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For years, theories for Raman scattering have been confined to either the
insulating or fully metallic state. While much can be learned by focusing at-
tention on the metal or insulator, recent experimental work on the cuprate
systems points to the desirability of formulating a theory for Raman re-
sponse which takes one through a quantum critical point – the metal-
insulator transition. Using the Falicov-Kimball model as a canonical model
of a MIT, we employ dynamical mean-field theory to construct an exact the-
ory for non-resonant Raman scattering. In particular we examine the for-
mation of charge transfer peaks and pseudogaps as well as the low-energy
dynamics. The results are qualitatively compared to the experimental B1g
Raman spectra in the cuprates, which probes the hot quasiparticles along
the Brillouin zone axes. The results shed important information on normal
state electronic transport and the pseudo-gap in the cuprates.
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1. IntroductionRaman sattering in the uprate materials involves the inelasti sattering oflight by eletron-hole exitations of the orrelated many-body system. It is a non-destrutive bulk probe of the eletron dynamis over a wide range of energy salesand temperatures. The experiments an disriminate between a number of di�erentsymmetries of the eletroni system by polarizing the inoming light and measuringthe reeted light with a polarized detetor. Three prinipal symmetries are exam- J.K.Freericks, T.P.Devereaux 149



J.K.Freericks, T.P.Devereauxined in the uprate materials: A1g, whih has the full symmetry of the lattie (i.e.is s-like), and two d-like symmetries B1g (whih probes the Brillouin zone axes) andB2g (whih probes the Brillouin zone diagonals). While the Raman response for theA1g and B2g symmetries are loser to those of onventional metals, the B1g responseis anomalous, and has large spetral weight shifts as funtions of doping and tem-perature [1℄. It is believed by many workers in the �eld that this B1g response isarising from the proximity of the uprates to a quantum-ritial point orrespondingto a metal-insulator transition.Theoretial treatments of non-resonant Raman sattering are rather ompletefor band metals [2℄ and insulators [3℄, but there is no theory that an suessfullyinterpolate between these two limits to pass through the orrelated metal-insulatortransition. In this ontribution, we show how an exat solution of the spinless Faliov-Kimball model [4℄ using dynamial mean �eld theory [5,6℄ provides a theoretialmodel that illustrates the generi behaviour of Raman response through the metal-insulator transition and interpolates between the known limits. We �nd that ourRaman spetra show harge-transfer peaks and nontrivial low-frequeny spetral-weight transfers that are indiative of the proximity to a quantum ritial point andrepresent well the experimental data in the uprates.The Hamiltonian of the spinless Faliov-Kimball model [4℄ isH = � t�2pd Xhi;ji dyidj + Ef Xi wi � �Xi (dyidi + wi) + UXi dyidiwi; (1)where dyi (di) is the spinless ondution eletron reation (annihilation) operator atlattie site i and wi = 0 or 1 is a lassial variable orresponding to the loalizedf -eletron number at site i. The hopping matrix between the nearest neighbourshi; ji (on a hyperubi lattie in d-dimensions [5℄, with d!1) is �t�=(2pd) witht� hosen as our energy unit, Ef is the loalized eletron level, � is the hemialpotential and U is the mutual eletron repulsion when a ondution eletron and aloalized f -eletron both oupy the same lattie site. We will adjust both Ef and� so that the average �lling of the d-eletrons is 1/2 and the average �lling of thef -eletrons is 1/2.The Raman response is found from a density-density orrelation funtion�Raman(i�l) =Xk Z �0 d�ei�l�(TrT� he��H�k(�)�k(0)iZ �"Tr he��H�k(0)iZ #2); (2)with the uniform (q = 0) Raman density operator�k = (k)dykdk; dk = 1N Xj e�Rj �kdj; (3)Z = Tr he��Hi, the partition funtion, and i�l = 2i�lT the Bosoni Matsubarafrequeny (the � -dependene of the operators is with respet to the full Hamiltonian).The Raman sattering amplitude (k) is a ompliated funtion of the inoming and
