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We solve for the electronic Raman scattering response functions on an infinite-dimensional hypercubic
lattice employing dynamical mean-field theory. This contribution extends previous work on the nonresonant
response to include the mixed and resonant contributions. We focus our attention on the infinite-dimensional
spinless Falicov-Kimball model, where the problem can be solved exactly, and the system can be tuned to go
through a Mott-Hubbard-like metal-insulator transition. Resonant effects vary in different scattering geom-
etries, corresponding to the symmetries of the charge excitations scattered by the light. We do find that the
Raman response is large near the double resonance, where the transfered frequency is close to the incident
photon frequency. We also find a joint resonance of both the charge-transfer peak and the low-energy peak
when the incident photon frequency is on the order of the interaction strength. In general, the resonance effects
can create order of magnitudesor mored enhancements of features in the nonresonant response, especially
when the incident photon frequency is somewhat larger than the frequency of the nonresonant feature. Finally,
we find that the resonant effects also exhibit isosbestic behavior, even in theA1g andB2g sectors, and it is most
prominent when the incident photon frequency is on the order of the interaction energy.
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I. INTRODUCTION

Electronic Raman scattering has long been used as a di-
rect probe of electronic charge excitations. Experiments have
shown a number of interesting phenomena, especially in cor-
related materials. A material independence for Raman scat-
tering has been seen in a number of different correlation gap
sinsulatingd materials ranging from FeSi,1 to SmB6,

2 to
Ca3Ru2O7,

3 to high temperature superconductors.4–6 The Ra-
man response shows a gap opening at low temperature, but
with the gap about ten times larger than the onset tempera-
ture where the gap starts to form. In addition, an isosbestic
point is often seen, where the Raman response at one value
of frequency is independent of temperaturesat low tempera-
tured, and curves for different temperatures appear to cross at
a single point. Resonant effects are even more interesting, as
it is believed that the resonance can cause an enhancement of
the nonresonant signal by orders of magnitude, and allow
small signals to become observable. What remains unknown
is whether these resonant enhancements dramatically change
the shape of the underlying nonresonant response.

The theoretical description of electronic Raman scattering
has lagged behind experiment. Recently, dynamical mean
field theorysDMFTd has been employed to calculate the non-
resonant response in the Falicov-Kimball7 and Hubbard
models8 and to examine inelastic x-ray scattering as well.9 It
was found that the theoretical calculations of the nonresonant
response show much of the behavior seen in experiment,
including the large gap relative to the onset temperature and
the generic appearance of an easily observed isosbestic point
in the B1g channel.

However, it is well known that many of the Raman sig-
nals in correlated metals and insulators display complicated
dependences on the incoming photon frequencyvi. The reso-
nant behavior of theB1g two-magnon feature at roughly
340 meV has been well studied in the parent insulating cu-
prates La2CuO4, YBa2Cu3O6, and Sr2CuO2Cl2,

4 where a
resonance is found for incident photon energies near 3 eV.
Although recent progress has been made,10,11 the reason for
this resonance is not clear since the resonance frequency lies
above the optical absorption edge frequency measured in the
dielectric response,5 and the photon energy is much larger
than the location of the resonance peak in the response
function.

The general question of how the low-energy features
ssuch as particle-hole excitations near the Fermi leveld and
high-energyssuch as charge-transfer excitationsd change un-
der resonant conditions remains relatively unexplored. Most
treatments for Raman scattering in insulators have focused
on only the spin degrees of freedomsHeisenberg limitd in
two dimensions. For the case when the incident photon en-
ergy is much less than the optical band gap, the Loudon-
Fleury theory12 has been widely employed to determine reso-
nance profiles from spin degrees of freedom via series
expansions,13 exact diagonalization of small clusters14 or
quantum Monte Carlo simulations15 of the Heisenberg
model. Modifications due to quantum fluctuations,13,15

