states are mixed together by the Hamiltonian reducing the en-
tanglement. Furthermore, compared to the phonon occupancy,
we see deviations between the red and the green curve start
when the phonon occupation is still quite low, and oscillations
in the witness operator are strongly correlated with oscillations
in the phonon number (because the phonon and spin are
coupled in a correlated fashion). As the field is increased for
fixed ramping time [Figs. 1(b)–1(d)], we see that the amplitude
of the oscillations is reduced for the ideal spin model and for
the exact spin-phonon model, but the witness operator for
the exact solution always shows reduced entanglement. This
behavior provides one of our main conclusions about the effect
of the phonons—namely, they act to provide a decoherence
of the spin system, which reduces oscillations and improves
the adiabatic nature of the evolution of the probabilities but
reduces the overall entanglement of the spin state.

In Fig. 2, we examine the detuning dependence of the
simulator in the case of a moderate magnetic field. We start

0 0.1 0.2 0.3 0.4 0.5 0.6
0

0.5

1(a)

Time(msec)

P
F

M

0 0.1 0.2 0.3 0.4 0.5 0.6
0

0.5

1(b)

Time(msec)

P
F

M

0 0.1 0.2 0.3 0.4 0.5 0.6
0

0.5

1

Time(msec)

P
F

M

(c)

0 0.1 0.2 0.3 0.4 0.5 0.6
0

0.5

1

Time(msec)

P
F

M

(d)

0 0.1 0.2 0.3 0.4 0.5 0.6
−1

0

1

2

Time(msec)

<
W

G
H

Z
>

 (e)

0 0.1 0.2 0.3 0.4 0.5 0.6
−1

0

1

Time(msec)

<
W

G
H

Z
>

 (f)

0 0.1 0.2 0.3 0.4 0.5 0.6
−1

0

1

Time(msec)

<
W

G
H

Z
>

 (g)

0 0.1 0.2 0.3 0.4 0.5 0.6
−1

0

1

Time(msec)

<
W

G
H

Z
>

 (h)

FIG. 2. (Color online) Detuning dependence μ of the simulation (the initial magnetic field Bm = 3.6 × 10−3ωCM and the exponential
ramping time constant τ = 8 × 10−2 ms are both fixed) for (a) μ = 1.0038ωCM, Jrms = 3.765 × 10−4ωCM, (b) μ = 1.0095ωCM, Jrms =
1.5017 × 10−4ωCM, (c) μ = 1.019ωCM, Jrms = 7.4734 × 10−5ωCM, and (d) μ = 1.038ωCM, Jrms = 3.7019 × 10−5ωCM. (e)–(h) The corre-
sponding GHZ witness operator and the average phonon number.
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FIG. 3. (Color online) Detuning dependence of the simulation with a strong initial magnetic field (Bm = 2.88 × 10−2ωCM and τ =
8 × 10−2 ms) for (a) μ = 1.0057ωCM, Jrms = 2.5076 × 10−4ωCM, (b) μ = 1.0095ωCM, Jrms = 1.5017 × 10−4ωCM, (c) μ = 1.0190ωCM, Jrms =
7.4734 × 10−5ωCM, and (d) μ = 1.0380ωCM, Jrms = 3.7019 × 10−5ωCM. (e)–(h) The corresponding GHZ witness operator and the average
phonon number.

with the detuning very close to the CM mode and then move
farther and farther away in Figs. 2(a)–2(d). As expected, when
we are far detuned from the phonon line [Fig. 2(d)], no phonons
are created, and all three models agree essentially perfectly
for the probability and the entanglement. As we move in
closer to the phonon line, we start to generate phonons and we
also generate diabatic oscillations in the probability data, but
surprisingly, we continue to see a very close correspondence of
the exact spin-phonon model and the ideal spin model, while
the effective spin model describes the system in an increasingly
poorer fashion. The entanglement gets sharply reduced as well,
so much so that for the smallest detuning, the entanglement
witness operator is effectively zero for the exact spin-phonon
model. As before, the ideal spin model is incorrect in predicting
the entanglement, and the effective spin model is much better
at approximating the entanglement.

In Fig. 3, we also examine the detuning dependence, but
now in the case of a large magnetic field. Here the exact spin-
phonon model and the ideal spin model give virtually identical
results for the FM probability and the effective spin model

fails once the detuning gets too close to the phonon line. The
entanglement, however, continues to behave as before, with
the ideal spin model always predicting large entanglement and
the exact spin-phonon model showing much reduced entangle-
ment. Note that the trend of reducing the FM probability and
the entanglement as the detuning moves away from the phonon
line arises from the fact that the exchange parameters are get-
ting smaller, so the field is evolving the system too rapidly to be
in the adiabatic limit and we have diabatic effects which do not
allow us to reach the FM state during the time of the simulation.

If we go to the case of near-resonant driving of the system, as
in Fig. 4, we see that we create significant numbers of phonons,
and we eventually see that the exact spin-phonon model
does deviate from the ideal spin model in the probabilities.
As expected, we also see a very sharp reduction of the
entanglement of the exact evolution compared to the ideal
spin model.

So far, all of our calculations have been for a small chain
with N = 4. Now we look at the size dependence of the ion
chain by examining the behavior as we increase the number

032329-11



C.-C. JOSEPH WANG AND J. K. FREERICKS PHYSICAL REVIEW A 86, 032329 (2012)

0 0.2 0.4 0.6 0.8 1
0

0.2

0.4

0.6

0.8

1

Time(msec)

P
F

M
 (a)

0 0.2 0.4 0.6 0.8 1
0

0.2

0.4

0.6

0.8

1

Time(msec)

P
F

M

 (b)

0 0.2 0.4 0.6 0.8 1
−1

−0.5

0

0.5

1

1.5

2

Time(msec)

<
W

G
H

Z
>

 (c)

0 0.2 0.4 0.6 0.8 1
−1

0

1

2

3

4

5

6

Time(msec)

<
W

G
H

Z
>

 (d)

FIG. 4. (Color online) Quantum simulation with detuning near resonance with the CM mode and with a large initial magnetic field (Bm =
2.88 × 10−2ωCM and τ = 8 × 10−2 ms) for (a) μ = 1.0038ωCM, Jrms = 3.765 × 10−4ωCM and (b) μ = 1.000 95ωCM, Jrms = 1.5 × 10−3ωCM.
(c), (d) The corresponding GHZ witness operator and the average phonon number.

