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through a metal-insulator transition:
an exact analysis of the Falicov-Kimball
model

J.K.Freericks 1,2 , T.P.Devereaux 3

1 Department of Physics, Georgetown University,
Washington, DC 20057, USA

2 Isaac Newton Institute, Cambridge CB3 0EH, UK
3 Department of Physics, University of Waterloo,

Waterloo, ON, Canada, N2l 3G1

Received August 14, 2000

For years, theories for Raman scattering have been confined to either the
insulating or fully metallic state. While much can be learned by focusing at-
tention on the metal or insulator, recent experimental work on the cuprate
systems points to the desirability of formulating a theory for Raman re-
sponse which takes one through a quantum critical point – the metal-
insulator transition. Using the Falicov-Kimball model as a canonical model
of a MIT, we employ dynamical mean-field theory to construct an exact the-
ory for non-resonant Raman scattering. In particular we examine the for-
mation of charge transfer peaks and pseudogaps as well as the low-energy
dynamics. The results are qualitatively compared to the experimental B1g
Raman spectra in the cuprates, which probes the hot quasiparticles along
the Brillouin zone axes. The results shed important information on normal
state electronic transport and the pseudo-gap in the cuprates.
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1. IntroductionRaman s
attering in the 
uprate materials involves the inelasti
 s
attering oflight by ele
tron-hole ex
itations of the 
orrelated many-body system. It is a non-destru
tive bulk probe of the ele
tron dynami
s over a wide range of energy s
alesand temperatures. The experiments 
an dis
riminate between a number of di�erentsymmetries of the ele
troni
 system by polarizing the in
oming light and measuringthe re
e
ted light with a polarized dete
tor. Three prin
ipal symmetries are exam-
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J.K.Freericks, T.P.Devereauxined in the 
uprate materials: A1g, whi
h has the full symmetry of the latti
e (i.e.is s-like), and two d-like symmetries B1g (whi
h probes the Brillouin zone axes) andB2g (whi
h probes the Brillouin zone diagonals). While the Raman response for theA1g and B2g symmetries are 
loser to those of 
onventional metals, the B1g responseis anomalous, and has large spe
tral weight shifts as fun
tions of doping and tem-perature [1℄. It is believed by many workers in the �eld that this B1g response isarising from the proximity of the 
uprates to a quantum-
riti
al point 
orrespondingto a metal-insulator transition.Theoreti
al treatments of non-resonant Raman s
attering are rather 
ompletefor band metals [2℄ and insulators [3℄, but there is no theory that 
an su

essfullyinterpolate between these two limits to pass through the 
orrelated metal-insulatortransition. In this 
ontribution, we show how an exa
t solution of the spinless Fali
ov-Kimball model [4℄ using dynami
al mean �eld theory [5,6℄ provides a theoreti
almodel that illustrates the generi
 behaviour of Raman response through the metal-insulator transition and interpolates between the known limits. We �nd that ourRaman spe
tra show 
harge-transfer peaks and nontrivial low-frequen
y spe
tral-weight transfers that are indi
ative of the proximity to a quantum 
riti
al point andrepresent well the experimental data in the 
uprates.The Hamiltonian of the spinless Fali
ov-Kimball model [4℄ isH = � t�2pd Xhi;ji dyidj + Ef Xi wi � �Xi (dyidi + wi) + UXi dyidiwi; (1)where dyi (di) is the spinless 
ondu
tion ele
tron 
reation (annihilation) operator atlatti
e site i and wi = 0 or 1 is a 
lassi
al variable 
orresponding to the lo
alizedf -ele
tron number at site i. The hopping matrix between the nearest neighbourshi; ji (on a hyper
ubi
 latti
e in d-dimensions [5℄, with d!1) is �t�=(2pd) witht� 
hosen as our energy unit, Ef is the lo
alized ele
tron level, � is the 
hemi
alpotential and U is the mutual ele
tron repulsion when a 
ondu
tion ele
tron and alo
alized f -ele
tron both o