bilayers,16 four-magnon processes,17 couplings beyond near-
est neighbor exchange,18 and ring exchange19 have all been
taken into account to give a thorough treatment of two mag-
non scattering from spin degrees of freedom in the nonreso-
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nant regime. These approaches fail when the laser frequency
is tuned to lie near an optical transition. In this regime, based
on a spin-density-wave approach, Frenkel, Chubukov, and
Morr have formulated a so-called “triple-resonance” theory
from which important features of the spectra can be
derived.10 While good agreement was obtained for the reso-
nant profile of the two magnon contribution to light
scattering,5 general features not related to the two-magnon
peak are missed and lineshape calculations are complex and
only semiquantitative.

An approach treating the full fermionic degrees of free-
dom is still lacking. Recently exact diagonalization studies of
the Hubbard model have been employed to yield line shapes
in the resonant limit from both spin and charge degrees of
freedom.11 Yet the nonresonant and mixed terms were not
taken into account. These calculations also suffer the prob-
lems related to the finite size of the clustersssuch as artifi-
cially broadening the delta functions to approximate
thermodynamic-limit spectrad. So generally, there is no
theory for Raman scattering from both charge and spin de-
grees of freedom which predicts spectral line shapes where
all resonant, mixed, and nonresonant terms are treated on an
equal footing and do not suffer from finite-size effects.

In this contribution we illustrate how to calculate the full
electronic Raman response function, including contributions
from the nonresonant, mixed, and resonant processes within
a single-band model. Our model includes interactions of the
photon with all charge excitations of a correlated fermionic
system, but does not take into account any scattering off of
spin excitations. The scattering response is a complicated
function of the correlations, the temperature, the incident
photon energy, and the transfered energy. A short communi-
cation of this work has already appeared.20

Little is known about what the mixed Raman response
looks like. We find that, as opposed to the nonresonant and
resonant responses, which are manifestly positive, the mixed
response is often negativesalthough the total response al-
ways remains positived. The resonant response is expected to
be large in the region where the transfered energy approaches
the incident photon energy, called the double resonance, be-
cause the energy denominators of two pairs of the Green’s
functions in the bare response function approach zero. Inter-
esting results are also anticipated in the strongly coupled
sMott-insulatingd regime, when the incident photon energy is
close to the interaction energy. Indeed, we find this is the
case here. We also examine the situation where the initial
photon energy is larger than the excitation energies in the
correlated band. This is the most common experimental situ-
ation in correlated materials with renormalized low-energy
“bands.” The mixed and resonant responses also behave dif-
ferently than the nonresonant response when we compare the
Stokessenergy transfered from the photon to the electronsd
and the anti-Stokessenergy transfered from the electrons to
the photonsd responses. These are equal for nonresonant scat-
tering, but the anti-Stokes response is much smaller than the
Stokes response for the mixed and resonant scattering cases
sintroducing an asymmetry to the Raman scatteringd.

The theoretical challenge in calculating the full inelastic
light scattering response function is that the mixed diagrams
involve three-particle susceptibilities and the resonant dia-

grams involve four-particle susceptibilities. It is only in the
infinite-dimensional limit, where most of the many-particle
vertex renormalizations vanishsall three-particle and four-
particle vertices do not contribute; only the two-particle ver-
tices enterd, can one imagine performing the calculation of
these susceptibilities exactly. Note that it is well known that
the irreducible two-particle vertices contain nonlocal terms
in infinite dimensions.21 Which terms from the irreducible
vertex, local or nonlocal, contribute to the final response de-
pends on the symmetry, scaling and momentum dependence
of the external vertices. As a result, in many casessin par-
ticular for optical light scattering where we approximate the
photon momenta byki =k f =0d we find that the momentum
dependence is so weak, that whenever a momentum argu-
ment of the vertex function is summed over the Brillouin
zone, it can be replaced by the local vertex.22,23The situation
is more complex for the three- or four-particle vertices, but a
strong-coupling pertubation theory shows that the momen-
tum dependence continues to be weaksto lowest orderd, so
we use the local vertices in all response functions. It turns
out that because the two-particle irreducible charge vertex is
known exactly for the Falicov-Kimball model,24 one can cal-
culate the full Raman response function in this casessince
the general form of the charge vertex is not known for the
Hubbard model, one can only perform approximate calcula-
tions for that system even in infinite dimensions; neverthe-
less, the diagrammatic analysis given in Sec. III holds for the
Hubbard model, we just are not able to evaluate the final
expressionsd.

