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We solve for the electronic Raman scattering response functions on an infinite-dimensional hypercubic
lattice employing dynamical mean-field theory. This contribution extends previous work on the nonresonant
response to include the mixed and resonant contributions. We focus our attention on the infinite-dimensional
spinless Falicov-Kimball model, where the problem can be solved exactly, and the system can be tuned to go
through a Mott-Hubbard-like metal-insulator transition. Resonant effects vary in different scattering geom-
etries, corresponding to the symmetries of the charge excitations scattered by the light. We do find that the
Raman response is large near the double resonance, where the transfered frequency is close to the incident
photon frequency. We also find a joint resonance of both the charge-transfer peak and the low-energy peak
when the incident photon frequency is on the order of the interaction strength. In general, the resonance effects
can create order of magnituder more enhancements of features in the nonresonant response, especially
when the incident photon frequency is somewhat larger than the frequency of the nonresonant feature. Finally,
we find that the resonant effects also exhibit isosbestic behavior, evenAg faedB,4 sectors, and it is most
prominent when the incident photon frequency is on the order of the interaction energy.
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[. INTRODUCTION However, it is well known that many of the Raman sig-

Electronic Raman scattering has long been used as a dhals in correlated mgtals a_nd insulators display complicated
rect probe of electronic charge excitations. Experiments havé&pendences on the incoming photon frequencyl he reso-
shown a number of interesting phenomena, especially in cofant behavior of theB,q two-magnon feature at roughly
related materials. A material independence for Raman scaB40 meV has been well studied in the parent insulating cu-
tering has been seen in a number of different correlation gaprates LaCuQO,, YBa,Cu;Og, and SsCuO,Cly,* where a
(insulating materials ranging from FeSito SmB;,? to resonance is found for incident photon energies near 3 eV.
CaRu,0-,° to high temperature superconductéréThe Ra-  Although recent progress has been m#tfe the reason for
man response shows a gap opening at low temperature, bilis resonance is not clear since the resonance frequency lies
with the gap about ten times larger than the onset temperabove the optical absorption edge frequency measured in the
ture where the gap starts to form. In addition, an isosbestidielectric response,and the photon energy is much larger
point is often seen, where the Raman response at one valtigan the location of the resonance peak in the response
of frequency is independent of temperat(aé low tempera- function.
ture), and curves for different temperatures appear to cross at The general question of how the low-energy features
a single point. Resonant effects are even more interesting, &such as particle-hole excitations near the Fermi Jeaad
it is believed that the resonance can cause an enhancementtogh-energy(such as charge-transfer excitatipehange un-
the nonresonant signal by orders of magnitude, and allowder resonant conditions remains relatively unexplored. Most
small signals to become observable. What remains unknowtreatments for Raman scattering in insulators have focused
is whether these resonant enhancements dramatically change only the spin degrees of freedofiHeisenberg limit in
the shape of the underlying nonresonant response. two dimensions. For the case when the incident photon en-

The theoretical description of electronic Raman scatteringergy is much less than the optical band gap, the Loudon-
has lagged behind experiment. Recently, dynamical meaRleury theory? has been widely employed to determine reso-
field theory(DMFT) has been employed to calculate the non-nance profiles from spin degrees of freedom via series
resonant response in the Falicov-KimBatind Hubbard expansiond? exact diagonalization of small clustétsor
model$ and to examine inelastic x-ray scattering as Weédl. quantum Monte Carlo simulatiols of the Heisenberg
was found that the theoretical calculations of the nonresonamhodel. Modifications due to quantum fluctuatidid®
response show much of the behavior seen in experimenhilayers?® four-magnon processéécouplings beyond near-
including the large gap relative to the onset temperature anest neighbor exchandé,and ring exchandgé have all been
the generic appearance of an easily observed isosbestic potaken into account to give a thorough treatment of two mag-
in the B,y channel. non scattering from spin degrees of freedom in the nonreso-
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nant regime. These approaches fail when the laser frequengyams involve four-particle susceptibilities. It is only in the
is tuned to lie near an optical transition. In this regime, basedhfinite-dimensional limit, where most of the many-particle
on a spin-density-wave approach, Frenkel, Chubukov, andertex renormalizations vanistall three-particle and four-
Morr have formulated a so-called “triple-resonance” theoryparticle vertices do not contribute; only the two-particle ver-
from which important features of the spectra can betices enter, can one imagine performing the calculation of
derived!® While good agreement was obtained for the resothese susceptibilities exactly. Note that it is well known that
nant profile of the two magnon contribution to light the jrreducible two-particle vertices contain nonlocal terms
scattering; general features not related to the two-magnony, jnfinite dimensiong! Which terms from the irreducible
peak are missed and lineshape calculations are complex agd ey |ocal or nonlocal, contribute to the final response de-

only semiquantitative. :
: L pends on the symmetry, scaling and momentum dependence
An approach treating the full fermionic degrees of free- f the external vertices. As a result, in many cagaspar-

dom is still lacking. Recently exact diagonalization studies Of?cular for optical light scattering where we approximate the

the Hubbard model have been employed to yield line shape e X
in the resonant limit from both spin and charge degrees of oton momenta bk;=k:=0) we find that the momentum

freedom?! Yet the nonresonant and mixed terms were nodePendence is so weak, that whenever a momentum argu-
taken into account. These calculations also suffer the progfent of the vertex function is summed over the Brillouin
lems related to the finite size of the clustéssich as artifi-  ZONe, it can be replaced by the local vertéx>The situation

cially broadening the delta functions to approximateiS more complex for the three- or four-particle vertices, but a
thermodynamic-limit spectja So generally, there is no strong-coupling pertut_)atlon theory shows that the momen-
theory for Raman scattering from both charge and spin delum dependence continues to be wetklowest ordey, so

grees of freedom which predicts spectral line shapes wher@€ use the local vertices in all response functions. It turns

equal footing and do not suffer from finite-size effects. known exactly for the Falicov-Kimball modét,one can cal-

In this contribution we illustrate how to calculate the full culate the full Raman response function in this cesiace
electronic Raman response function, including contributiongh€ general form of the charge vertex is not known for the
from the nonresonant, mixed, and resonant processes withffubbard model, one can only perform approximate calcula-
a single-band model. Our model includes interactions of thdions for that system even in infinite dimensions; neverthe-
photon with all charge excitations of a correlated fermionicless, the diagrammatic analysis given in Sec. Il holds for the
system, but does not take into account any scattering off dfiubbard model, we just are not able to evaluate the final
spin excitations. The scattering response is a complicate@XPressions _ .
function of the correlations, the temperature, the incident e evaluate our exact expressions numerically and study
photon energy, and the transfered energy. A short communtheir evolution as functions of the incident light energy and
cation of this work has already appeaféd. of the transfereo_l energy. In the case of a correlatec_zl m_etal, we

Little is known about what the mixed Raman responseShOW how Fer_m|—I|qU|d-I|ke features evolve as the _I|fet|me of
looks like. We find that, as opposed to the nonresonant anButative quasiparticles decreases due to scattering. The re-
resonant responses, which are manifestly positive, the mixe3Its are even more interesting in the correlated insulator. We
response is often negatielthough the total response al- €xamine what happens to the isosbestic point identified in the
ways remains positiye The resonant response is expected tolonresonant response, and how the presence of the charge
be large in the region where the transfered energy approach@8p affects the optical scattering. _
the incident photon energy, called the double resonance, be- Inelastic light scattering involves a coupling of photons to
cause the energy denominators of two pairs of the Greenglectronic charge excitations of the correlgted material. The
functions in the bare response function approach zero. Intefymmetry of the incident and scattered light relates to the
esting results are also anticipated in the strongly couple§ymmetry of the charge excitations that are coupled to the
(Mott-insulating regime, when the incident photon energy is Ilgh_t. There are typically three symmetries examined in ex-
close to the interaction energy. Indeed, we find this is theP€riments. Theh;; symmetry has the full symmetry of the
case here. We also examine the situation where the initidfttice. This is measured, in a system with only nearest-
photon energy is larger than the excitation energies in th@€ighbor hopping, by polarizing the incident and scattered
correlated band. This is the most common experimental sitight along the diagonal direction of the hypercubic lattice,
ation in correlated materials with renormalized low-energyS© in large dimensions, we take the initial and final polariza-
“bands.” The mixed and resonant responses also behave difons to be e=e'=(1,1,1,..). The B;; symmetry is a
ferently than the nonresonant response when we compare tewave-like symmetry that involves crossed polarizers along
Stokes(energy transfered from the photon to the electronsthe diagonals. We take#=(1,1,1,..) and e'=(-1,1,
and the anti-Stoke&energy transfered from the electrons to —1,1,..) for the B;4 channel. Finally, théB,; symmetry is
the photonsresponses. These are equal for nonresonant scaanotherd-wave symmetry rotated by 45 degrees; it requires
tering, but the anti-Stokes response is much smaller than tHfe polarizations to satisfye'=(1,0,1,0,..) and €'
Stokes response for the mixed and resonant scattering case),1,0,1,..). It turns out that the\, 4 sector has contribu-
(introducing an asymmetry to the Raman scattering tions from nonresonant, mixed, and resonant Raman scatter-