N from 5 to 8 in Fig. 5. This case is with a moderate initial
magnetic field but driving fairly close to resonance with the
CM mode. In order to properly compare the different systems,
we adjust the detuning to yield an average spin exchange
that is approximately equal for the different number of ions.
These results clearly show the main themes we have been
exploring. The exact spin-phonon model and the ideal spin
model exhibit nearly identical evolution of the probability,
with the deviations starting to become clear only for the
largest chain. Nevertheless, the entanglement of the system is
sharply reduced for all systems, with the reduction occurring
at about the same time in the simulation for all cases. In
terms of CM mode phonon excitations, we observe the trend
of increasing phonon excitations from far below one phonon
toward more than one phonon as the system size increases.
The strong correlation between phonon excitations and the
deviation between the exact spin-phonon model and the ideal
spin model are still clearly manifested.

D. Evolution to the kink phase in the highest excited state

Let us look at the highest excited state on ion chains with
even numbers of ions and a detuning that lies between the high-

est (CM) mode and the second (tilt) mode. We examine this
scenario here to see the effects of phonons on this transition.

In Fig. 6, we show predictions for experimental traces
when the detuning is between these two phonon lines. The
red detuning is chosen such that it is possible to excite
two transverse phonon modes simultaneously by locating the
laser detuning between the CM mode on an ion chain with
N = 4 ions and ωCM ≈ 2π × 4.64 MHz and the tilt mode with
frequency ωT = 0.9788ωCM. The spin-state simulation ideally
should evolve from the highest excited state |↑y · · · ↑y · · · ↑y〉
along the transverse-magnetic-field axis to the symmetric
kink state (or antiphase state) 1√

2
(|↑x↑x↓x↓x〉 + |↓x↓x↑x↑x〉)

along the Ising axis if the system is perfectly adiabatic.
In those cases, long-range spin-spin couplings are negative
and dominant over adjacent spin couplings; therefore, the
highest excited state is the symmetric kink state (with FM
couplings, the highest excited state will be antiferromagnetic).
By detuning from the CM mode ωCM to the tilt mode ωT ,
the adjacent spin-spin couplings change sign from negative to
positive and long-range spin-spin couplings are still negative
with an enlarged magnitude. We have checked that this
eigenstate is generic for an even number of ions (up to at
least N = 8), with the highest eigenstate always being the
antiphase (kink) state.
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FIG. 5. (Color online) Number dependence of quantum simulation for intermediate initial magnetic field and detuning chosen according
to the text. (a)–(d) The ferromagnetic probability as a function of time. (e)–(h) The time dependence of the GHZ-state witness operator
〈WGHZ〉. Solid red lines are results for the exact spin-phonon model and solid blue lines are for the ideal spin model. Black lines indicate the
corresponding coherent CM phonon occupation driven by the lasers. The initial magnetic field strength Bm = 3.6 × 10−3ωCM and exponential
ramping time constant τ = 8 × 10−2 ms are chosen with varying parameters given by the following cases: (a) N = 5, μ = 1.0076ωCM, Jrms =
1.5013 × 10−4ωCM; (b) N = 6, μ = 1.0063ωCM, Jrms = 1.5011 × 10−4ωCM; (c) N = 7, μ = 1.0054ωCM, Jrms = 1.5006 × 10−4ωCM; and
(d) N = 8, μ = 1.0048ωCM, Jrms = 1.5008 × 10−4ωCM. (e)–(h) The corresponding GHZ witness operator and the average phonon number.

In cases with the same magnetic-field ramping, we observe
a higher probability for the kink phase PK in Fig. 6(b) (further
detuned from the CM mode) than in Fig. 6(a) for the ideal spin
model. Similarly, we also observe a larger PK (higher fidelity)
in Fig. 6(d) than in Fig. 6(c). Lower fidelity in general is
correlated with the fact that the spin excitation gap is smaller
(with respect to the exponential ramping time constant τ ).
This implies that the frustration of the Ising couplings favors
a larger spin gap for intermode detuning than that for the
close detuning case to the blue of the CM mode. By exact
numerical diagonization for ideal spin models, we found that
this is indeed the case and the second highest eigenstate
has a very different character. In Figs. 6(a) and 6(c), the
second highest eigenstate is the symmetric antiferromagnetic
state 1√

2
(|↑x↓x↑x↓x〉 + |↓x↑x↓x↑x〉) at the end of the sim-

ulation, with a spin gap �s ≈ 2π × 28.359 kHZ. However,
for Figs. 6(b) and 6(d), the second highest eigenstate is

the kink state 1
2 (|↑x↓x↓x↓x〉 + |↓x↑x↑x↑x〉 + |↓x↓x↓x↑x〉 +

|↑x↑x↑x↓x〉), with a larger spin gap, �s ≈ 2π × 107.40 kHZ.
As far as phonon effects are concerned, we note that the