We evaluate our exact expressions numerically and study
their evolution as functions of the incident light energy and
of the transfered energy. In the case of a correlated metal, we
show how Fermi-liquid-like features evolve as the lifetime of
putative quasiparticles decreases due to scattering. The re-
sults are even more interesting in the correlated insulator. We
examine what happens to the isosbestic point identified in the
nonresonant response, and how the presence of the charge
gap affects the optical scattering.

Inelastic light scattering involves a coupling of photons to
electronic charge excitations of the correlated material. The
symmetry of the incident and scattered light relates to the
symmetry of the charge excitations that are coupled to the
light. There are typically three symmetries examined in ex-
periments. TheA1g symmetry has the full symmetry of the
lattice. This is measured, in a system with only nearest-
neighbor hopping, by polarizing the incident and scattered
light along the diagonal direction of the hypercubic lattice,
so in large dimensions, we take the initial and final polariza-
tions to be ei =ef =s1,1,1, . . .d. The B1g symmetry is a
d-wave-like symmetry that involves crossed polarizers along
the diagonals. We takeei =s1,1,1, . . .d and ef =s−1,1,
−1,1, . . .d for the B1g channel. Finally, theB2g symmetry is
anotherd-wave symmetry rotated by 45 degrees; it requires
the polarizations to satisfyei =s1,0,1,0, . . .d and ef

=s0,1,0,1, . . .d. It turns out that theA1g sector has contribu-
tions from nonresonant, mixed, and resonant Raman scatter-
ing, the B1g sector has contributions from nonresonant and
resonant Raman scattering only, and theB2g sector is purely
resonant. This is generally true for a model on a bipartite
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lattice with nearest-neighbor hopping only. If longer-range
hoppings are allowed, then all channels will have nonreso-
nant, mixed and resonant contributions.

While our approach towards analytic continuation is gen-
eral, the overall complexity of the problem limits our evalu-
ation of the light scattering cross section. By focusing on the
spinless Falicov-Kimball model, we present a theory of light
scattering from charge degrees of freedom only; valid for
any incoming photon frequency. However, we are not able to
address scattering from spin degrees of freedom resulting in
two-magnon Raman scattering, for example. Nevertheless,
we expect that our results help frame the physics related to
resonance phenomena in paramagnetic correlated metals and
insulators, and the behavior near a metal-insulator transition.

Our plan of the paper is as follows. In Sec. II, we describe
the general analytic-continuation formula that carries one
from a time-ordered correlation function on the imaginary
axis to the real response function. The formulas are com-
pletely general, and hold for the case of inelastic scattering
of x-rays as well. The challenge is in evaluating the corre-
sponding response functions along the real axis, which we
know how to do only for the Falicov-Kimball model in infi-
nite dimensions. In Sec. III, we evaluate the Raman scatter-
ing for the Falicov-Kimball model explicitly, calculating all
response functions, and showing in detail how to perform all
of the relevant renormalizations of the two-, three-, and four-
particle correlation functions. In Sec. IV, we present our nu-
merical results for Raman scattering at half filling. We exam-
ine the metallic case, the insulating case, and study the
evolution of the Raman response as a function of the incident
photon energy. We present our conclusions in Sec. V.