The theoretical challenge in calculating the full inelasticing, the B4 sector has contributions from nonresonant and
light scattering response function is that the mixed diagramsesonant Raman scattering only, and Byg sector is purely
involve three-particle susceptibilities and the resonant diaresonant. This is generally true for a model on a bipartite
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lattice with nearest-neighbor hopping only. If longer-range ; - Kl (k + a/2)c(k - /2
hoppings are allowed, then all channels will have nonreso- Jol@ zk: valkICs(k + al2)c,(k ~ g/2),
nant, mixed and resonant contributions.

While our approach towards analytic continuation is gen- de(K)
eral, the overall complexity of the problem limits our evalu- v (K) = (2.3
ation of the light scattering cross section. By focusing on the Ka

splnles_s Falicov-Kimball model, we present a theqry Of. IIghtare the current operator and Fermi velocity, respectively, and
scattering from charge degrees of freedom only; valid for

any incoming photon frequency. However, we are not able to Pe(k) +

address scattering from spin degrees of freedom resulting in T CIEDS ok c(k+a/2)c,(k-q2) (2.4
i . k aV "B

two-magnon Raman scattering, for example. Nevertheless,

we expect that our results help frame the physics related to
resonance phenomena in paramagnetic correlated metals aifdthe so-called stress tensor. As a result, the scattering op-
insulators, and the behavior near a metal-insulator transitiorsratorM () has both nonresonant and resonant contributions
Our plan of the paper is as follows. In Sec. I, we describe (I int= Kl

the general analytic-continuation formula that carries one . . J g\ K¢ Jal= K|l
fromga time—orde)r/ed correlation function on the imaginary <f|MaB(Q)|'>:<f|7’aﬁ(q)|'>+2( s & — & — W

axis to the real response function. The formulas are com- ! e
pletely general, and hold for the case of inelastic scattering (fljo(- ki)|l)<l|jﬂ(kf)|i>)
of x-rays as well. The challenge is in evaluating the corre- + '
sponding response functions along the real axis, which we

know how to do only for the Falicov-Kimball model in infi-

nite dimensions. In Sec. Ill, we evaluate the Raman scattefVith the suml over intermediate states. The term with the
ing for the Falicov-Kimball model explicitly, calculating all stress tensor is the nonresonant contribution, while the term

response functions, and showing in detail how to perform alWith the square of the current operator is the resonant con-
of the relevant renormalizations of the two-, three-, and fourdribution. Now the Raman-scattering cross section contains
particle correlation functions. In Sec. IV, we present our nu-nonresonant, mixed, and resonant contributidresause it is

merical results for Raman scattering at half filling. We exam-constructed from the square of the scattering operator

(2.9

g~ & T ws

ine the metallic case, the insulating case, and study the _
evolution of the Raman response as a function of the incident R(0,Q) =Ry(a,Q2) + Ry(9,Q) +Rx(q,Q2),  (2.6)
photon energy. We present our conclusions in Sec. V. where the nonresonant contribution is
Il. GENERAL ANALYTIC CONTINUATION FORMALISM Ry(q,Q) = 27ng(ki)gz(kf)
Our starting point is the expression for the inelastic light exp(- Be))_ -
scattering cross section derived by Shastry and Shr&iman x> T?’i,n’f,iﬂsf -&-Q),
if

R(,Q) =272, exp(- Be)de; - &~ Q) (2.7)
it

the mixed contribution is

<lopakoegliinr@iliz @n o oo o s S Be)

: Z
for the scattering of electrons by photons of arbitrary wave- I(:)I i @+ ()
length(the repeated indicag and 8 are summed overHere < | = ( el It )
Q=w;—w; and g=k;—k; are the transfered energy and mo- {m g-g—w+i0" g—g+w—i0"
mentum, respectively, whiley), ki, and€” denote the (@) () (D3 (0
energy, momentum and polarization of the initidinal) +< CRPIN —+ it +)~f i}
states of the photons;, refer to the eigenstates describing g g ~w~I0" g-gtwtil '

the_ “electronic matter,” an(j(q)=(h(:2/ywq)1’2 is '_the “scat- X Ser— - Q), (2.9
tering strength” withw,=c|q|. Lastly, Z is the partition func- o

tion. For an electronic system with nearest-neighbor hopand the resonant contribution is

ping, the interaction with a weak external transverse exp(— Bs)
electromagnetic fieldh is described by the following inter- Re(0, Q) = 2mg?(k)g(ky) >, ————

acting Hamiltonian il Z

e . j-(i)j(f) j_(f)j(i)

H ., =—— k -A(— k % ( il JIf + il JIf
int ﬁC%J( ) ) g s,—wi—i0+ s|—£i+wf+i0+
> i, i)
+ A= K) v, gk +KD)AL=K"), (2.2 % ( A1 + A1 )

2h202kk’ s g 8|1_8i_(1)i+i0+ 8|1_8i+wf_i0+

where X Ses—g— Q). (2.9
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In these equations, we have introduced the following symMatsubara correlation function in E2.13, we perform the

bols analytic continuationiv— Q+i0* which yields for the non-
- i ¢ resonant scattering the known expression
7: 2 eaya,ﬁ(q)eﬂa ) )
p 2mg(ki)g(k)
Ry, Q)= ———— Q) 2.14)
y - n(d,€2) 1- exf- Q) xn(0,€2) (2.14
jV=2 el ja(-k, _ _
a where we introduced the nonresonant response function
H H 1 Ha%a Ha%a
0= ek, (2.10 (@A) = S {A(- Q -i0%,Q +i0")
« 2mi MY

with the notationA; ;=(i|A|f) for the matrix elements of an
operatorA.

We evaluate these expressions by a Green's function teCliy, o ated on the real axis. A similar strategy is used to de-

niqug that st{;\rts from correlation functions 'evalua.ted on th‘;t’ermine the mixed and resonant contributions as described in
imaginary axis and then performs an analytic continuation t he next two subsections

the real axis to get the physical response functions. Our strat-

egy is to first consider the analytic continuation procedure in . _

a general sense, which holds for any model Hamiltonian and B. Mixed scattering

for arbitrary momentum transfer. We will derive connection  |n the case of mixed scattering in E@.8), the calcula-
formulas between the Matsubara frequency axis correlatioflon begins with the multitime correlation function con-
functions and the analytically continued response functionstructed from the stress tensor and two current operators
on the real axis. But those expressions will require us to be

able to evaluate a number of different susceptibilities, and B (7, ) =(THD] ). (218
those expressions are not known for arbitrary Hamiltonians. v

We will show how to evaluate them exactly for the infinite- We define the Fourier transform as before, with respect to

~ X2 (- +i0%,Q-i0%)} (2.15

dimensional Falicov-Kimball model in the next section. three Matsubara frequenci¢all with the same sign of the
exponent Once again, in thermal equilibrium we have
A. Nonresonant scattering imaginary-time-translation invariance, so the sum of the