upy the same latti
e site. We will adjust both Ef and� so that the average �lling of the d-ele
trons is 1/2 and the average �lling of thef -ele
trons is 1/2.The Raman response is found from a density-density 
orrelation fun
tion�Raman(i�l) =Xk Z �0 d�ei�l�(TrT� he��H�k(�)�k(0)iZ �"Tr he��H�k(0)iZ #2); (2)with the uniform (q = 0) Raman density operator�k = 
(k)dykdk; dk = 1N Xj e�Rj �kdj; (3)Z = Tr he��Hi, the partition fun
tion, and i�l = 2i�lT the Bosoni
 Matsubarafrequen
y (the � -dependen
e of the operators is with respe
t to the full Hamiltonian).The Raman s
attering amplitude 
(k) is a 
ompli
ated fun
tion of the in
oming and
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Raman scattering through a MI transitionoutgoing photon polarizations, of the photon energies, and the polarizability of themedium. In nonresonant Raman s
attering (whi
h we examine here) one negle
tsthe frequen
y dependen
e of the Raman s
attering amplitude, and 
hara
terizesthe Raman response in terms of the di�erent spatial symmetries of the remainingfun
tion 
(k). One 
an expand this fun
tion in a Fourier series and examine the
ontributions of the lowest 
omponents of the series, and 
ompare them to theexperiment. More sophisti
ated approa
hes would 
al
ulate the Raman s
atteringamplitude from \�rst-prin
iples" and would in
lude any possible resonant Ramans
attering e�e
ts. We leave those pursuits to future work.
2. FormalismThe Fali
ov-Kimball model 
an be solved exa
tly in the in�nite-dimensionallimit by using dynami
al mean-�eld theory [6,7℄. We summarize the main pointsto establish our notation. The lo
al Green's fun
tion at the Fermioni
 Matsubarafrequen
y i!n = i�T (2n+ 1) is de�ned byGn = G(i!n) = �Tr T� Z �0 d�ei!n� he��Hatd(�)dy(0)S(�)iZ ; (4)with Z = Z0(�) + e��(Ef��)Z0(�� U); (5)the atomi
 partition fun
tion expressed in terms ofZ0(�) = Trd he��H0S(�)i; H0 = ��dyd: (6)In the above equations, the atomi
 Hamiltonian Hat is the Hamiltonian of equa-tion (1) restri
ted to one site, with t� = 0, and all time dependen
e is with respe
tto this atomi
 Hamiltonian. The evolution operator S(�) satis�esS(�) = exp "� Z �0 d� Z �0 d� 0dy(�)�(� � � 0)d(� 0)# ; (7)with �(� � � 0) a time-dependent atomi
 �eld adjusted to make the atomi
 Green'sfun
tion equal to the lo
al latti
e Green's fun
tion. We de�ne an e�e
tive mediumby G�10 (i!n) = G�1n + �n = i!n + �� �n; (8)with �n the lo
al self-energy and �n the Fourier transform of �(�). The tra
e inequation (4) 
an be evaluated dire
tly to yieldGn = w0G0(i!n) + w1[G�10 (i!n)� U ℄�1; (9)with w0 = 1� w1 and w1 = exp[��(Ef � �)℄Z0(�� U)=Z: (10)
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J.K.Freericks, T.P.DevereauxThe self-
onsisten
y relation needed to determine �n and Gn is to equate the lo
allatti
e Green's fun
tion to the atomi
 Green's fun
tion viaGn = Z 1�1 d� �(�)i!n + �� �n � � ; (11)with �(�) = exp(��2)=p� the nonintera
ting density of states for the in�nite-dimensional hyper
ubi
 latti
e.The iterative algorithm to solve for Gn starts with �n = 0. Then equation (11)is used to �nd Gn, equation (8) is employed to extra
t the e�e
tive medium, equa-tion (9) is used to �nd a new lo
al Green's fun