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Raman scattering through a MI transitionoutgoing photon polarizations, of the photon energies, and the polarizability of themedium. In nonresonant Raman sattering (whih we examine here) one negletsthe frequeny dependene of the Raman sattering amplitude, and haraterizesthe Raman response in terms of the di�erent spatial symmetries of the remainingfuntion (k). One an expand this funtion in a Fourier series and examine theontributions of the lowest omponents of the series, and ompare them to theexperiment. More sophistiated approahes would alulate the Raman satteringamplitude from \�rst-priniples" and would inlude any possible resonant Ramansattering e�ets. We leave those pursuits to future work.
2. FormalismThe Faliov-Kimball model an be solved exatly in the in�nite-dimensionallimit by using dynamial mean-�eld theory [6,7℄. We summarize the main pointsto establish our notation. The loal Green's funtion at the Fermioni Matsubarafrequeny i!n = i�T (2n+ 1) is de�ned byGn = G(i!n) = �Tr T� Z �0 d�ei!n� he��Hatd(�)dy(0)S(�)iZ ; (4)with Z = Z0(�) + e��(Ef��)Z0(�� U); (5)the atomi partition funtion expressed in terms ofZ0(�) = Trd he��H0S(�)i; H0 = ��dyd: (6)In the above equations, the atomi Hamiltonian Hat is the Hamiltonian of equa-tion (1) restrited to one site, with t� = 0, and all time dependene is with respetto this atomi Hamiltonian. The evolution operator S(�) satis�esS(�) = exp "� Z �0 d� Z �0 d� 0dy(�)�(� � � 0)d(� 0)# ; (7)with �(� � � 0) a time-dependent atomi �eld adjusted to make the atomi Green'sfuntion equal to the loal lattie Green's funtion. We de�ne an e�etive mediumby G�10 (i!n) = G�1n + �n = i!n + �� �n; (8)with �n the loal self-energy and �n the Fourier transform of �(�). The trae inequation (4) an be evaluated diretly to yieldGn = w0G0(i!n) + w1[G�10 (i!n)� U ℄�1; (9)with w0 = 1� w1 and w1 = exp[��(Ef � �)℄Z0(�� U)=Z: (10)
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J.K.Freericks, T.P.DevereauxThe self-onsisteny relation needed to determine �n and Gn is to equate the loallattie Green's funtion to the atomi Green's funtion viaGn = Z 1�1 d� �(�)i!n + �� �n � � ; (11)with �(�) = exp(��2)=p� the noninterating density of states for the in�nite-dimensional hyperubi lattie.The iterative algorithm to solve for Gn starts with �n = 0. Then equation (11)is used to �nd Gn, equation (8) is employed to extrat the e�etive medium, equa-tion (9) is used to �nd a new loal Green's funtion, and then equation (8) is usedto �nd the new self-energy. The algorithm is then repeated until it onverges, whihusually requires only about a dozen or so iterations. This algorithm an also beused on the real axis (with suitably modi�ed equations) to diretly solve for theGreen's funtion and self-energy on the real axis. Here, we examine the half-�lledase �d = Pihnii=N = 1=2 and �f = Pihwii=N = 1=2, whih orresponds to� = U=2 and Ef = 0.The dynamial harge vertex is loal in in�nite dimensions whih implies thatorrelation funtions that have the same symmetry as the lattie are renormalizeddue to a nontrivial harge vertex, but orrelation funtions that are orthogonal to thelattie, have no vertex orretions, and so they are represented by their bare bubblediagrams [8℄. In two dimensions, the Raman sattering amplitudes are typiallyhosen as follows:A1g(k) � �2�(k)�kx�kx + �2�(k)�ky�ky � ��(k);B1g(k) � �2�(k)�kx�kx � �2�(k)�ky�ky � os kx � os ky;B2g(k) � �2�(k)�kx�ky � sin kx sin ky; (12)with �(k) the eletroni band struture. Note that the B2g response vanishes fornearest-neighbour hopping only, whih is what we onsider here. The above formsan be generalized to the in�nite-d limit by hoosingA1g(k) � � �(k); B1g(k) � 1pd dXi=1(�1)i os ki; (13)where we inlude a onstant term  in the A1g amplitude, sine it is allowed bysymmetry.A simple analysis in the B1g ase shows that the B1g response does not have anyvertex orretions, as expeted, and that it is equal to the bare bubble. The basiargument is that we must evaluate a summation over k of the formXk 1pd dXi=1(�1)i os ki 1X + 2pd Pdj=1 os kj ; (14)
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Raman scattering through a MI transitionwhih arises when examining the Dyson equation for the B1g response (and wean assume the imaginary part of X is greater than zero). Writing the fration inequation (14) as the integral of an exponential1X + 2pd Pdj=1 os kj = �i Z 10 dz exp 24iz0�X + 2pd dXj=1 os kj1A35 ; (15)allows one to deouple the summation over momentum to the sum over d identialterms, eah multiplied by (�1)i. This then vanishes for all even d and for odd-d inthe limit d ! 1 (due to the 1=pd term). So the evaluation of the B1g responseredues to the evaluation of the bare bubble. A straightforward alulation thenyields �B1g(i�l) = �T2 Xn G(i!n)�G(i!n+l)i�l + �(i!n)� �(i!n+l) : (16)This formula an be easily analytially ontinued to the real axis by following thesame proedure outlined in the alulation of the dynamial harge suseptibility [9℄:rewrite the sum over Matsubara frequenies by a ontour integral of advaned orretarded Green's funtions and self-energies multiplied by the Fermi fator, andthen deform the ontours to the real axis piking up any poles in the omplex plane.Under the assumption that there are no extra poles when the ontours are deformed,one ends up with the following expression for the B1g response:�B1g(�) = �i4� Z 1�1 d! ( f(!) G(!)�G(! + �)� + �(!)� �(! + �)� f(! + �) G�(!)�G�(! + �)� + ��(!)� ��(! + �)� [f(!)� f(! + �)℄ G�(!)�G(! + �)� + ��(!)� �(! + �)); (17)with f(!) = 1=[1 + exp(�!)℄ the Fermi funtion. We verify that this expressionis indeed aurate, by using the spetral formula to alulate the Raman responseon the imaginary axis and omparing it to the result diretly alulated from theexpression in equation (16). We �nd that the results rarely di�er by more than onepart in a thousand on�rming the auray of the analyti ontinuation.The A1g response is more ompliated, beause it requires a proper treatmentof the vertex ontributions. Fortunately, the harge vertex for the Faliov-Kimballmodel is well-known [9℄ and assumes a simple form (for �l 6= 0)�(i!m; i!n; i�l) = Æm;n 1T �(i!n)� �(i!n+l)G(i!n)�G(i!n+l) : (18)Hene, the Raman response in the A1g hannel an be found by solving the relevantDyson's equation, using the above form of the harge vertex. The steps to do thisare straightforward, but the algebra is somewhat umbersome and will be presented
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J.K.Freericks, T.P.Devereauxelsewhere. The result is�A1g(i�l) = �T Xn ��0(i!n; i�l)� [�0(i!n; i�l) +G(i!n)G(i!n+l)℄T�(i!n; i!n; i�l)1 + �0(i!n; i�l)T�(i!n; i!n; i�l) ;(19)where the harge vertex is found in equation (18), the bare suseptibility �0 satis�es�0(i!n; i�l) = � G(i!n)�G(i!n+l)i�l + �(i!n)� �(i!n+l) ; (20)and the other bare suseptibility ��0 (whih is where all of the  dependene lies) is��0(i!n; i�l) = [�2(Gn �Gn+l) + 2(ZnGn � Zn+lGn+l) + Zn � Zn+l� Z2nGn + Z2n+lGn+l℄=[i�l + �n � �n+l℄: (21)Here we used the notation Zn = i!n + �� �(i!n).It is a straightforward exerise to perform a similar analyti ontinuation of thisexpression, but we will not write down the result here.