The nonresonant scattering in H8.7) is proportional to three Matsubara frequencies must vanish, yielding

the spectral density function. The spectral density cannot be

. S ) X Xﬁg)-(iv ivp,iv3)
calculated directly but is instead obtained from the analytic VAV EL 2053

continuation of the imaginary-time response function con- 1 - D)
structed from the time-ordered product of two stress-tensor =8ty V3)Z? E Vit
operators it
X3(r,7) = (THDHT)) (2.11 x[ ex= o)
, ) (er—ei+iv)(e — g —ivy
with the 7 dependence of the operator determined by the
Hamiltonian in the absence of the electromagnetic fighe N exp(— Ber)
symbol 7, denotes time orderingThe first step is to calcu- (&1 —er+iv)(gi—gr—ivy)
late the double Fourier transformation to the Matsubara fre- _
; exp(— Be) }

guency axis - .

p 5 (gi—e +ivy(er—g —ivy)

%(i v,ivy) =Tf drj dr’eiV'TX%(T, 7)en” (2.12 +3 00, exp(= Bei)
0 0 Fiidne s, . _ .
ifl (er—&i—iv)(g — g +ivy)
for bosonic Matsubara frequencies,=i7T2n with 8=1/T. expl- Ber)
In thermal equilibrium, the two-particle correlation function - f .
depends only on the difference of the two time variables, so (&1 —er—iv))(ei —gp +ivy)
the double Fourier transform becomes a “diagonal” function, exp(- Be)
evaluated as . - (2.17
(gi—e—ivy)(er— g +ivy)

which contains 3!=6 terms collected into two groups of

@ OXP=Be) Vi
;3( iv,iv) = E : [ [
Lt terms connected by cyclic permutatiofs with

zZ gi—g—iv
. . . 3 . . .
X[L-expBlei=e)]. (213 xpclivyivaivg = X gr o= ivy=ivp=ivy). (2189
In order to extract the spectral density of states from theéAfter analytic continuationv,— z, with the constraint
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Xi(ﬁ),f,i(7117'217'317'4):<,Tﬂrj(i)(7'1)j(f)(Tz)j(f)(TS)j(i)(T4)>- (2.23

one can see that thf expression in @417 has three branch  Once again, defining the Fourier transform in terms of four
cuts when Inz,— 0 (for «=1, 2, or 3. Note that the con- \atsubara frequencigsvith the same sign in the expongnt

straint in Eq.(2.19 forbids only two of thez,'s to simulta-

yields the following result(with the delta function arising

neously have Inz,=0* but the imaginary part of all three from the time-translation invariange

can vanish simultaneously. In order to produce the expres-

sion for the mixed Raman cross section in E18), we need
to focus on the branch cuts that occur whgnr-—-Q+i0*
and z;—Q+i0" in order to produce the appropriate

S-function and matrix elements in the mixed scattering cross
section. The corresponding discontinuity across the branch

cut when Imz;=0, occurs when the terms in E@.17) are
analytically continued wittg; moving onto the real axis. In
the first case whem, —-Q+i0*, andz,— Q-z;, we find

4 o
XD vnivaivs,ivg = vy + vy + w3+ 1)

X D?i(,‘?,f,i(i Vl:i Vo, i V3, i V4)
+ 309 (v ivay i vg,ivg)

+ Xi(fil?f,f(i V1,iv4,iv5,1v3)].
(2.29

Here we introduce the generic four-particle susceptibility

2 —-Q-i0*

1 3
%X%/}’i(zla 221 23)

Zl~>—ﬂ+i0+
1.0 -
= Z—Wi[X;/’f’i(— 0 -i0",Q - 2;,2y)

-3 (- Q+i0%,Q - 75,25)]

EAN
e (s (i (i) (F
et { i, it }

— (1 — @B .
(1-e )% =

X(S(Sf_{;‘i _Q) (220)

g T8 ~Z et

The sum on the right-hand side of E@.20, with zz=w;
—i0*, is proportional to the first two terms in E(.9). In a
similar way we can derive last two terms in EG.8) from

the branch cug; — Q+i0*, andz,— -Q-z; (one also inter-
changes « f). Hence, we arrive at the general expression for
the mixed scattering

_ 2mg(ki)g*(ky)

Ru(a,Q) = 1-exp- Q) XM

(0,Q) (2.2
with the mixed Raman response function defined by
1 - - .
x(@2) = o [x51 (- =107, - +10",w; = 07)
i
_X%f%,i(_ O+ i0+,— ws + i0+,wi - |0+)
+ X (Q+i0%, 0 +i0°, - w; = i07)
—XSH(Q =10, 0 +i0°, - w —i0)]  (2.22

on the real axis. The operatofgq), j (k) andj@(k;) are

Hermitian for optical light scattering, which has vanishing with

momentunk;=k;=g=0, and, with the use of E¢2.18), one

can change the sign of all of the frequency arguments in the)
first two terms of Eq(2.22. AnBC,

C. Resonant scattering

For the resonant scattering case in E49), the procedure

Xg,za,c,o(l V1, 102,13,11)

1
= Ai B, :C ’D’i_
i,?l,l’ 1B D=
x exp(— Bei)
(e —&i+ivy)(ep — i —ivy) (e — g —ivz—ivy)
exp(— Be)
(e +iv)(ei—g —iv)(ey —g —ivy—ivy)
N exp(— Bey)
(e —ep+iva)(e;—gr—ivp)(ej—gr—ivy —ivy)
exp(- Beyr)

(8i — &y + iV4)(8f — & _ng)(Ef_8|r _iVZ_iV3)

1
+ Di,I’CI’,fo,IAI,iz,
RAIK

% exp(- Bei)
(e1—ei—iv)(ey —& +ivg)(er— g +iva+ivg)

+ exp(— Be)

(er—e = iv)(ei =g +ivy)(ep — g +ivg+ivy)
+ exp(— Bey)

(e —er—iva)(e; — e +ivy)(e; — e +ivy +ivy)

exp(- Beyr)
(ei =&y —ivy)(er—&p +iva)(er— e +ivy +ivy)

(2.2

. . . . _~(4) . . . .
(w1, 1va,1v3,1v4) =Xat gt ot pt(= 191, =10, = 1w, ivy).

(2.26)

The expression in Eq2.24) contains 4! =24 terms collected
into six different groups of the terms, with each group mem-

is similar: one has to calculate the multitime correlationber connected by the cyclic permutation of four objects.

function constructed from the four current operators

045120-5

After analytic continuationv,— z, with the constraint



SHVAIKA et al. PHYSICAL REVIEW B 71, 045120(2005

21+2,+23+2,=0, (2.277  The analytic continuation procedure then requires us to take

o the following limits
one can see that the expression in E524) has branch cuts

when any Imz,— 0* or when any pair Irfg,+z5) —0*. The
é-function in the expression for the resonant scattering cross z—-w-i0", (2.29
section in Eq.2.9) is connected to the branch cutatrz,

=-z,-2,—Q+i0* and the discontinuity of the response

. . . Z, — wit i0+,
function across this branch cut is equal to

23+24=-21-2,— Q+0" .
Z3— —wf +i07,

1
o -Xi(,‘?,f,i(21122123124)
i

25+2y=~21-2,—Q~i0"

e B — w —i0*
R D ) s
L and then take the limit
. RO
(8|_8i+21)(8|r—8'—9+23) wi'—wi=w§ —wf—>0 (230)
N J| | J| fJ(fl?’Jl(r)' in order to reproduce an expression proportional to the reso-
(8- & - Q-2 (e — & — 23) nant scatterlng Cross section in E(q_.g). The final general
expression for the resonant scattering becomes
(D) (F): (1) +(F)
. Il
(e1—&i+zy)(ep — &~ 2) 2mg%(k) g?(Ky)
R:(q, Q)= ——— ,Q 2.3
(@)D ) r(0,Q2) 1-exg- ,BQ)XR(q ) (2.31
. Jihedeadr (2.28
(e1—ei—-Q-2z)(ey—&-Q+2) | with the resonant Raman response function defined by

23+24=-21-2,— Q+0"