II. GENERAL ANALYTIC CONTINUATION FORMALISM

Our starting point is the expression for the inelastic light
scattering cross section derived by Shastry and Shraiman25

Rsq,Vd = 2po
i,f

exps− b«idds« f − «i − Vd

3 ugskidgsk fdea
i eb

f k f uM̂absqduilu2/Z s2.1d

for the scattering of electrons by photons of arbitrary wave-
lengthsthe repeated indicesa andb are summed overd. Here
V=vi −v f and q=ki −k f are the transfered energy and mo-
mentum, respectively, whilevisfd, kisfd, and eisfd denote the
energy, momentum and polarization of the initialsfinald
states of the photons,«isfd refer to the eigenstates describing
the “electronic matter,” andgsqd=shc2/Vvqd1/2 is the “scat-
tering strength” withvq=cuqu. Lastly,Z is the partition func-
tion. For an electronic system with nearest-neighbor hop-
ping, the interaction with a weak external transverse
electromagnetic fieldA is described by the following inter-
acting Hamiltonian

Hint = −
e

"c
o
k

jskd ·As− kd

+
e2

2"2c2o
kk8

Aas− kdga,bsk + k8dAbs− k8d, s2.2d

where

jasqd = o
k

vaskdcs
†sk + q/2dcssk − q/2d,

vaskd =
]«skd
]ka

s2.3d

are the current operator and Fermi velocity, respectively, and

ga,bsqd = o
k

]2«skd
]ka]kb

cs
†sk + q/2dcssk − q/2d s2.4d

is the so-called stress tensor. As a result, the scattering op-

eratorM̂sqd has both nonresonant and resonant contributions

kf uMabsqduil = kf uga,bsqduil + o
l
S kf u jbsk fdullkl u jas− kiduil

«l − «i − vi

+
kf u jas− kidullkl u jbsk fduil

«l − «i + v f
D , s2.5d

with the suml over intermediate states. The term with the
stress tensor is the nonresonant contribution, while the term
with the square of the current operator is the resonant con-
tribution. Now the Raman-scattering cross section contains
nonresonant, mixed, and resonant contributionssbecause it is
constructed from the square of the scattering operatord:

Rsq,Vd = RNsq,Vd + RMsq,Vd + RRsq,Vd, s2.6d

where the nonresonant contribution is

RNsq,Vd = 2pg2skidg2sk fd

3 o
i,f

exps− b«id
Z g̃i,fg̃ f,ids« f − «i − Vd,

s2.7d
the mixed contribution is

RMsq,Vd = 2pg2skidg2sk fdo
i,f,l

exps− b«id
Z

3 Fg̃i,fS j f,l
sfd j l,i

sid

«l − «i − vi + i0+ +
j f,l
sid j l,i

sfd

«l − «i + v f − i0+D
+ S j i,l

sid j l,f
sfd

«l − «i − vi − i0+ +
j i,l
sfd j l,f

sid

«l − «i + v f + i0+Dg̃ f,iG
3 ds« f − «i − Vd, s2.8d

and the resonant contribution is

RRsq,Vd = 2pg2skidg2sk fd o
i,f,l,l8

exps− b«id
Z

3 S j i,l
sid j l,f

sfd

«l − «i − vi − i0+ +
j i,l
sfd j l,f

sid

«l − «i + v f + i0+D
3 S j f,l8

sfd j l8,i
sid

«l8 − «i − vi + i0+ +
j f,l8
sid j l8,i

sfd

«l8 − «i + v f − i0+D
3 ds« f − «i − Vd. s2.9d
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In these equations, we have introduced the following sym-
bols

g̃ = o
ab

ea
i ga,bsqdeb

f ,

j sid = o
a

ea
i jas− kid,

j sfd = o
a

ea
f jask fd, s2.10d

with the notationAi,f =ki uAufl for the matrix elements of an
operatorA.