large discrepancies between the ideal spin model and the
exact spin-phonon calculations for PK are strongly correlated
with the large number of phonon excitations (n̄ν > 1) for
either phonon mode. Comparing Fig. 6(a) with Fig. 6(c) [or
comparing Fig. 6(b) with Fig. 6(d)], we note that large phonon
excitation often occurs during the part of the evolution when
the magnetic-field strength is larger. Unlike the blue-detuned
situation in Sec. III C, a small detuning from the CM mode does
not show a high fidelity of the final spin state (kink order in
this case) at long times. Instead, the probability of observing
the kink state is significantly degraded by the presence of
phonons. Hence, the creation of phonons does not always
help the system appear as if it is simulating a static spin
Hamiltonian.
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FIG. 6. (Color online) Quantum simulation for the kink state in the presence of phonon excitations. (a)–(d) The probability of the
one-kink state PK as a function of time for the ideal spin model (blue lines), effective spin model (green lines), and exact spin-phonon
model (red lines) for different cases. (e)–(h) The average phonon occupation number n̄ν(t) for the CM mode [solid (black) lines] with
angular frequency ωCM = 2π × 4.6398 MHZ and the tilt mode [dashed (blue) lines] with angular frequency ωT = 0.9788ωCM. We fix the
exponential ramping time constant τ = 8 × 10−2 ms for different magnetic field and detuning as (a) μ = 0.9905ωCM, Bm = 3.6 × 10−3ωCM;
(b) μ = 0.9810ωCM, Bm = 3.6 × 10−3ωCM; (c) μ = 0.9905ωCM, Bm = 2.88 × 10−2ωCM; and (d) μ = 0.9810ωCM, Bm = 2.88 × 10−2ωCM.
(e)–(h) The corresponding GHZ witness operator and the average phonon number. System parameters are chosen according to Table I.

By greatly reducing the Rabi frequency to suppress the
phonon excitations, we observe good agreements between
the ideal spin models and the exact spin-phonon models in
Fig. 6(a) as well as the enhancement of the spin probability
PK . For a larger ion number (N = 6), we find that the diabatic
effects completely ruin the simulation by tuning the accessible
system parameters in Table I to an order of magnitude larger
or smaller. Even if one could suppress the phonon effects in
this case, we would still typically have large diabatic effects
due to the small energy gaps.

E. Kink transition in the ground state

Following the ground-state evolution with an odd number
of ions and a laser detuning between the second and the
third highest transverse phonon modes, there is a sharp phase
transition [26] separating the FM and the one-kink spin ground

states for the ideal spin models. Therefore, it is quite relevant
to examine the feasibility of experimentally observing this
transition by going beyond an adiabatic evolution of the system
and treating phonon effects and diabatic effects exactly. The
crossover becomes sharp very quickly with the number of
ions due to the fully connected nature of the spin models. A
typical adiabatic phase diagram for the spin-only Hamiltonian
with N = 3 and N = 5 is shown in Fig. 7. The order parameter
PF − PK for the transition is defined as the difference between
the probabilities of the two degenerate FM states PF and the
four degenerate one-kink states PK . The one-kink states for the
N = 3 case are given by the four degenerate states |↑x↓x↓x〉,
|↓x↑x↑x〉, |↓x↓x↑x〉, and |↑x↑x↓x〉. For N = 5, the four one-
kink states |↑x↑x↓x↓x↓x〉, |↓x↓x↑x↑x↑x〉, |↓x↓x↓x↑x↑x〉,
and |↑x↑x↑x↓x↓x〉 are also degenerate. It is clear that the
crossover between the two phases is sharper (smaller spin
gap) for N = 5 than for N = 3, as shown by the much sharper
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FIG. 7. (Color online) Adiabatic phase diagram of the transverse-
field Ising model for (a) N = 3 and (b) N = 5. The horizontal axis is
the laser detuning scaled by the transverse CM mode frequency ωCM.
The vertical axis is the transverse-magnetic-field B scaled by the root-
mean-square average of Ising coupling Jrms. The blue area represents
the one-kink phase and the red area indicates the ferromagnetic phase.
The range of the detuning μ (in units of ωCM) is shown between the
second phonon mode and the third phonon mode. The value of the
order parameter PF − PK ( varying from −1 to +1) is described by
the color scale at the right.

contrast in color. In addition, the FM phase area moves closer to
the leftmost phonon mode and shrinks in size as the number of
ions increases. As the magnetic field gets smaller, the transition
between the FM and the kink phases becomes very sharp as
N increases [26]. The numerical discussion in this section is
based on the system parameters in Table II.

In Fig. 8, we numerically map out the time dependence
of the probability PF − PK for ideal spin models. The
exponentially ramped magnetic field B(t) is chosen with
different initial values Bm (scaled by Jrms as determined by the
detuning μ and the Rabi angular frequency �). The value of
the Rabi angular frequency � = 0.01ωCM is chosen so that it is
safely within the weak-field regime ην�ν � (|ωXν − μ|) near
the central region of the phase diagram for all phonon modes.
The total simulation time T is chosen so that it is proportional

TABLE II. Parameter set II.

Aspect ratio 0.1
ωCM/2π 4.63975 MHz
Rabi frequency �/2π 3.697 kHz
Lamb-Dicke parameter ηCM 0.06
Transverse phonon mode

frequency (in ωCM) No. of ions, N

N = 3 N = 5

1.0 1.0
0.9950 0.9950
0.9879 0.9879

0.9789
0.9683

FIG. 8. (Color online) Ferromagnetic-to-kink phase diagram for
N = 3 calculated for the ideal spin model with diabatic effects
included. The horizontal axis is the laser detuning μ scaled by the
transverse CM frequency ωCM = 2π × 4.6398 MHZ. The vertical
axis is the instantaneous transverse magnetic field B(t) scaled by
the root-mean-square average of the spin couplings Jrms (note the
range changes for different panels). The Rabi angular frequency
� and the dimensionless Lamb-Dicke parameter for the center-of-
mass mode ηCM are selected to be � = 0.01ωCM and ηCM = 0.06,
respectively. (a) τ = 0.2T , T = 0.614 × (Jrms/2π )−1, Bm = 5Jrms;
(b) τ = 0.2T , T = 6.14 × (Jrms/2π )−1, τ = 0.2T , Bm = 5Jrms;
(c) τ = 0.2T , T = 0.614 × (Jrms/2π )−1, τ = 0.2T , Bm = 10Jrms;
and (d) τ = 0.2T , T = 6.14 × (Jrms/2π )−1, Bm = 10Jrms.