1
XR(q!Q) = 2_ Xi(,‘lf.),f,i(21!22123!z4) 2 e —iO* (232)
Tl 25+2y=~21~2,—Q~i0* 17T
Zy — wg +i0*
35— - wf’ +i0*
74— wi’ —jor | @m0
Y-
[
Note that it is critical to perform the analytic continuation of
z3+2,=-2,-2,— O +i0" first and then analytically continue ~ H= 5 BE (cfej+cfe) + EfE W; = ME (clei+w)
the other frequencidss in Eq.(2.28 and(2.29] since these VE @D
procedures do not commute with one another. + UE clow, (3.1

Wherec (c;) create(destroy a conduction electron at site

w; is a classmal variabléepresenting the localized electron
number at sitei) that equals 0 or 1t* is a renormalized

We now evaluate the general expressions derived abov@opping matrix that is nonzero between nearest neighbors on

for the case of optical Raman scattering, where all momenta hypercubic lattice irD-dimensions(and we take the limit
vanish (kij=k¢=q=0) and for the spinless Falicov-Kimball D—<«), and U is the local screened Coulomb interaction
model. The Falicov-Kimball model involves the interaction between conduction and localized electrofisj) denotes a

of conduction electrons with localized electrons and has theum over sites and nearest neighbojs E; and . are ad-
following Hamiltoniart* justed to set the average filling of conduction and localized

I1l. EXACT RESULTS FOR THE FALICOV-KIMBALL
MODEL
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OCXIDE WU

i
FIG. 1. Feynman diagrams for nonresonant Raman scattering. I'JJ i errjf JfLLLh
The wavy lines denote photon propagators and the solid lines de- [frrif jfLLLL'
note electron propagators. The cross-hatched rectangle isdhe-
ible charge vertex. In th8,4 channel, only the baréirst) diagram
enters, while in théd 4 channel both diagrams enter. The symipol
denotes the stress-tensor vertex of the corresponding electron-

N

N

photon interaction. Z
1A ]
electrons. In our calculations the average filling for each is i . i
set to 1/2, respectivelyu=U/2,E;=0).
This model can be solved exactly by using DMFT, as first ::‘{

described by Brandt and Mielséh.The algorithm used to
solve for the local Green'’s function at sitedefined by

Gi(7) = —(T,c(n)c(0)), (3.2

where the angle brackets denote the trace weighted by the + -t -
Boltzmann factor eXp-BH]/ Z. We usually work with the [ - -
Fourier transform of the imaginary-time Green'’s function to rrrr‘jf jfL'l,j —— ,FHJ’ J'LL'L
yield the Matsubara frequency Green’s function. The HHJ' J'LLH,
momentum-dependent Green'’s function becomes

Gk = ——, 3.3 i g B i
- -7

AN

m ™~ €k

T W

AN

with

« D

t
6=— lim —=> cosk, (3.4)
D—ee \D a=1

being the noninteracting band energy, and

FIG. 3. Feynman diagrams for the resonant contributions to Ra-
man scattering. Only the first two diagrams in the first four lines,
rrrrjf i and the first diagram in the last two lines contribute in g and

B,y sectors. TheA 4 response includes all diagrams.

+T

AN
~

+
—
AN
<

FIG. 2. Feynman diagrams for the mixed contributions to Ra-
man scattering. The symbojs and j; remind us to include the Zn=ion+u—Zn. (3.9
relevant vertex factors from the current operator in the electron-
photon interaction. The mixed contribution vanishes in Bg
channel, it consists of only the bare diagrams on the top line in the
By channeland turns out to be a I correction, and all diagrams ~ The local self-energ¥,, is a solution of the following set of
enter for theA,q channel. equations:
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=iyt -1 (@)= —2 fmd [f(w) - f(w+ )]

"N Zom e Zm—hm ) =5 ) delfle) = e
_. A v 1-w, , 3.6 X RII(w—i0",w+ Q +i0")
lom+pu—Ap=U dop+u-Ay ~(w—-i0* w+Q-i0%)}. (3.12

where we introduced the self-consistent dynamical meanNow we can take the trivial analytic continuation of Egs.
field of Brandt and Mielsclidenoted\); the self-energy can (3.9 and(3.10 to find the final expressions for the nonreso-

be expressed as a simple function of this field nant Raman response function:
t*z +00
3= Uwy + - Uwiy(1-wy) (3.7 xXn g, () = a2 do[f(w) - f(w+ Q)]

iom+ pm—Ap—U@L-wy)

Glw) -G (w+Q) ~ G(w)-Glw+Q)
Z(w+Q)-Z(0w) Z(w+Q)-Z(w)
(3.13

Here w; is given by w;=dAE~mIZz(U-w)/Z, with X Re{
ZO(/U'):ZeBM/ZH::—oc(iwn_ﬂ_)\n)/iwn-

A. Nonresonant scattering in the Byy channel, and

The case of nonresonant Raman scattering was considered XN,Alg(Q)
by two of us! so we only sketch the derivation to show our

notation and to present the final results. In general, the two- = LJ doff(w) - f(0+Q)]
time correlation function in Eq.2.13, constructed from the 2770 ),
stress operators, can be represented by the summation of a * .
generalized “polarization” <R [X(w) -2 (i" +DZ (0+Q) - Z(w)]
GY(w+Q) -G Yw)
Y= iv,iv) = T Mo i o), (3.8 _B@-NerOZer® -zl o,
" G Hw+Q) -G o) '
where we use a shorthand notatio®,,,=iw,+iv and in the Ag channel, respectively.
G, =Gliog,)=G(ioy,+iv) and similarly for> andZ. A
tedious calculation shows tHat B. Mixed scattering
. t? Gy~ G The mixed Raman response corresponds to the scattering
_ m m+v
(i o ioms,) = - ) Zowy—Z 3.9 processes that involve three external vertices: one stress ten-

sor and two current operators, and there are two types of
diagrams corresponding to the direct and exchange processes

in the By4 channel and _ : )
(see Fig. 2 There is no mixed Raman response for

13 -3 channel because the stress tensor vanishes for the case of
(i o i 0gy,) = — I—anl ~ *(";t”l(zm— Z,) (3.10 nearest neighbor hopping only: In tBgy channel i't appears
VOmey ™ Bm to be only a bare respong$ee will see below that it actually

] ) . vanishegand for theA,4 channel, the bare mixed response is
in theS)Alg channel(see Fig. 1 for the relevant Feynman dia- renormalized by the irreducible charge vertex.
grams.

Since one can show that there are no additional singulari-
ties or nonanalyticities in Eq¥3.9) and (3.10 connected
with the denominatord’ one can directly perform the ana-  In the By channel, the mixed Raman response contains
lytic continuation and replace the sum over Matsubara freonly the bare direct and exchange contributidfisst two
quencies in Eq(3.8) by an integral over the real axis terms in Fig. 2, respectively

1. Byg channel

3 . . .
%}Yi(lvi —IVf,|Vf,_|Vi)

1 +oo
Xoa(=iviv) = ﬁf dof (0)[I(w - 0", 0 +iv) 1. 3D
— =T>, NE D_3/22 (= 1)* cosk,
-M(w+i0"w+iv)+II(w—-iv,0—i0") Dm K a:é
-(o-iv,0+i0")], (3.11 X2, (- 1P sinkz >, sink,
B=1 =1

wheref(w)=1/[1+exdBw)] is the Fermi distribution func- X [Giy(K) Gy (K) G e (K)
tion. After substituting Eq(3.11) into the expression for the ! P
nonresonant response function in Eg.15, we obtain * Gm(k)Gm+Vf(k)Gm_Vi+Vf(k)]’ 3.19
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because the symmetry of all two and three-particle vertices is

. o ) Tiwyion+iv—iv
that of the lattic(A,4), so all renormalizations vanighecall (iomion+iv=iv)

the current operator has odd parity, whereais even ink). _ Diopion+iv—iv)
The expression in Eq3.15 has nonzero values only when o 1
the subscripts are equak 8=y. In this case, we expand the 1 ‘TF('wm"wmwi—Vf)NEk Gin(K) G-, (K)

product of Green’s functions into partial fractions ovgr
and the summations over momentum involve only expres-

sions of the typg{,,=—sgn(lm Z)]:

(3.19

is the total(reducible charge vertex. In thé®=c Falicov-
Kimball model, the irreducible charge vertex satisfies