tion, and then equation (8) is usedto �nd the new self-energy. The algorithm is then repeated until it 
onverges, whi
husually requires only about a dozen or so iterations. This algorithm 
an also beused on the real axis (with suitably modi�ed equations) to dire
tly solve for theGreen's fun
tion and self-energy on the real axis. Here, we examine the half-�lled
ase �d = Pihnii=N = 1=2 and �f = Pihwii=N = 1=2, whi
h 
orresponds to� = U=2 and Ef = 0.The dynami
al 
harge vertex is lo
al in in�nite dimensions whi
h implies that
orrelation fun
tions that have the same symmetry as the latti
e are renormalizeddue to a nontrivial 
harge vertex, but 
orrelation fun
tions that are orthogonal to thelatti
e, have no vertex 
orre
tions, and so they are represented by their bare bubblediagrams [8℄. In two dimensions, the Raman s
attering amplitudes are typi
ally
hosen as follows:
A1g(k) � �2�(k)�kx�kx + �2�(k)�ky�ky � ��(k);
B1g(k) � �2�(k)�kx�kx � �2�(k)�ky�ky � 
os kx � 
os ky;
B2g(k) � �2�(k)�kx�ky � sin kx sin ky; (12)with �(k) the ele
troni
 band stru
ture. Note that the B2g response vanishes fornearest-neighbour hopping only, whi
h is what we 
onsider here. The above forms
an be generalized to the in�nite-d limit by 
hoosing
A1g(k) � 
� �(k); 
B1g(k) � 1pd dXi=1(�1)i 
os ki; (13)where we in
lude a 
onstant term 
 in the A1g amplitude, sin
e it is allowed bysymmetry.A simple analysis in the B1g 
ase shows that the B1g response does not have anyvertex 
orre
tions, as expe
ted, and that it is equal to the bare bubble. The basi
argument is that we must evaluate a summation over k of the formXk 1pd dXi=1(�1)i 
os ki 1X + 2pd Pdj=1 
os kj ; (14)
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Raman scattering through a MI transitionwhi
h arises when examining the Dyson equation for the B1g response (and we
an assume the imaginary part of X is greater than zero). Writing the fra
tion inequation (14) as the integral of an exponential1X + 2pd Pdj=1 
os kj = �i Z 10 dz exp 24iz0�X + 2pd dXj=1 
os kj1A35 ; (15)allows one to de
ouple the summation over momentum to the sum over d identi
alterms, ea
h multiplied by (�1)i. This then vanishes for all even d and for odd-d inthe limit d ! 1 (due to the 1=pd term). So the evaluation of the B1g responseredu
es to the evaluation of the bare bubble. A straightforward 
al
ulation thenyields �B1g(i�l) = �T2 Xn G(i!n)�G(i!n+l)i�l + �(i!n)� �(i!n+l) : (16)This formula 
an be easily analyti
ally 
ontinued to the real axis by following thesame pro
edure outlined in the 
al
ulation of the dynami
al 
harge sus
eptibility [9℄:rewrite the sum over Matsubara frequen
ies by a 
ontour integral of advan
ed orretarded Green's fun
tions and self-energies multiplied by the Fermi fa
tor, andthen deform the 
ontours to the real axis pi
king up any poles in the 
omplex plane.Under the assumption that there are no extra poles when the 
ontours are deformed,one ends up with the following expression for the B1g response:�B1g(�) = �i4� Z 1�1 d! ( f(!) G(!)�G(! + �)� + �(!)� �(! + �)� f(! + �) G�(!)�G�(! + �)� + ��(!)� ��(! + �)� [f(!)� f(! + �)℄ G�(!)�G(! + �)� + ��(!)� �(! + �)); (17)with f(!) = 1=[1 + exp(�!)℄ the Fermi fun
tion. We verify that this expressionis indeed a