to the inverse of Jrms/2π . We select the exponential ramping
time constant τ for the exponential reduction of the magnetic
field B(t) to be one-fifth of the experimental simulation time
(τ = 0.2T ). By comparing Fig. 8(a) to Fig. 8(b) [or Fig. 8(c)
to Fig. 8(d)], we observe that diabatic effects are greatly
suppressed when the exponential ramping time constant τ

is large enough so that the transition to the closest excited
state in energy is negligibly small. This effect shows up as
much deeper colors dictating the order parameter PF − PK

in the FM states and the kink states when B(t) approaches 0
on the vertical axis, as illustrated in Figs. 8(b) and 8(d). The
diabatic effects also show up clearly as a slow oscillation in
the probabilities PF − PK at larger B(t)/Jrms > 1 before the
simulation ends along the vertical axis in Figs. 8(a) and 8(c).
We also note some fast background oscillations in PF − PK

covering the entire phase diagram in Figs. 8(c) and 8(d). This
effect is due to the fact that the time derivative of the dynamic
phase θm(t) − θn(t) between (m,n) states is roughly stationary
in time (as analyzed with adiabatic perturbation theory). For
short exponential ramping time constants τ , one cannot see the
noticeable interference pattern between these states because of
a random phase cancellation along the path of the state evo-
lution in time. In Figs. 8(b) and 8(d) the main difference is a
reduction in the period of the background interference pattern,
which is shorter in Fig. 8(b) (larger magnetic field).

What are the phonon effects on the corresponding FM-to-
kink phase diagram? We show our calculations for the N = 3
case in Fig. 9. Phonon creation has serious effects on the phase
diagram. In cases with fast ramping time constants [Figs. 9(a)
and 9(c)], the FM states are destabilized and appear only with
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FIG. 9. (Color online) Ferromagnetic-to-kink phase diagram for
N = 3 with the same cases as in Fig. 8. The phase diagrams are cal-
culated with the exact spin-phonon Hamiltonian. The horizontal axis
is the laser detuning μ scaled by the transverse CM mode frequency
ωCM. The vertical axis is the instantaneous transverse magnetic field
B(t) scaled by the root-mean-square average of spin-spin coupling
Jrms. (a) τ = 0.2T , T = 0.614 × (Jrms/2π )−1, Bm = 5Jrms; (b) τ =
0.2T , T = 6.14 × (Jrms/2π )−1, τ = 0.2T , Bm = 5Jrms; (c) τ =
0.2T , T = 0.614 × (Jrms/2π )−1, τ = 0.2T , Bm = 10Jrms; and (d)
τ = 0.2T , T = 6.14 × (Jrms/2π )−1, Bm = 10Jrms.

a low probability. For slow ramping time constants [Figs. 8(b)
and 8(d)], the FM domain disappears near the leftmost phonon
mode due to large phonon creation as the phonon is being more
resonantly driven. But the kink-state domain decreases only
slightly near the rightmost phonon mode. As a consequence,
phonons restrict the available parameter space to observe the
FM-to-kink phase diagram but do not rule out the possibility
of observing the phase as long as the exponential ramping
time constant τ is long enough. In the current numerical
simulation we show, the exponential ramping time constant τ is
roughly of the order of a few milliseconds (close to feasibility
in current experiments). One may suspect that phonons can
ruin the stability of the FM state when the number of ions
scales up because the FM domain shrinks in size and moves
closer to the leftmost phonon mode, and if we are too close
to the phonon mode, phonon creation ruins the chance to
see the FM state. One can try to increase the experimental
simulation time and reduce the Rabi frequency, but doing this
too much eventually causes coherence issues or problems from
spontaneous emission.

In Fig. 10, we show the N = 5 case for the ideal spin
model. The behavior of the FM-kink phase diagram is similar
to the N = 3 case in Fig. 8 except the boundary of FM states
and kink states is shifted toward lower detunings μ. As a
consequence, the FM-state domain (dark-red area) occupies
the region where the detuning is close to the leftmost phonon
mode and the kink-state domain (dark-blue area) occupies
most of the detuning region. However, the phase diagram for
a low magnetic field B(t) → 0 is very close to the adiabatic
phase diagram [see Fig. 7(b)] when the initial magnetic field
Bm is large and the ramping time constant τ is long as shown in
Figs. 10(b) and 10(d)] except for the background interference
patterns that were described above. One also notes that there

FIG. 10. (Color online) Ferromagnetic-kink phase diagram for
N = 5 as calculated for the ideal spin model. The horizontal
axis is the laser detuning μ scaled by the transverse mode
trapping frequency ωCM = 2π × 4.6398 MHZ. The vertical axis
is the instantaneous transverse magnetic field B(t) scaled by the
root-mean-square average of spin-spin coupling Jrms. The Rabi
angular frequency � and the dimensionless Lamb-Dicke parame-
ter for the CM mode ηCM are � = 0.0086ωCM and ηCM = 0.06,
respectively. (a) τ = 0.2T , T = 0.614 × (Jrms/2π )−1, Bm = 5Jrms;
(b) τ = 0.2T , T = 6.14 × (Jrms/2π )−1, τ = 0.2T , Bm = 5Jrms;
(c) τ = 0.2T , T = 0.614 × (Jrms/2π )−1, τ = 0.2T , Bm = 10Jrms;
and (d) τ = 0.2T , T = 6.14 × (Jrms/2π )−1, Bm = 10Jrms.

are far fewer diabatic effects at low B(t) due to the fact that
the smallest spin excitation gap is larger near the central area
of the phase diagram.