* D
1o t3
= — E cosk, S|r12k
N D3/2 T & INiopios+iv) = L Emhl (3.20
. TG i C
_it® 3 ) At*
d)\ iINZ, JD 1 — - . . .
D \D on the Matsubara frequency aX¥fsSubstituting into the ex-
_— pression for the reducible charge vertex gives
X J — sir? k coskd M7 \Dcosk (3 1)
- 27T ~ . . 1 Zm+v~—vf - Zmzm_ 2m+v-—vf
F(Iwm,lwm+,,,_,, ) = . : . :
o T 1V — v Gm_ Gm”i_,,f
with J, being Bessel’s function. The last exponent is ex- 1( Zn-2
panded in a power series ovet*/\D that yields in theD = —(m—m”‘_”f
— oo limit T\ Gm= Gy,
_ (Zm+v —vs Zm)2 )
*4 J! .
lim —t—i{igm%e‘zﬁ/tzerm(i{mz—f)] "lin-im(Gy ~ Gty
*2
= lim t—(z Gmn—1) — 0 (3.17 Now Eg.(3.18 has nonzero values only wher= 3 and,
D—e 4D noting that in theD — o limit one can replace sk, by its

average valué, yields

so the mixed contribution vanishes in tBg; channel.
B (v —ivgive—iv) =T [ (w,— ivy,i i

X, (v =g vy, =iv) = T2 [T (joy = ivgion+ iy,

2. Ay channel m

, . — vy + T (wn+iv, oy

In the Ay channel, the mixed Raman response contains

both bare and renormalized contributions: +iy —ivgion], (3.22
. where
X%,},i(iyi —ivg,ivs,— i)
b b % wy, = ivpion+iv —ivy,iwgy)
=T, ——2 ek E sink 2 sinksGr(K) Gy, (K) 2 S S,
a=1 =
; D 2(' v~ in) Gm_ Gm+v~—1/
*2 i of
X Gy, (K) = 2 > sink,sinkg G- G, Gress. — Grry
k Dapt X Gm+vi—yf 7 Z f- m- I fZ :
I'n—Vf_ m I'n—Vf_ My —ve
Gn(K) Gy, (K) G- (K) 329
-~ o 1
XTI (iwm,iwn+iv —ivy) X NE &Gm(K)Grmey—y, (K) In the case when there are neither singularities nor nonana-
k lyticities in Eq.(3.23 connected with the denominators, one
iy, — =iy, can trivially perform the analytic continuation and replace
v — iy (3.18  the sum over Matsubara frequencies in E2j22 by an in-

tegral over the real axis. We only keep the eight terms that
contain the differencévy,—iv; and hence contribute to the
The renormalizations are only with respect to two-particlemixed scattering. Substituting into E(R.22)(with the sign
vertices, because the current operators are odd in parity araf the arguments of the first two terms inventede get the
cannot be renormalized by a local three-particle vertex. Heréinal expression:
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+oo

2
Xma () = @Tozf do[f(w) - flw+0)]> Re7II®(w— w; +i0",0+Q + 50", 0—i0%) + II®(w - w; — 0,0+ Q

—00 7]:1
+7i0%, 0 =10%) + 7I1®(w + w, - i0", w + Q + 70", 0 —i0%) + 7II®(w + @, + 10", w + Q + %0, w—i0")}. (3.29
Here the analytic continuation of E(B.23 is

t"2 S (w3) = 2(wy) G(w3z) — G(wy) G(wy) — G(wq)
Glwr)———— - G(wy) ——Mm8m8M8M8M@M@M8™|..
2w — ) Glarg) — Glaw) | 1 Z(wn) ~ Z(w) T Z(wy) ~ ()

(3.29

1%y, wp, w3) =

C. Resonant scattering last two lines of Fig. 3, and in th&,4 channel all diagrams

The resonant Raman response corresponds to scatterifgntrioute. PN
processes that involve four external current vertices. The cor- FOr the Bg and By channels, the produgt’j" is or-
relation function constructed from four current operatorsthogonal to the charge vertex with, symmetry, so the dia-
contains six types of diagrams corresponding to the differen§rams are not renormalized across the vertices that contain
direct and exchange processsse Fig. 3 It should be noted both j¥ andj" factors. In addition, for th@,, channel, the
that sincej” and j" are odd functions of momentum, the polarization vectors select either odd or even momentum co-
only way to get a nonzero momentum summation is to haverdinates and, as a result, the resonant Raman response for
an even number of current operators in any given momenturthe B,q channel is four times smaller than for tigg, one,
integration (“current-operator pairing? Hence all local and itis the only contribution to the total Raman response in
three-particle and four-particle vertex renormalizations musthe B,y channel. In theA,; channel, besides the diagrams
vanish, although two-particle vertex renormalizations arepresented in Fig. 3 that include all possible horizontal and
possible. For thd,, and B,y channels the “current-operator vertical “ladder” renormalizations, one could renormalize by
pairing” is possible only between either both incomjfigor ~ parquet-like terms that involve simultaneous horizontal and
both final | current operators, but for th&,, channel all  vertical renormalizations. But it can be showsee the Ap-
operators can be involved in the “pairing” and the contribu-pendi¥, that such contributions are D/corrections, and dis-
tion from the bare diagrams in thg, channel is three times appear in theD — o limit.
larger than for thd,4 channel. As a result, in th#,; andB,q As a result, the Fourier transform of the four-time corre-
channels we have contributions from the first two diagramdation function constructed from the current operators can be
in the first four lines and from only the first diagram in the represented in the following foriv,—ivi=iv —ivy):

Xi(ﬁ)’f’i(_iVi,in,_in’,iVi’):TE[H=4)(iwm,iwm_in,i(l)m+iVi_in,iwm_in’)
m
Ao i +iv o — v+ iv o +] D 1o o v —ive o =iy
lomion+i1vsion— iy +iv,iontiv) + 17 (o, on = v ion— v —ivgion—ivr)
+ T (im0 + 1] 0 + 15 + 10 i + 199) + TP (0 i 0 + 0 i 0+ i = v, i0n = 1))
+ (i om = i vp i 0m + 19 = i Vg0 + V)] (3.26
(4)
I

In the B,y and B, channels]I,

lines of Fig. 3

contains only the bare contributignorresponding to only the first diagram on last two

Hf,“)Blg(i oo iogin) =TI (iogivsiogio,), (3.27)

H|(|4’)Bzg(lwl, [y, iws,iwg) = ZHfﬁ)Blgo w1, iy iw3,iwy),

where

045120-10
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“ £ 1 S, sk, X, sirtkg 4 e
I (iwg,iwgiwgiwg) == —5— -
vardwn 102108100 = = & G Zom ) (Za- ) Za- ) 4| (Zo-Z0Zo-Z(Za- 20
GZ G3 G4

202 20Ze-20) | (Za-29(Za-Z)(Za-29)  (Za-Z)(Za-29)(Zs-24) |
(3.28

However, the other polarizatioﬂf‘” contains a vertical “ladder” renormalizati¢goorresponding to the first two diagrams on
the first four lines of Fig. B

{3, (oniosiosiwy) = M fioyioyiogion) + T (o iwpivyie), (3.29

1
4 . . . . _ 4 . . . .
Hl(’éZQ(I w1, | w3, | w3, | (1)4) - an’élg(l w1, | Wy, | w3, | (1)4)

with
1 t*z D 1 t*2 D
H54)(iw1,iwz,iw3,iw4)=-T(NE 52 sir? kael(k)GZ(k)GA(k))F(214)<NE EE sir? kan(k)G4(k)Gs(k))
k a=1 k =1
t4/G,~G; G,-G;| I'(2,9 [G,—-G; G,-G
=_T_< 4=G1_G, 1) ( )2< i=G: Gy 3>_ (3.30
A\Z1-2, Z1-2,)(Z,-2)°\Z3-24 Z3-7,
Using the solution of Eq(3.2)) in the Bethe-Salpeter-like equatidd.19 yields
~ VW (iwy,iwp,iwg,i
H§'4)(iwlviw2!iw3!iw4):Ht('4)(iwlliw21iw3viw4)+ : (wl wz s w4)1 (331)
Iw2—|w4
with
~ t 1 G,-G; G,—-G;\[G,-G; G,—-G
9wy, iwpiwgiog) = — ( e 1)( i3 2 3), (3.32
4(Go=GY(Z=Z)\ 2124 Z1-2,)\Z3-24 Z3-27,
and
@ t 1 [G,-G; G,-G;\(G,-G; G,-G,
\Pr (le,lw2,|w3,lw4):—— - -
4G2_G4 Zl_Z4 Zl_ZZ 23_24 Z3_Zz
=V (iwgiwyiwniwg) = - ¥ (wyioniogio). (3.33