urate, by using the spe
tral formula to 
al
ulate the Raman responseon the imaginary axis and 
omparing it to the result dire
tly 
al
ulated from theexpression in equation (16). We �nd that the results rarely di�er by more than onepart in a thousand 
on�rming the a

ura
y of the analyti
 
ontinuation.The A1g response is more 
ompli
ated, be
ause it requires a proper treatmentof the vertex 
ontributions. Fortunately, the 
harge vertex for the Fali
ov-Kimballmodel is well-known [9℄ and assumes a simple form (for �l 6= 0)�(i!m; i!n; i�l) = Æm;n 1T �(i!n)� �(i!n+l)G(i!n)�G(i!n+l) : (18)Hen
e, the Raman response in the A1g 
hannel 
an be found by solving the relevantDyson's equation, using the above form of the 
harge vertex. The steps to do thisare straightforward, but the algebra is somewhat 
umbersome and will be presented
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J.K.Freericks, T.P.Devereauxelsewhere. The result is�A1g(i�l) = �T Xn ��0(i!n; i�l)� [�0(i!n; i�l) +G(i!n)G(i!n+l)℄T�(i!n; i!n; i�l)1 + �0(i!n; i�l)T�(i!n; i!n; i�l) ;(19)where the 
harge vertex is found in equation (18), the bare sus
eptibility �0 satis�es�0(i!n; i�l) = � G(i!n)�G(i!n+l)i�l + �(i!n)� �(i!n+l) ; (20)and the other bare sus
eptibility ��0 (whi
h is where all of the 
 dependen
e lies) is��0(i!n; i�l) = [�
2(Gn �Gn+l) + 2
(ZnGn � Zn+lGn+l) + Zn � Zn+l� Z2nGn + Z2n+lGn+l℄=[i�l + �n � �n+l℄: (21)Here we used the notation Zn = i!n + �� �(i!n).It is a straightforward exer
ise to perform a similar analyti
 
ontinuation of thisexpression, but we will not write down the result here.
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Figure 1. Intera
ting density of states for various values of U as indi
ated. TheMIT o

urs for U = 1:5t. Note the intera
ting DOS is independent of temperaturefor the Fali
ov-Kimball model in d!1.
3. ResultsThe Fali
ov-Kimball model has a ground state that is not a Fermi liquid be-
ause the lifetime of a quasiparti
le is �nite at the Fermi energy. As U in
reases,
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Figure 2. The Raman response (imaginary part of the Raman sus
eptibility) forT = 0:5t for four di�erent values of U for the (a) B1g and (b) A1g 
hannels, re-spe
tively. Noti
e how the vertex 
orre
tions suppress the low-frequen
y spe
tralweight in the insulating phase for A1g 
hannel.the system �rst enters a pseudogap phase, where spe
tral weight is depleted nearthe 
hemi
al potential, and then undergoes a metal-insulator transition [10℄. Theintera
ting density of states (DOS) is, however, temperature-independent for �xedU and �xed ele
tron �llings.We plot the DOS in �gure 1 for values of U ranging from a weakly 
orrelatedmetal U < 0:65, to a pseudogap phase 0:65 < U < 1:5 to the insulator phaseU > 1:5. The quantum 
riti
al point o