When we add phonon effects, we might expect the phase
diagram to deviate only when we are detuned close to a phonon
line, but the situation is much worse for N = 5, as shown in
Fig. 11. The kink phase (dark-blue zone) exists for a wide
range of ramping and onset magnetic fields Bm as shown in
all cases. However, the FM domain (red zone) disappears even
for slow ramping [like the exponential ramping time constant
τ ≈ 30 ms in Figs. 11(c) and 11(d)]. This does not rule out
the possibility of observing the FM phase for even longer
ramping time constants τ (or lower Rabi angular frequencies
�) but a ramping time constant τ ≈ 30 ms is already well
beyond what is used in current ion-trap experiments, where τ

is usually less than 1 ms. This problem gets worse for larger
N , and already for N = 7 the FM-kink phase diagram appears
to be impossible to observe. This arises in part due to the
fact that the spin gap closes exponentially rapidly with the
system size [15]. As a result, one needs to dramatically reduce
the diabatic effects to see the transition. In addition, phonon
effects also make it hard to see the transition by not allowing the
detuning to move too close to either phonon line and, thereby,
misses significant regions where the FM phase is stable.

IV. DISCUSSION AND CONCLUSIONS

We have examined a number of different issues related
to the importance of phonons in analog quantum simulation
of the transverse-field Ising model. We show when the spin-
phonon entanglement operator Uen can be approximated by 1 (a
longitudinal magnetic field along the Ising axis or a vanishing
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transverse magnetic field), one can show that the phonons do
not affect the probability of measuring the spins in product
states in the direction of the Ising interaction, but they can
reduce the entanglement of the spin eigenstates. Surprisingly,
in cases when the operator Uen cannot be approximated by 1,
the effect of the phonons is often to make the system look
more like a static Ising spin Hamiltonian plus a time-varying
transverse magnetic field. This result holds primarily when
laser detuning is blue of the CM mode and, hence, corresponds
to a FM case when one looks at the highest excited state. We
emphasize that the common belief based on the geometric
phase gate, in which phonon effects can be suppressed by
choosing the period to be the inverse of close detuning from
a phonon mode due to periodic spin-phonon entanglement
dynamics, is no longer valid in a finite decaying transverse
magnetic field.

Our work shows that one must consider phonon effects in
most ion-trap spin simulator experiments, especially when the
spin-spin interaction is highly frustrated. In cases when the
laser is detuned blue of the transverse CM mode, phonons
are beneficial to make the system look more and more like
the static spin Hamiltonian being emulated (at the expense
of reducing spin-spin entanglement). In cases when spin
interactions are frustrated with multiple phonon modes sti-
mulated, the phonons can work to suppress the true adiabatic
spin phases from having a high fidelity or even invalidate the
spin phases completely. Generically the phonon effects beyond
adiabatic elimination are remarkable when the detuning lies
close to at least one of the phonon frequencies, and hence on
average more than one phonon per mode is excited.

In conclusion, large laser detuning is essential to suppress
phonon coherent population, while it also causes shrinkage
of spin excitation gaps in the adiabatic spin simulation.

FIG. 11. (Color online) Exact FM-kink phase diagram for
the spin-phonon Hamiltonian with N = 5 and the correspond-
ing parameter set in Fig. 10. The horizontal axis is the
laser detuning μ scaled by the transverse CM frequency ωCM.
The vertical axis is the instantaneous transverse magnetic field
B(t) scaled by the root-mean-square average of spin-spin cou-
pling Jrms. (a) τ = 0.2T , T = 0.614 × (Jrms/2π )−1, Bm = 5Jrms;
(b) τ = 0.2T , T = 6.14 × (Jrms/2π )−1, τ = 0.2T , Bm = 5Jrms;
(c) τ = 0.2T , T = 0.614 × (Jrms/2π )−1, τ = 0.2T , Bm = 10Jrms;
and (d) τ = 0.2T , T = 6.14 × (Jrms/2π )−1, Bm = 10Jrms.

Alternative adiabatic quantum simulation schemes which do
not create noticeable phonon occupation, while maintaining
large spin excitation gaps, would be desirable.
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APPENDIX A: SPIN-DEPENDENT FORCE AND
EFFECTIVE TRANSVERSE MAGNETIC FIELD

We describe how different laser-ion interactions are em-
ployed to ultimately simulate effective spin models. The spin-
dependent dipole force along any direction of the equatorial
plane of the Bloch sphere and an effective transverse magnetic
field are created by using multiple laser beams and the
optical-dipole interaction between the ions and phase-locked
lasers. We start with a reference Raman beam that has
frequency ωL and then superimpose another perpendicular
Raman beam (that has frequencies in a frequency comb ωL +
ω0 + μ, ωL + ω0 − μ, ωL + ω0). The lasers use off-resonant
Raman coupling through dipole-allowed excited states of the
ion to generate an effective spin-phonon interaction. Take
the ytterbium ion 171Yb+ as an example: the qubit states are the
clock states |F = 0, mF = 0〉 and |F = 1, mF = 0〉, formed
from the hyperfine states of the S valence electron and the spin-
1/2 nucleus. These states have no linear Zeeman effect and,
hence, are less prone to background magnetic fields.

The hyperfine state |F = 1, mF = 0〉 denotes the spin-up
state and the state |F = 0, mF = 0〉 is the spin-down state
in the z axis of the pseudospin Bloch sphere. The energy
level spacing is in the gigahertz range, so one could, in
principle, directly make transitions that flip the spins from
up to down, and vice versa, by stimulated emission and
absorption processes acting on the hyperfine states. But it
is common to instead generate these spin-flip transitions via
off-resonant Raman coupling to a third state to suppress
incoherent spontaneous emission effects. To do this we need
two laser beams with different frequencies which can be
detuned away from the energy level spacing between the clock
states and each of the frequencies is chosen to be far away from
dipole-allowed resonant transitions in each ion. We denote the
two beams’ wave vectors and frequencies (k1,ω1) and (k2,ω2),
respectively. By adiabatic elimination [22] of dipole allowed
excited states through the Raman procedure for ion j , one can
write the interaction for an ion as

HLI = h̄�e
j

2
(S+

j + S−
j )[ei(�k·R̂j −�ωt+φ) + H.c.], (A1)

where �e
j is the effective Rabi frequency of the stimulated Ra-

man transition, h̄�k = h̄(k1 − k2) and h̄�ω = h̄(ω1 − ω2) >

0 are the effective momentum and energy of the photons,
respectively, φ is the controlled phase shift between the two
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laser beams, and the pseudospin flip operators are S+
j and

S−
j .