In the A4 channel we have contributions from all the diagrams in Fig. 3, hence

Hffglg(i w1, iwyiwgiwg) = Hf{‘}Alg(i wriwyiwging) = 3L (iog,iwy,iws,iwg) + TP (o, iws i) + TP (g iwgioior).
(3.34)

Here the last term corresponds to the horizontal “ladder” renormalizétienlast diagram on each line of Fig. 3

Next, we perform the analytic continuation in E&.26 and replace the sum over Matsubara frequencies by an integral
over the real axis in the same way as was done i(E@g4) for the mixed scattering. Then we substitute it into the expression
in Eq. (3.32 for the resonant Raman response. After some tedious algebra, we achieve the final expression for the resonant
Raman response of tHg=o0 Falicov-Kimball model:

2 +oo
Yr(Q) = WJ doff(w) - f(o+ Q)] ReEIT (0 -i0", 0 - w; = i0", 0+ Q + 50", 0 — w; +10%)
. ,,:i

+ 77H§4)(w— 0" 0w+ w—i0" 0+ Q+ 70", 0+ w +i07) + 77H=|4)((1)— 0" w+ w+i0" 0+ Q+ 70", 0 — w;+i0%)

+ anf')(w— 0", 0+ w—i0", 0+ Q+ 50", 0— w;—i0)}. (3.3H
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1
G(w) = ot i S -a (3.39

is the momentum-dependent Green’s function.

In general, the bare response function in E37) is a
function of the frequency shif€)=w;—wy, of the incoming
photon frequencyw; and the outgoing photon frequenay;
it can be enhanced when one or both of the denominators are
resonanti.e., they coincidg In the latter case, we have a
so-called “double” or “multiple resonancé? The full re-

FIG. 4. Interacting single-particle density of states 0.5, SPONSe function aI;o includes the vertex renormalizations.
1.0, 1.5, 2.0, and 3.QU increases as the pseudogap becomes stronBUt the total(reduciblg charge vertex in Eq(3.2)) for the
gen. Note how the DOS first develops a depression near the chemfFalicov-Kimball model does not diverge, and hence it does
cal potential and then develops a pseudogap as the metal-insulatd@t introduce any additional “resonances.” It only leads to a
transition occurgthe DOS vanishes only ai=0 in the insulatox. renormalization of the total Raman response.

-3 -2 -1 0 1 2 3

Frequency (w/t")

The analytic continuation in Eq3.35 can be found simply IV. NUMERICAL RESULTS
by substitutingiw,— w,+i0* in the corresponding expres- ) ) ) )
sions in Eqs(3.27—(3.34 which will not be explicitly re- We begin our results by showing the single particle den-

peated here. It might appear that “polarizatioﬁé“) contain si_ty 01_‘ states of th_e spinless Falicov-Kimba_II model in i_nfi-
divergences connected with vanishing denominators in thgite dimensions withipe)=(w;)=1/2. Thedensity of states is
last term in Eq.(3.31), but the contribution of these terms independent of temperature, and a metal-insulator transition

into the expression in braces in E@.35 must be consid- occurs atU=y2. In the insulating phase, the self-energy de-
ered in the limit: velops a pole aiw=0, and the Green’s function vanishes

there. There is no true gap to this system, as the bare Gauss-

1 @ - . . ian density of states forces the interacting density of states to
ilmo— 2 A (0= 50", 0= 0 =i0",0+Q +i0",0 be nonzero whenever the self-energy is figité Fig. 4, we

- L plot the DOS for 5 values dfl ranging from a weakly scat-
— = A+i0%) + 7V (0 + 50", 0 - w; - 0", 0+ Q tering metall=0.5, to a strongly scattering metdk1, to a

o . @ ., o near-critical insulatotJ=1.5, a “small-gap”-insulatot)=2
—i0%0 - 0= A+i07) + 7% (0= 70" 0+ +A-i0%0  and a “moderate-gap™-insulat&y=3. Note that the metal-

+Q+i0% 0+ w +i0Y) + 7% P (0w + 70", 0+, + A= i0" 0 insulator transition is continuous for the Falicov-Kimball
. - model, in the sense that the zero-temperature dc conductivity
+Q-i0" 0w+ w; +i07)}, (3.39  continuously goes to zero at the transition. Note further that

, , o i in the metallic phase, the system is not a Fermi liquid be-
whereA = w; - wi=w; —w;. When the limitA — 0 is taken, we  c5se the scattering time at the putative Fermi surface does
find that the imaginary part of Eq3.36 diverges, but the 5t hecome infinite a% — 0.
real part(which is all that contributes to the Raman scatter- A fyndamental question is to the size of the energy scales
ing) is finite and can be calculated analytically usingi, the system. Normally one would take the hoppihgo be
I'Hopital’s rule; one must do this carefully in the insulating 5n the order of 0.25 to 4 eV for a general correlated system.

phase where the self-energy develops a pole. In this case, room temperature would range from 0.006 to 0.1
(depending on the actual value . The hopping scale can
D. Bare contributions and multiple resonances be reduced, however, if we do not view it as the microscopic

rﬁcale, but instead view it as describing a renormalized low-
. nergy band, which is further correlated by the Falicov-
of the nonresonari€g. (3.1}, mixed[Eq. (3.24], and reso- Kimball interaction term. In that case, we would adjust the

nant[Eg. (3.39] contributions and has a complicated form. hopDi :

) ; . S opping to produce the bandwidth of the actual strongly cor-
It. IS educatlor_lal to consider the contributions O.f the_ barerelated bands of the system, which could result in a lower
diagrams, which can be summed up and rewritten in th

following form:?8 Salue fort* in eV.
: Once the self-energy and the DOS are known, the differ-
oo ent contributions to Raman scattering can be determined by
Y(Q) = 12 J do[f(w) - f(w+ Q) JA(@)Alw + Q) straightforward, but tedious numerical integrations of the rel-
N J evant functions for each scattering chanfhEbs. (3.13),
- . . (3.14), (3.24), (3.25, (3.395, and (3.36]. There are some
X |+ vio Ge(w + @ +10%) + Glw = 0 = 10012, g ptieties with this approach, especially in the insulating
(3.37) phase, as the iterative approach to determining the DOS and
_ _ _ the self energy becomes inaccurate once the imaginary part
where  y =3, g€ (Pei/ K IKpeh,  vi'=2 € (dex/ok,),  of the self energy becomes smaller than about3@Fortu-
A(w)=(1/m)Im G (w-i0*), and nately, there is a simple analytic form that can be used to

In summary, the total Raman response function is the su
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FIG. 5. Stokes Raman response for the three symmetry channels FIG. 7. Stokes Raman response for the three symmetry channels
in a dirty metal withU=0.5. The Raman scattering response func-in a correlated insulator withtJ=3.0. The Raman scattering re-
tion is plotted as a function of the transfered frequency for incidentsponse function is plotted as a function of the transfered frequency
photon frequencies ranging from 0.25 to 4.5 in steps of @tB&  for incident photon frequencies ranging from 0.25 to 5.0 in steps of
thickness of the lines aids in distinguishing the different curves 0.25. This data is at a high temperat(fe=1.0) where the nonreso-
This data is at low temperatut@=0.05 where the results are the nant response has enhanced low-energy spectral weidyiand
“sharpest.” A4 Channels.

construct the imaginary parts of the Green’s functions andstokes response here. We also find that, generically, the re-

self-energies in this regime, so all relevant quantities can bgponse “sharpens” a— 0, with the spectral response grow-

evaluated with caré ing at low temperaturéexcept for the low-energy, thermally
We find that the Stokes response is significantly largeiexcited response in the insulating phase

than the anti-Stokes response in the resonant regime, becauseln Figs. 5 and 6 we plot the total Raman responselfor

the double resonance greatly enhances the signal when th® 5 andU=1, respectively. The former case is of a dirty

transfered energy approaches the incident photon frequengyetal, while the latter case is a metal that has such strong

(in the nonresonant regime, both Stokes and anti-Stokes r@cattering that the density of states is depressed near the

sponses are identigalHence, we will present only the Fermienergybut not so much as to create an insulatdhe

Stokes branch of the Raman response behaves in many re-

2 0.08 I ' ' @] spects as expected. The double resonance causes a large en-
8 nos i ] hancement of the signal as the transfered frequency ap-
3 0.04 h? , b proaches the incident photon frequency. In the Loudon-
2002 | '5‘ ' b Fleury regime, where the photon energy is much larger than
o 0 ) J 1 the band energies, one can see a nice separation of the signal
2 0.08 (b) 1 into the nonresonant and resonQphJs mixed pieces(note.