urs at U = 1:5 where the intera
tingDOS is suppressed to zero at the 
hemi
al potential be
ause a pole develops in theself-energy (the \gap region" a
tually has an exponentially small DOS be
ause thehyper
ubi
 latti
e has in�nite tails). The 
orresponding imaginary part of the Ramanresponse is plotted in �gure 2 at a moderate temperature T = 0:5t and various valuesof U . In �gure 2a we show the B1g response and in 2(b) we show the A1g response (for
 = 0:1). Note that the Raman s
attering is quite similar for the two 
hannels for thegross features{they both display the 
lassi
 band-metal behaviour for small U , whi
hevolves to a 
harge transfer peak 
entered at U in the large-U mode, as expe
tedfor an insulator. The B1g response, however, has more low-frequen
y spe
tral weightwhen we are near the quantum 
riti
al point(at U = 1:5). The vertex 
orre
tions inthe A1g 
hannel suppress these low-energy features.In �gure 3, we show the Raman response as a fun
tion of temperature for asystem on the insulating side of, but 
lose to, the quantum 
riti
al point (U = 2).The B1g response is in �gure 3a and the A1g response is in �gure 3b. Note how the
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Figure 3. The Raman response (imaginary part of the Raman sus
eptibility)as a fun
tion of temperature for U = 2t for the (a) B1g and (b) A1g 
hannels,respe
tively. Noti
e how the 
harge-transfer peaks have similar behaviour in both
hannels, but that the low-frequen
y response is quite anomalous in the B1g
hannel.
harge transfer peak feature is present at high temperatures, and steadily in
reasesas T is lowered. The B1g response is most interesting at low energies. The spe
tralfeature at low energy has a strong temperature dependen
e that is sharply redu
edas T ! 0. This is similar to the B1g response seen in the 
uprates. We study thisphenomenon further in �gures 4 and 5 whi
h plot the normalized low-frequen
yspe
tral weight as a fun
tion of T and the inverse of the Raman slope (as � ! 0)for the B1g 
hannel. We arbitrarily de�ne the low-frequen
y weight to be all spe
tralfeatures from � = 0 to � = U=2 and the high-frequen
y weight to be spe
tral featureswith � > U=2. This division is obvious in the insulator phase, sin
e the low-energyfeatures and the high-energy features are well separated, but be
omes less obviousin the pseudogap region. Note how, in all 
ases, the low-frequen
y spe
tral weight issharply depleted as T is lowered, with the e�e
t being the largest when one is wellinto the insulating phase. The Raman inverse slope is even more interesting. Sin
ethe Fali
ov-Kimball model has a temperature-independent DOS, this implies thatthe self-energy is also temperature-independent. Conventional reasoning would thensay that the s
attering rate (derived from the imaginary part of the self-energy)would be a 
onstant, and hen
e, the Raman inverse slope should also be a 
onstant,sin
e it measures the s
attering rate of the 
harge ex
itations. This is indeed true atlow T for the weakly intera
ting systems, but is violated as we near and pass throughthe metal-insulator transition. This rise in the Raman inverse slope is indi
ative ofthe formation of a gap in the quasiparti
le spe
trum. What is interesting is that we
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Figure 4. The integrated B1g spe
tralweight ratio for low frequen
ies to highfrequen
ies normalized to its value atT = 0:95t plotted versus redu
ed tem-perature T=0:95t. Noti
e how the spe
-tral weight is sharply depleted at lowtemperatures as one nears and 
rossesthe MIT.
Figure 5. Log-log plot of the inverseRaman slope for the B1g 
hannel atlow frequen
ies versus temperature forseveral values of U . The 
hara
teristi
rise at low-T for the pseudogap and in-sulating phases mat
hes well with theexperimental data on the 
uprates.see a pre
ursor e�e
t of the insulating behaviour as we near the quantum 
riti
alpoint. This data 
ompares quite well with the results seen in the underdoped 
upratematerials.