−3 −2 −1 0 1 2 30
Frequency [t]

0

0.5

1

D
O

S
 [1

/t]

U=0.5t
1
1.5
2
4

Figure 1. Interating density of states for various values of U as indiated. TheMIT ours for U = 1:5t. Note the interating DOS is independent of temperaturefor the Faliov-Kimball model in d!1.
3. ResultsThe Faliov-Kimball model has a ground state that is not a Fermi liquid be-ause the lifetime of a quasipartile is �nite at the Fermi energy. As U inreases,
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Raman scattering through a MI transition
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Figure 2. The Raman response (imaginary part of the Raman suseptibility) forT = 0:5t for four di�erent values of U for the (a) B1g and (b) A1g hannels, re-spetively. Notie how the vertex orretions suppress the low-frequeny spetralweight in the insulating phase for A1g hannel.the system �rst enters a pseudogap phase, where spetral weight is depleted nearthe hemial potential, and then undergoes a metal-insulator transition [10℄. Theinterating density of states (DOS) is, however, temperature-independent for �xedU and �xed eletron �llings.We plot the DOS in �gure 1 for values of U ranging from a weakly orrelatedmetal U < 0:65, to a pseudogap phase 0:65 < U < 1:5 to the insulator phaseU > 1:5. The quantum ritial point ours at U = 1:5 where the interatingDOS is suppressed to zero at the hemial potential beause a pole develops in theself-energy (the \gap region" atually has an exponentially small DOS beause thehyperubi lattie has in�nite tails). The orresponding imaginary part of the Ramanresponse is plotted in �gure 2 at a moderate temperature T = 0:5t and various valuesof U . In �gure 2a we show the B1g response and in 2(b) we show the A1g response (for = 0:1). Note that the Raman sattering is quite similar for the two hannels for thegross features{they both display the lassi band-metal behaviour for small U , whihevolves to a harge transfer peak entered at U in the large-U mode, as expetedfor an insulator. The B1g response, however, has more low-frequeny spetral weightwhen we are near the quantum ritial point(at U = 1:5). The vertex orretions inthe A1g hannel suppress these low-energy features.In �gure 3, we show the Raman response as a funtion of temperature for asystem on the insulating side of, but lose to, the quantum ritial point (U = 2).The B1g response is in �gure 3a and the A1g response is in �gure 3b. Note how the
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Figure 3. The Raman response (imaginary part of the Raman suseptibility)as a funtion of temperature for U = 2t for the (a) B1g and (b) A1g hannels,respetively. Notie how the harge-transfer peaks have similar behaviour in bothhannels, but that the low-frequeny response is quite anomalous in the B1ghannel.harge transfer peak feature is present at high temperatures, and steadily inreasesas T is lowered. The B1g response is most interesting at low energies. The spetralfeature at low energy has a strong temperature dependene that is sharply reduedas T ! 0. This is similar to the B1g response seen in the uprates. We study thisphenomenon further in �gures 4 and 5 whih plot the normalized low-frequenyspetral weight as a funtion of T and the inverse of the Raman slope (as � ! 0)for the B1g hannel. We arbitrarily de�ne the low-frequeny weight to be all spetralfeatures from � = 0 to � = U=2 and the high-frequeny weight to be spetral featureswith � > U=2. This division is obvious in the insulator phase, sine the low-energyfeatures and the high-energy features are well separated, but beomes less obviousin the pseudogap region. Note how, in all ases, the low-frequeny spetral weight issharply depleted as T is lowered, with the e�et being the largest when one is wellinto the insulating phase. The Raman inverse slope is even more interesting. Sinethe Faliov-Kimball model has a temperature-independent DOS, this implies thatthe self-energy is also temperature-independent. Conventional reasoning would thensay that the sattering rate (derived from the imaginary part of the self-energy)would be a onstant, and hene, the Raman inverse slope should also be a onstant,sine it measures the sattering rate of the harge exitations. This is indeed true atlow T for the weakly interating systems, but is violated as we near and pass throughthe metal-insulator transition. This rise in the Raman inverse slope is indiative ofthe formation of a gap in the quasipartile spetrum. What is interesting is that we
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Figure 4. The integrated B1g spetralweight ratio for low frequenies to highfrequenies normalized to its value atT = 0:95t plotted versus redued tem-perature T=0:95t. Notie how the spe-tral weight is sharply depleted at lowtemperatures as one nears and rossesthe MIT.
Figure 5. Log-log plot of the inverseRaman slope for the B1g hannel atlow frequenies versus temperature forseveral values of U . The harateristirise at low-T for the pseudogap and in-sulating phases mathes well with theexperimental data on the uprates.see a preursor e�et of the insulating behaviour as we near the quantum ritialpoint. This data ompares quite well with the results seen in the underdoped upratematerials.