The full Hamiltonian involves the sum of this term plus the
clock-state energy level difference h̄ω0 multiplied by the z-
component spin operator. Now we go to the interaction picture
with respect to the clock-state energy level difference h̄ω0,

HI
LI = exp

[
iω0

2
σ z

j t

]
HLI exp

[
− iω0

2
σ z

j t

]
, (A2)

at time t . With the photon energy difference h̄�ω comparable
to the clock-state energy splitting h̄ω0, only terms with slow
modes (rotating-wave approximation) are kept and we arrive
at the Hamiltonian relevant for our discussion,

H RWA
LI = h̄�e

j

2
S+

j [ei(�k·R̂j (t)−δωt+φ)] + H.c., (A3)

in which the slow-mode angular frequency is given by δω =
�ω − ω0 and φ is the static phase shift between the laser
beams. The coupling of the reference Raman beam with photon
frequency ωL and the blue-detuned photon with frequency
ωL + ω0 + μ (μ > 0) in the second beam leads to an effective
blue-detuned beam with the frequency difference �ω = ω0 +
μ as given by the Hamiltonian Hb,

Hb = h̄

N∑
j=1

�e
j

2
[S+

j ei(�k·R̂j (t)−�ωbt+φb) + H.c.], (A4)

where Hb is the interaction with the blue-detuned (�ωb =
ω0 + μ) laser that has a beat-note frequency μ > 0, �k is the
wave-vector difference of the two interfering laser beams that
generate the Raman coupling, and R̂j (t) = R0

j + δR̂j (t) is the
ion position operator with the equilibrium ion position R0

j at
site j . Similarly, the coupling of the photon from the reference
beam with the photon in the red-detuned beam with frequency
ωL + ω0 − μ leads to the effective red-detuned laser with the
frequency difference �ω = ω0 − μ given by the Hamiltonian
Hr :

Hr = h̄

N∑
j=1

�e
j

2
[S+

j ei(�k·R̂j (t)−�ωr t+φr ) + H.c.]. (A5)

Employing a superposition of multiple frequency com-
ponents and adiabatically eliminating the dipole allowed
excited states [22] allows one to show that the interaction
of laser beams with ions consists of interactions between the
reference beam ωL and the other frequencies. As a result,
after the summations in Eqs. (A4) and (A5), one arrives at the
expression

H RWA
LI = Hb + Hr = h̄�e

j cos(μt + φM )

× [ei�k·δR̂j (t)S+
j e−iφS + e−i�k·δR̂j (t)S−

j e+iφS ], (A6)

in which hermiticity of the Rabi frequency is used, and
the static phases are φS = −�k · R0

j − (φb + φr )/2 and
φM = (φr − φb)/2. In the Lamb-Dicke limit, we have
exp [i�k · δR̂j ] ≈ 1 + i�k · δR̂j , and the Hamiltonian H RWA

LI
is reduced to

H RWA
LI ≈ h̄�e

j cos(μt + φM )S+
j e−iφS [1 + i�k · δR̂j (t)] + H.c.

(A7)

The first term only induces resonant carrier transitions in the
pseudospin sector without coherent phonon excitations. The
second term induces first (red or blue) side-band transitions
with the change of one phonon occupation number at each
phonon mode as can be seen by replacing the displacement
operator δR̂j (t) by phonon creation and annihilation operators∑

αν
1√

h̄/2Mων
bαν

j (aαν + a†
αν). The spin-dependent force point-

ing along the azimuthal angle φ′
S in the equator of the Bloch

sphere is then derived from the phonon side bands as

H SB
LI ≈ h̄�e

j cos(μt + φM )σ
φ′

S

j �k · δR̂j (t), (A8)

in which the spin phase is given by φ′
S = φS − π/2, the relation

S+
j e−iφ′

S + S−
j e+iφ′

S = σ
φ′

S

j is used, and the spin orientation is
given by n̂ = cos(φ′

S)x̂ + sin(φ′
S)ŷ.

The expression for the spin-dependent force can be justified
by keeping the phases φ′

S = 0, φM = π/2 locked. Take a
transverse phonon mode scheme, for example, in which �k ·
R0

j = 0, with �k ‖ δR̂j (t). The spin orientation φ′
S = 0 can

be locked along the x axis in the Bloch sphere when the phase
difference φr = π/2,φb = −π/2 is maintained. This can be
achieved by passing the second beam through an acousto-
optic modulator maintaining the phase difference between the
frequency components �L + ω0,�L + ω0 + μ,�L + ω0 − μ

to be out of phase. As one can tell from the dependence of
the spin phase φS on �k · R0, it is not sensitive to transverse
phonon excitations (coherent or thermal), in contrast to the
sensitivity it has to the longitudinal phonon modes. This is
why most state-of-the-art trapped ion quantum spin simulators
couple to transverse phonon modes.

One should note that there is a fast oscillating term in the
transverse magnetic field −h̄�e

j sin(μt)σy

j due to carrier tran-
sitions. This term causes very fast oscillations of low amplitude
which are averaged over during the time of an experiment, so
we neglect them here.