4. Discussion and conclusionsThere is a simple explanation to the origin of the anomalous low-frequen
y fea-tures of the Raman spe
tra in the insulating mode, but 
lose to the quantum 
riti
alpoint. If we examine the integral for the B1g Raman response in equation (17), wenote three important points (i) the imaginary part of the Raman response is pro-portional to the real part of the integrand; (ii) the integrand vanishes if the Greenfun
tion (and self-energy) are both real; (iii) all temperature dependen
e arises fromthe Fermi fa
tors, sin
e both G and � are temperature-independent. In the insulat-ing mode, the DOS breaks into two pie
es, a lower band 
entered at �U=2 with awidth of O(1) and an upper band at U=2 with a width of O(1). The Green's fun
-tions are 
omplex only when the frequen
y argument lies within one of the bands.
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J.K.Freericks, T.P.DevereauxHen
e there are two main 
ontributions to the Raman response: (i) intraband pro-
esses, where ! � �U=2 or U=2 and � � 1; and (ii) interband pro
esses, where! � �U=2 and � � U . The interband pro
esses, with � � U are what give riseto the 
harge-transfer peaks seen in the Raman response. The intraband pro
esses,with � � 1, give rise to the low-frequen
y spe
tral features. Furthermore, at lowtemperatures, the low-frequen
y features are proportional to f(!)� f(!+ �) whi
h
an be approximated by exp(�U=2T )[1 � exp(�=T )℄. Hen
e, we expe
t a Ramaninverse slope to a
t like T exp(U=2T ) and the low-frequen
y spe
tral weight shouldgo like exp(�U=2T ), whi
h 
an explain the features seen in our results. In the A1g
hannel, the 
harge vertex makes the integrand more 
ompli
ated to evaluate, andthe vertex 
orre
tions end up suppressing the low-frequen
y response.Sin
e the form for the B1g response is identi
al in other single-band models, likethe Hubbard model, we expe
t that the B1g Raman response will be essentially thesame as seen for the Fali
ov-Kimball model. The only modi�
ations are that theDOS now has T -dependen
e, whi
h will relax 
riterion (iii) above, and that thesystem has a Fermi-liquid ground state for low temperatures and small to moderateU . Nevertheless, in the insulating mode, the DOS will separate into an upper andlower Hubbard band, and the analysis given above will hold for determining thelow-T features, so we expe
t to see the same anomalous low-frequen
y behaviour inthe B1g 
hannel as is seen here. We 
annot make a similar 
omment about the A1g
hannel, be
ause the 
harge vertex will no longer assume the simple form for theFali
ov-Kimball model, and the vertex 
orre
tions 
an modify the results, but wedon't expe
t there to be mu
h qualitative di�eren
e there either.The 
al
ulations presented here are remarkably similar to those observed in theB1g 
hannel in the normal state of the 
uprates [1℄. As the doping in these materialsis redu
ed from the overdoped side to the underdoped side of the phase diagram, theB1g Raman spe
tra deviate strongly from our expe
tations for metalli
 behaviour. Alarge depletion of spe
tral weight at low frequen
ies is observed for B1g with under-doping, with a 
on
ommitant shift of spe
tral weight out to two-magnon energies� 2700 
m�1. For a given temperature, the integrated low-frequen
y spe
tral weightin the B1g 
hannel falls by over an order of magnitude from overdoped to under-doped. Both of these features are similar to our observations shown in �gures 2{4.This is indi
ative of the formation of a pseudogap whi
h a�e
ts the B1g quasipar-ti
les and sets in well before the metal-insulator transition is rea
hed. The inverseRaman slope is found to in
rease with doping at a given temperature and, moreover,has a strong upturn with de
reasing temperature in the more underdoped systems,qualitatively similar to our �gure 5. Again, sin
e we believe our model 
aptures thesalient features of Raman s
attering in the vi
inity of a quantum 
riti
al point, theRaman data from the 
uprates dire
tly shows the in
uen
e on the B1g quasiparti
lesby the underlying metal-insulator transition.In summary, we have examined the Raman response of a system that goesthrough a metal-insulator transition exa
tly, using the dynami
al mean �eld theoryfor the spinless Fali
ov-Kimball model. Our results provide a 
ontinuous interpo-lation between the known metalli
 and insulating Raman responses. The results of
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Raman scattering through a MI transitionthis model system should be qualitatively similar to those of other 
orrelated modelsthat require quantum Monte Carlo simulation to solve (su
h as the Hubbard andHolstein models), and display the qualitative features seen in the 
uprates.
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Отримано 14 серпня 2000 р.

Упродовж років теорія комбінаційного розсіяння (КР) обмежувала­

ся розглядом або ізоляторів або суто металічного стану. Хоча мож­

на багато довідатися, зосередивши увагу тільки на металах чи ізо­

ляторах, останні експериментальні роботи з купратних систем вка­

зують на бажаність формулювання теорії раманівського відгуку, яке

придатне при проходженні через квантову критичну точку ­ перехід

метал­ізолятор (ПМІ). Використовуючи модель Фалікова­Кімбала як

канонічну модель ПМІ, ми застосовуємо теорію динамічного серед­

нього поля для побудови точної теорії нерезонансного КР. Зокрема,

ми розглядаємо утворення піків, зумовлених переносом заряду, та

псевдощілин, а також низькоенергетичну динаміку. Результати якіс­

но зіставимі з експериментальними B1g спектрами КР у купратах, в

яких фіксують “гарячі” квазічастинки вздовж осей зони Брілюена. Ре­

зультати дають важливу інформацію про електронний транспорт у

нормальному стані та псевдощілину в купратах.

Ключові слова: комбінаційне розсіяння, перехід метал­ізолятор
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