4. Discussion and conclusionsThere is a simple explanation to the origin of the anomalous low-frequeny fea-tures of the Raman spetra in the insulating mode, but lose to the quantum ritialpoint. If we examine the integral for the B1g Raman response in equation (17), wenote three important points (i) the imaginary part of the Raman response is pro-portional to the real part of the integrand; (ii) the integrand vanishes if the Greenfuntion (and self-energy) are both real; (iii) all temperature dependene arises fromthe Fermi fators, sine both G and � are temperature-independent. In the insulat-ing mode, the DOS breaks into two piees, a lower band entered at �U=2 with awidth of O(1) and an upper band at U=2 with a width of O(1). The Green's fun-tions are omplex only when the frequeny argument lies within one of the bands.
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J.K.Freericks, T.P.DevereauxHene there are two main ontributions to the Raman response: (i) intraband pro-esses, where ! � �U=2 or U=2 and � � 1; and (ii) interband proesses, where! � �U=2 and � � U . The interband proesses, with � � U are what give riseto the harge-transfer peaks seen in the Raman response. The intraband proesses,with � � 1, give rise to the low-frequeny spetral features. Furthermore, at lowtemperatures, the low-frequeny features are proportional to f(!)� f(!+ �) whihan be approximated by exp(�U=2T )[1 � exp(�=T )℄. Hene, we expet a Ramaninverse slope to at like T exp(U=2T ) and the low-frequeny spetral weight shouldgo like exp(�U=2T ), whih an explain the features seen in our results. In the A1ghannel, the harge vertex makes the integrand more ompliated to evaluate, andthe vertex orretions end up suppressing the low-frequeny response.Sine the form for the B1g response is idential in other single-band models, likethe Hubbard model, we expet that the B1g Raman response will be essentially thesame as seen for the Faliov-Kimball model. The only modi�ations are that theDOS now has T -dependene, whih will relax riterion (iii) above, and that thesystem has a Fermi-liquid ground state for low temperatures and small to moderateU . Nevertheless, in the insulating mode, the DOS will separate into an upper andlower Hubbard band, and the analysis given above will hold for determining thelow-T features, so we expet to see the same anomalous low-frequeny behaviour inthe B1g hannel as is seen here. We annot make a similar omment about the A1ghannel, beause the harge vertex will no longer assume the simple form for theFaliov-Kimball model, and the vertex orretions an modify the results, but wedon't expet there to be muh qualitative di�erene there either.The alulations presented here are remarkably similar to those observed in theB1g hannel in the normal state of the uprates [1℄. As the doping in these materialsis redued from the overdoped side to the underdoped side of the phase diagram, theB1g Raman spetra deviate strongly from our expetations for metalli behaviour. Alarge depletion of spetral weight at low frequenies is observed for B1g with under-doping, with a onommitant shift of spetral weight out to two-magnon energies� 2700 m�1. For a given temperature, the integrated low-frequeny spetral weightin the B1g hannel falls by over an order of magnitude from overdoped to under-doped. Both of these features are similar to our observations shown in �gures 2{4.This is indiative of the formation of a pseudogap whih a�ets the B1g quasipar-tiles and sets in well before the metal-insulator transition is reahed. The inverseRaman slope is found to inrease with doping at a given temperature and, moreover,has a strong upturn with dereasing temperature in the more underdoped systems,qualitatively similar to our �gure 5. Again, sine we believe our model aptures thesalient features of Raman sattering in the viinity of a quantum ritial point, theRaman data from the uprates diretly shows the inuene on the B1g quasipartilesby the underlying metal-insulator transition.In summary, we have examined the Raman response of a system that goesthrough a metal-insulator transition exatly, using the dynamial mean �eld theoryfor the spinless Faliov-Kimball model. Our results provide a ontinuous interpo-lation between the known metalli and insulating Raman responses. The results of
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Raman scattering through a MI transitionthis model system should be qualitatively similar to those of other orrelated modelsthat require quantum Monte Carlo simulation to solve (suh as the Hubbard andHolstein models), and display the qualitative features seen in the uprates.
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Нерезонансне комбінаційне розсіяння при

проходженні переходу металізолятор: точний

аналіз моделі ФаліковаКімбала
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Отримано 14 серпня 2000 р.

Упродовж років теорія комбінаційного розсіяння (КР) обмежувала

ся розглядом або ізоляторів або суто металічного стану. Хоча мож

на багато довідатися, зосередивши увагу тільки на металах чи ізо

ляторах, останні експериментальні роботи з купратних систем вка

зують на бажаність формулювання теорії раманівського відгуку, яке

придатне при проходженні через квантову критичну точку  перехід

металізолятор (ПМІ). Використовуючи модель ФаліковаКімбала як

канонічну модель ПМІ, ми застосовуємо теорію динамічного серед

нього поля для побудови точної теорії нерезонансного КР. Зокрема,

ми розглядаємо утворення піків, зумовлених переносом заряду, та

псевдощілин, а також низькоенергетичну динаміку. Результати якіс

но зіставимі з експериментальними B1g спектрами КР у купратах, в

яких фіксують “гарячі” квазічастинки вздовж осей зони Брілюена. Ре

зультати дають важливу інформацію про електронний транспорт у

нормальному стані та псевдощілину в купратах.

Ключові слова: комбінаційне розсіяння, перехід металізолятор

PACS: 78.30.j, 71.30.+h, 74.72.h
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