§ 0.06 k that the nonresonam,, response is small dug to screening

8 0'04 ] effects and the nonresonaB}, response vanishes due to
o 1 symmetry, but the resonant effects are strong in both of these
o 0-02 J ] channels In general, the resonant effects are strongest near
2 0 og ' © ] the dOL_JbIe resonance, and it is not true that the. total response
< " / ] looks like the nonresonant response plus a uniform resonant
g 0.06 b 7 enhancement, so resonant effects must be studied with care
© 0.04 I N to understand the effects they play on the light scattering.
<002 : . Finally, note the overall similarity between pané and(c)

O " cnmmml B R— ——

in Figs. 5 and 6. This arises from the fact that generically, the
resonant effects overwhelm both nonresonant effects and
mixed scattering effects, and it shows that there is not a

FIG. 6. Stokes Raman response for the three symmetry channeié!g€ Vvariation in the resonant Raman response due to the
in a strongly scattering “metal” with/=1.0. The Raman scattering additional renormalizations in th&, channel.
response function is plotted as a function of the transfered fre- The insulating phaséU > y2) provides a number of in-
quency for incident photon frequencies ranging from 0.25 to 4.5 interesting new features to the electronic Raman scattérég
steps of 0.25. This data is at the temperat(ffe 0.5 where the  sults for the near-critical insularat U=1.5 and for the
nonresonant response has enhanced low-energy spectral weightsmall-gap insulat@f at U=2 have already appeanedNe
the B,4 channel. begin with a discussion of a good correlated insulater3,

0 1 2 3 4 5
Frequency [t]
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channels. The solid line is the total response, the dotted line is the Frequency [t]
resonant piece, the dashed line is the nonresonant piece, and the
chain-dotted line is the mixed contribution. FIG. 9. Raman response at low energy fbr3 andT=0.2. The

incident photon frequency changes from 0.1 to 1.0 in steps of 0.1.

which appears to have a well defined gap region in the DOS

(but note that the DOS only vanishes exactlyat0). Hence  be surprised that the double resonance peak survives in the
we expect there to be significant thermally driven effects ininsulator (because there are no electronic states within the
this case. To begin, we plot the Raman scattering at a fixegap, but in this case, we only have a pseudogap, and the
temperature, but with varying incident photon frequency instates in the “gap region” are few in number, but long-lived
Fig. 7. Note that there is substantial spectral weight in both &nd hence contribute to the scatteriig.

low-energy and a high-energy peak, and that when the inci- One of the common features in resonant Raman scattering
dent photon frequency is approximately equallicthe high-  is a large enhancement of the scattering when a new scatter-
energy(charge-transférpeak can be enhanced significantly. ing channel opens, as the photon frequency becomes larger
But something strange occurs for higher frequencies in théhan an energy gap, for example. One question to ask is does
Aqq channel. Asw; increases beyond about 3.25, we stop tosuch a feature survive in a correlated system. As described
see the development of a separate charge transfer peak, adgove, there is no energy gap in the insulating pltesethe

the net scattering curve looks like a simple double resonandaypercubic latticg but there is a region where the DOS is
curve even though the nonresonant response has a we@xponentially small, and then increases rapidly to be of order
developed charge transfer peak. In other words, we are nétity. One can ask whether there are features in the Raman
seeing the evolution of the scattering to a simple break up o$cattering that show enhancements when the photon fre-
a nonresonant piece and a double resonance piecg ias duency is larger than the width of the exponentially small
made large. This may not be too surprising, because in th&@ap region” of the DOS. Since the gap region for3 is

A4 channel we have nonresonant, resonant, and mixed cofbout 0.5 above and below the chemical potential, we expect
tributions to the scattering. To illustrate how this occurs, we
plot the separate contributions to the Raman scattering in
Fig. 8 for theByy and A4 channels forw;=4.0. In the top
panel, we see the expected shape for the nonresonant curve,
with both low and high energy peaks, but surprisingly, there
is a strong resonant enhancement of both peaks. This is even
more dramatic in the bottom panel, where the vertex correc-
tions suppress the nonresonant low-energy peak inAthe
channel, but the resonant terms bring back a strong enhance-
ment in that regior(in essence because the conservation of
total charge acts to effectively screen the low-energy excita-
tions, but the screening is much less effective for the reso-
nant termg The mixed contribution is small at low energy,
but has a well developed charge-transfer-like feature, that is
negative, and completely overwhelms, and cancels the non-
resonant charge-transfer peak, leaving behind essentially a
double resonance-like curve. These results are obviously
quite complex. If the incident photon frequency increases FIG. 10. Raman response@t 3 for U=3 and various tempera-
further, then the peak in the mixed response moves to highaiires. The horizontal axis is the incident photon frequency. The
energy, and the nonresonant peak plus a higher frequeneyickest curve isT=0.05, and the temperature increases to 0.2, 0.5,
double resonance peak picture holds, but the width of thend 1 as the curves are made thinner. Note that the curves for the
double resonance peak can be extremely narrow. One mighiwest two temperatures are the largest, and are hard to separate.

A1g response Bzg response B1g response

3 3.5 4 4.5
Incident Photon Frequency [t]
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FIG. 11. Raman response @t=0.5 for U=3 and various tem- FIG. 12. Low-energy isosbestic behavior of the resonant Raman

peratures. The horizontal axis is the incident photon frequency. Theesponse fol =3 andw;=3.5. The different thicknesses correspond
thickest curve isST=0.05, and the temperature increases to 0.2, 0.5fo different temperatures, with thicker curves corresponding to
and 1 as the curves are made thinner. Note thafth@.05 curves lower temperaturegfour curves are plotted fof=1, 0.5, 0.2, and
are more than three orders of magnitude smaller thariTth@.2  0.05. Note how the curves all cross at an isosbestic point, just
curves, and cannot be distinguished from the horizontal axis in thelightly smaller tharlJ/2.