Let us now consider how to generate a slow effective
transverse magnetic field by using two continuous Raman
beams with frequencies ωL and ωL + ω0, with phase difference
φ and wave-vector difference �k. Starting from Eq. (A6), but
with a different effective Rabi frequency �B

j for the resonant
beam with μ = 0,

HB
LI = h̄�B

j

2
S+

j e
i�k·[R0

j +δR̂
j
(t)]+φ + H.c., (A9)

we choose the lasers to be out of phase (φ = ∓π/2) so
that the side-band terms vanish within the Lamb-Dicke ex-
pansion exp [i�k · δRj (t)] ≈ 1 + iδk · δRj (t). The effective
transverse magnetic field can then be derived by direct
substitution as

HB = B
y

j σ
y

j , (A10)

in which the transverse magnetic field is given by B
y

j =
±h̄�B

j /2 when the phase shift φ is equal to ∓π/2 and
σ

y

j = 2S
y

j is the Pauli spin operator (we will be working in
a nontraditional Pauli spin matrix representation, where σx is
diagonal, σy is real, and σ z is imaginary). Hence, the transverse
magnetic field By can have its amplitude changed as a function
of time by adjusting the laser intensity in the mode that has its
frequency equal to ωL + ω0 with an acousto-optic modulator.
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APPENDIX B: ADIABATIC PERTURBATION THEORY

The time-dependent Schrödinger equation for the evolution
of the wave function |ψ(t)〉 is (we drop the spin subscript on
the Hamiltonian)

ih̄
∂|ψ(t)〉

∂t
= H (t)|ψ(t)〉. (B1)

Since the Hamiltonian is always Hermitian, we introduce
instantaneous eigenfunctions |n(t)〉 with the instantaneous
eigenenergies defined by

H (t)|n(t)〉 = En(t)|n(t)〉. (B2)

The time-dependent wave function |ψ(t)〉 can then be ex-
panded in terms of the orthonormal eigenbasis |n(t)〉 as

|ψ(t)〉 =
∑

n

Cn(t)|n(t)〉, (B3)

in which the coefficients Cn(t) = 〈n(t)|ψ(t)〉 are the time-
dependent quantum amplitudes projected onto the instanta-
neous eigenbasis |n(t)〉. Therefore, the equation of motion
for the expansion coefficients Cn(t) can be derived by direct
substitution into the Schrödinger equation in Eq. (B1), which
becomes

ih̄

[
Ċm(t) +

∑
n

Cn(t)〈m(t)|∂t |n(t)〉
]

= Em(t)Cm(t), (B4)

after using the orthonormality relation 〈m(t)|n(t)〉 = δm,n

for the instantaneous eigenfunctions. One can further relate
the matrix elements 〈m(t)|∂t |n(t)〉 to the matrix elements
〈m(t)|∂tH (t)|n(t)〉. Simply take the time derivative of Eq. (B2)
and project onto the state |m(t)〉 to show

〈m(t)|∂t |n(t)〉 = 〈m(t)|∂tH (t)|n(t)〉
En(t) − Em(t)

(B5)

for n �= m [this derivation assumes that the instantaneous
energy spectrum has no states that are degenerate with En(t)].

In the adiabatic approximation, the transition matrix el-
ements 〈m(t)|∂tH (t)|n(t)〉 between different instantaneous
eigenstates are assumed to be so small that they can be
neglected. In this limit, the system simply follows the instanta-
neous eigenstates |n(t)〉 without transitions between different
instantaneous eigenstates. In general, transitions between
eigenstates |n(t)〉 should be considered to determine the
corrections to the adiabatic state evolution. Choose the gauge
Cm(t) = αm(t)e−iθm(t) with the phase θm(t) = ∫ t

t0
dt ′ Em(t ′)

h̄
. The

probability amplitude αm(t) induced by the diabatic transitions
can be solved by integration with respect to time in Eq. (B4)
as

dαm(t)

dt
=

∑
n

〈m(t)|∂tH (t)|n(t)〉
Em(t) − En(t)

ei[θm(t)−θn(t)], (B6)

in which θm(t) and θn(t) are the dynamic phases accumulated
by states |m(t)〉 and |n(t)〉.

In an adiabatic quantum simulation, one initially prepares
the system in a certain pure state |n(t0)〉 of the initial
Hamiltonian H (t0) with the occupation αn(t0) = 1 and the
probability amplitudes in all other states vanishing [αm(t0) =
0]. Therefore, the probability amplitudes to be excited into the

other states can be approximated by

αm(t) ≈
∫ t

t0

dt ′
〈m(t ′)|∂t ′H (t ′)|n(t ′)〉

Em(t ′) − En(t ′)
ei[θm(t ′)−θn(t ′)] (B7)

for later times, as long as the transition amplitudes |αm(t)| are
much less than 1 during the time evolution. This is the main
expression we use to evaluate the diabatic effects due to the
time-dependent exchange interactions Jjj ′ (t).

APPENDIX C: GHZ-STATE ENTANGLEMENT

The observable for the measurement of GHZ-state entan-
glement is given by

〈WGHZ〉 = Tr {ρWGHZ} , (C1)

with the density matrix ρ constructed from either pure states or
mixed states after tracing over the phonons. One can explicitly
show that a pure GHZ state |GHZ〉 = 1√

2
(|↑x↑x · · · ↑x〉 +

|↓x↓x · · · ↓x〉) leads to an entanglement measure 〈WGHZ〉 of
−1. The entanglement measure 〈WGHZ〉 is independent of
the basis; therefore, it is natural to choose spin-polarized
states along the Ising x axis in our discussion. Based on the
GHZ state |GHZ〉, the corresponding density matrix ρGHZ =
|GHZ〉〈GHZ| in the Ising product-state representation is given
by

ρGHZ = 1
2 [|↑x↑x · · · 〉〈↑x↑x · · · | + |↓x↓x · · · 〉〈↓x↓x · · · |
+ |↑x↑x · · · 〉〈↓x↓x · · · | + |↓x↓x · · · ↓x〉〈↑x↑x · · · |].