figure.
g diagrams described abgv&@he width of the resonant peak is

interesting results for photon frequencies near 0.5. We ploabout 0.5, and it is pushed to higher frequency inBhgand
the Raman scattering fas; increasing from 0.1 to 1 in steps B, channels. In Fig. 11, we find an interesting joint reso-
of 0.1 in Fig. 9 for low temperatur€l=0.2). Note how small nance effect. There is a resonant enhancementmedd.5,
the overall scale of the Raman scattering is. We see differerihat comes from the double resonance. In addition, there is
behavior in theB;, and B, sectors versus tha,, sector. In  another broad resonance effect centered just slightly higher
panels(a) and(b) we see the low energy scattering increaseshan w;=U=3, where both the charge-transfer and the low-
as w; increases untily; reaches approximately 0.5, where it energy peaks resonate at the same incident photon frequency.
starts to decrease. The increasing behavior is essentially this the A,y channel, the joint resonance peak is a single
resonant enhancement due to the opening of scattering chagmooth peak, while in thd,y and B,4 channels, the joint
nels as the photon frequency becomes larger than the gafesonance peak seems to have a double-peak structure to it.
Note how this phenomenon essentially does not occur is the temperature is reduced, the resonant effects remain,
panel (c), where the curves lie below each other @sis  but the spectral weight in the low-energy peak gets sup-
increased. Hence thig 4 channel does not show the analoguepressed to very small valu¢the T=0.05 curves are indistin-
of this resonant-enhancement effect. The effect disappears guishable from the horizontal axis because they are at least
all channels once the temperature becomes larger than abdbree orders of magnitude smaller than fi®0.2 curves
0.5, where thermal excitations can be easily made across tighe evolution of the resonant profile for other values of
“gap region.” Note, furthermore, that the largest resonantransferred frequenc2 is complex and can be found in Ref.
effects occur not when the scattering channel first opens, b8 for U=3.
rather whenw;=~U because that is the value of frequency The low-energy isosbestic behavierhich means that the
that separates the peaks in the single-particle DOS, andaman response is independent of temperature at a charac-
hence it corresponds to the strongest scattering from occueristic frequency is plotted in Fig. 12. We choose;=3.5
pied to unoccupied states. because it corresponds to the maximal joint resonance effect
We saw in Fig. 8 that there is a resonant enhancement &or both the charge-transfer and low-energy peaks. We find
low energy when the incident photon frequency is closgto that the low-energy isosbestic behavior is generic for the
in size. To examine this phenomenon further, we plot theesonant Raman scattering, with the response curves crossing
total Raman scattering at a fixed transfered photon frequenggt 2 =U/2=1.5 for all symmetries. Hence, the low-energy
(chosen to be 0.5 for the low-energy peak and 3.0 for thésosbestic behavior seen in the nonresonant respeviseh
high-energy peakas a function of the incident photon fre- was most apparent in thi& , channel, but can also be seen in
quency in Figs. 10 and 11. the A;, channel when the response is plotted on a logarithmic
In Fig. 10, we see expected behavior. The charge-transfecalé®), survives in the resonant cases as well, and this helps
peak at)=U=3 has a resonant enhancement for photon freexplain why it is seen in so many experimental systems. In
guencies slightly higher thal, then a suppression to the addition to the low-energy isosbestic point shown in Fig. 12
nonresonant peak values at the highest incident frequencie (~U/2, there is a second isosbestic péfirthat appears
(except for theA, 4 channel, where the charge transfer peak isnear the double resonande~ w;. Starting from largew;
initially suppressed until the incident photon frequency is(£2;>U), as w; is reduced, the two isosbestic points move
larger than about 6, due to the cancellation from the mixedloser to each other, eventually joining together and disap-

045120-15



SHVAIKA et al. PHYSICAL REVIEW B 71, 045120(2005

pearing whenw;=U/2. So the isosbestic behavior will not
be seen if the incident photon frequency is too low.

V. DISCUSSION

With the use of DMFT, we solved for the full Raman
response for all frequencies of incoming light in the Falicov- 7//
Kimball model. Since the Falicov-Kimball model can be /
tuned across a metal-insulator transition, we have determined
the form of Raman scattering in both the metallic and insu-
lating states, and have investigated light scattering on both
sides of the quantum critical point bt=12. Resonant, non- k+q k'+q
resonant, and mixed contributions have all been treated on an
equal footing and we allowed for an analysis of the depen-
dence of Raman scattering with temperature, interactions
and different light polarizations.

k+q K'+q

AN

" FIG. 13. Feynman diagrams for a typical parquetlike renormal-

0 It fi b f . v held belief ization. This resonant diagram has a simultaneous horizontal and
ur resulls confirm a number ot previously ne ClICTS. | ertical renormalization by the two-particle reducible charge vertex.

First, we find ‘? strong resonant. enhancemen,t O,f the Charg?\l'ote that such a renormalization is only possible in Ajg sector.
transfer peak in Raman scattering when the incident photon

energy lies near the charge-transfer energy. This behavior is

robust to temperature and polarization changes due to the

local nature of the charge-transfer excitation in our model. The research described in this publication was made pos-

Second, we also find a polarization-independent “doublesible in part by Grant No. UP2-2436-LV-02 of the U.S. Ci-

resonance” enhancement when the transfered frequency gflian Research and Development FoundatiGRDF).

the light approaches the incident light frequency. This featurg\.M.S. and O.V. acknowledge support from the Fundamental

survives in the insulating phase because of the pseudogapesearches State Fund of the Ministry for Education and

nature of the insulator on the hypercubic lattice. Science of Ukraine under Grant No 02.07/266. J.K.F. also
In addition, we find a number of new features of light acknowledges support from the National Science Foundation

scattering in correlated insulators. We find that low energyunder Grant No. DMR-0210717. T.P.D. would like to ac-

spectral features, related to thermal populations of elemerknowledge NSERC, PREA and the Alexander von Humboldt

tary excitations, show resonance behavior when the incidertoundation for support of this work.

light is tuned to the much higher frequency of the charge-

transfer energy. This is a specific case where the correlations APPENDIX A: PARQUET CONTRIBUTIONS

are crucial, since in uncorrelated materials, this would corre-

spond to off-resonant conditions. Yet due to the many-body In addition to the diagrams presented in Fig. 3, there can

nature of the correlated band, spectral features well separateédso be parquet-like contributions with both vertical and

from the charge transfer peak have a non-trivial resonanchorizontal renormalizations. One type of these diagrams is

profile. We believe that these may be potentially useful tashown in Fig. 13. The corresponding expression has the form

understand the complex nature of charge excitations in cor- .,

; : ; ; t7 1 . . . .
related materials as it would impact both electronic and  —— > sjnk, sin(kg + qg)sink’, sin(k}, +q)
phononic Raman scattering at low frequencies. Finally, we D?N? akk' “ p
find that the presence of an isosbestic point in the Raman wpel B
response for correlated insulators results from a symmetry-
dependent combination of all resonant, mixed, and nonreso- X T2I'(1,3)1(2,4G;(k")G,(k")Go(k’ + q)G3(k’ + )
nant terms, an_d appears tq be generic. _ _ X Gy(k + 0)G4(k + Q) Ga(K)Gy(K). (A1)

We close with a discussion of open questions concerning
improvements to the theory. Here we have restricted ourln the expression in EqA1), all the momentum dependence
selves to Raman scattering in a correlated band of electrorf# the D=c limit) is contained in the band enerfsee Eq.
in the limit of large spatial dimensions. Performing calcula-(3.3)] and, after expanding the products of the Green'’s func-
tions in physical dimensions requires more many-particldions with the same momentum into partial fractions oger
charge vertex renormalizations which makes the problem exthe summations over momentum are of the form
tremely difficult, though possible in principle. But we found

ACKNOWLEDGMENTS

4 . .
that most vertex renormalizations were rather mild, so in- t_lz 12 > sink, sin(ks + )

cluding nonlocal effects into the verticégnite dimensions DN [ NY %% (Zi- €)(Zo— €

probably does not change these results dramati¢atijess oy,

the vertex can diverge in finite dimensionsn addition, « 12 sink,, sin(kg +qg1) (A2)
g-dependent information would prove to be useful for inves- N o (Zs— € )24y~ €4q)

tigating dispersive many-particle excitations, as probed in
inelastic x-ray scattering. These are topics of future interesin the same way as was done for .16, we find the
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expression in the bracket reduces to the following inEhe term in the second bracket of EA2). Replacing the square

— oo limit [£=sgr(lm Z;)] of a cosine by its average vaIsz’e we find that Eq.(A2)
£ = reduces to
i2f d)\lf d)\ze—i(>\1zl+)\222)e—12()\§+)\§+2>\1)\2Xq)/4 4
0 0 lim _G]_GngG4—> 0 (A4)
* D—w> 8D
X }E cosq, + 1)\22 sinq,, sin (A3)
DR TS =, e SINGg | which vanishes a® — . A similar procedure can be per-

formed for all other terms with a parquet-like renormaliza-
where Xq:IimD%(llD)Egzlcosqa. The main contribution tion. Hence, the parquet-like contributions are unimportant
comes from the first term in EGA3) and there is a similar for resonant Raman scattering in large dimensions.
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