(C2)

Therefore, the nonzero matrix elements in ρGHZ are among
the fully FM states and each has an expectation value equal
to 1/2. As a consequence, one only needs to know the WGHZ

matrix elements among the FM states to evaluate the GHZ-
state entanglement 〈WGHZ〉. Following the definition of the
witness operator WGHZ,

WGHZ = 3I − 2

[
S

GHZN
1 + I

2
+

N∏
k=2

S
GHZN
k + I

2

]
, (C3)

with the stabilizing spin operators S
GHZN
1 , S

GHZN
k expressed in

terms of the Pauli spin operators by

S
GHZN
1 =

N∏
k=1

σ
y

k , S
GHZN
k = σx

k−1σ
x
k , (C4)

the nonzero matrix elements for the global spin flipping
operator S

GHZN
1 among the N ion FM states is

〈↑x↑x · · · |SGHZN
1 |↓x↓x · · · 〉

= 〈↓x↓x · · · |SGHZN
1 |↑x↑x · · · 〉 = 1, (C5)

in which the spin operator σ
y

i flips the spin state of the ith ion
as σ

y

i |↑x〉 = |↓x〉 and σ
y

i |↓x〉 = |↑x〉, with I the unit operator
for spin states.
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One can also derive the nonzero matrix elements for the
two-particle spin operator S

GHZN
k as

〈↑x↑x · · · |
N∏

k=2

S
GHZN
k + I |↓x↓x · · · 〉

= 〈↓x↓x · · · |
N∏

k=2

S
GHZN
k + I |↑x↑x · · · 〉 = 2N−1. (C6)

As a consequence, the only nonzero matrix elements for the
witness operator WGHZ are the ones between two FM states,

which become

〈↑x↑x · · · |WGHZ|↓x↓x · · · 〉
= 〈↓x↓x · · · |WGHZ|↑x↑x · · · 〉 = −1. (C7)

Hence, the measurement 〈WGHZ〉 for the pure GHZ state is
characterized by the value −1, as can be seen by the following
manipulations:

〈WGHZ〉 = 〈↑x · · · |ρGHZ|↓x · · · 〉〈↓x · · · |WGHZ|↑x · · · 〉
+ 〈↓x · · · |ρGHZ|↑x · · · 〉〈↑x · · · |WGHZ|↓x · · · 〉

= 1
2 × (−1) + 1

2 × (−1) = −1. (C8)

[1] L. Balents, Nature 464, 199 (2010).
[2] O. I. Motrunich and M. P. A. Fisher, Phys. Rev. B 75, 235116

(2007).
[3] C. N. Varney, K. Sun, V. Galitski, and M. Rigol, Phys. Rev. Lett.

107, 077201 (2011).
[4] R. Feynman, Int. J. Theor. Phys. 21, 467 (1981).
[5] S. Lloyd, Science 273, 2073 (1996)
[6] L. Buluta and F. Nori, Science 326, 108 (2009).
[7] J. Simon, W. S. Bakr, R. Ma, M. E. Tai, P. M. Preiss, and

M. Greiner, Nature 472, 307 (2011).
[8] J. W. Britton, B. C. Sawyer, A. Keith, C.-C. J. Wang, J. K.

Freericks, H. Uys, M. J. Biercuk, and J. J. Bollinger, Nature
484, 489 (2012).

[9] K. Kim, M.-S. Chang, S. Korenblit, R. Islam, E. E. Edward,
J. K. Freericks, G.-D. Lin, L.-M. Duan, and C. Monroe, Nature
465, 590 (2010).

[10] K. Kim, M.-S. Chang, R. Islam, S. Korenblit, L.-M. Duan, and
C. Monroe, Phys. Rev. Lett. 103, 120502 (2009).

[11] R. Islam, E. E. Edwards, K. Kim, S. Korenblit, C. Noh,
H. Carmichael, G.-D. Lin, L.-M. Duan, C.-C. J. Wang, J. K.
Freericks, and C. Monroe, Nature Commun. 2, 1374 (2011).

[12] A. Friedenauer, H. Schmitz, J. T. Glueckert, D. Porras, and
T. Schaetz, Nat. Phys. 4, 757 (2008).

[13] C. Monroe, D. M. Meekhof, B. E. King, W. M. Itano, and D. J.
Wineland, Phys. Rev. Lett. 75, 4714 (1995).

[14] D. Porras and J. I. Cirac, Phys. Rev. Lett. 92, 207901 (2004).

[15] S.-L. Zhu, C. Monroe, and L.-M. Duan, Phys. Rev. Lett. 97,
050505 (2006).

[16] D. Leibfried, B. DeMarco, V. Meyer, D. Lucas, M. Barrett,
J. Britton, W. M. Itano, B. Jelenkovic, C. Langer, T. Rosenband,
and D. J. Wineland, Nature 422, 414 (2003).

[17] A. Sørensen and K. Mølmer, Phys. Rev. A 62, 022311
(2000).

[18] A. Das and B. K. Chakrabarti, Rev. Mod. Phys. 80, 1061 (2008).
[19] K. Kim, S. Korenblit, R. Islam, E. E. Edwards, M. S. Chang,

C. Noh, H. Carmichael, G.-D. Lin, L.-M. Duan, C.-C. Wang,
J. K. Freericks, and C. Monroe, New J. Phys. 3, 105003 (2011).

[20] M. Johanning, A. F. Varon, and C. Wunderlich, J. Phys. B 42,
154009 (2009).

[21] D. F. V. James, Appl. Phys. B 66, 181 (1998); C. Marquet,
F. Schmidt-Kaler, and D. F. V. James, ibid. 76, 199 (2003).

[22] P. J. Lee, K.-A. Brickman, L. Deslauriers, P. C. Haljan, L.-M.
Duan, and C. Monroe, J. Opt. B 7, S371 (2005).

[23] D. J. Wineland, C. Monroe, W. M. Itano, D. Leibfried, B. E.
King, and D. M. Meekhof, J. Res. Natl. Inst. Stand. Technol.
103, 259 (1998).
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