We evaluate these expressions by a Green’s function tech-
nique that starts from correlation functions evaluated on the
imaginary axis and then performs an analytic continuation to
the real axis to get the physical response functions. Our strat-
egy is to first consider the analytic continuation procedure in
a general sense, which holds for any model Hamiltonian and
for arbitrary momentum transfer. We will derive connection
formulas between the Matsubara frequency axis correlation
functions and the analytically continued response functions
on the real axis. But those expressions will require us to be
able to evaluate a number of different susceptibilities, and
those expressions are not known for arbitrary Hamiltonians.
We will show how to evaluate them exactly for the infinite-
dimensional Falicov-Kimball model in the next section.

A. Nonresonant scattering

The nonresonant scattering in Eq.s2.7d is proportional to
the spectral density function. The spectral density cannot be
calculated directly but is instead obtained from the analytic
continuation of the imaginary-time response function con-
structed from the time-ordered product of two stress-tensor
operators

xg̃,g̃
s2d st,t8d = kTtg̃stdg̃st8dl s2.11d

with the t dependence of the operator determined by the
Hamiltonian in the absence of the electromagnetic fieldsthe
symbolTt denotes time orderingd. The first step is to calcu-
late the double Fourier transformation to the Matsubara fre-
quency axis

xg̃,g̃
s2d sinl,innd = TE

0

b

dtE
0

b

dt8einltxg̃,g̃
s2d st,t8deinnt8 s2.12d

for bosonic Matsubara frequenciesinn= ipT2n with b=1/T.
In thermal equilibrium, the two-particle correlation function
depends only on the difference of the two time variables, so
the double Fourier transform becomes a “diagonal” function,
evaluated as

xg̃,g̃
s2d s− in,ind = o

i,f

exps− b«id
Z

g̃i,fg̃ f,i

« f − «i − in

3 f1 − exp„bs«i − « fd…g. s2.13d

In order to extract the spectral density of states from the

Matsubara correlation function in Eq.s2.13d, we perform the
analytic continuationin→V± i0+ which yields for the non-
resonant scattering the known expression

RNsq,Vd =
2pg2skidg2sk fd
1 − exps− bVd

xNsq,Vd, s2.14d

where we introduced the nonresonant response function

xNsq,Vd =
1

2pi
hxg̃,g̃

s2d s− V − i0+,V + i0+d

− xg̃,g̃
s2d s− V + i0+,V − i0+dj s2.15d

evaluated on the real axis. A similar strategy is used to de-
termine the mixed and resonant contributions as described in
the next two subsections.

B. Mixed scattering

In the case of mixed scattering in Eq.s2.8d, the calcula-
tion begins with the multitime correlation function con-
structed from the stress tensor and two current operators

xg̃,f,i
s3d st,t8,t9d = kTtg̃std j sfdst8d j sidst9dl. s2.16d

We define the Fourier transform as before, with respect to
three Matsubara frequenciessall with the same sign of the
exponentd. Once again, in thermal equilibrium we have
imaginary-time-translation invariance, so the sum of the
three Matsubara frequencies must vanish, yielding

xg̃,f,i
s3d sin1,in2,in3d

= dsn1 + n2 + n3d
1

ZHo
i,f,l

g̃i,f j f,l
sfd j l,i

sid

3F exps− b«id
s« f − «i + in1ds«l − «i − in3d

+
exps− b« fd

s«l − « f + in2ds«i − « f − in1d

+
exps− b«ld

s«i − «l + in3ds« f − «l − in2dG
+ o

i,f,l
j i,l
sid j l,f

sfdg̃ f,iF exps− b«id
s« f − «i − in1ds«l − «i + in3d

+
exps− b« fd

s«l − « f − in2ds«i − « f + in1d

+
exps− b«ld

s«i − «l − in3ds« f − «l + in2dGJ s2.17d

which contains 3! =6 terms collected into two groups of
terms connected by cyclic permutationsP, with

xA,B,C
s3d sin1,in2,in3d = xA†,B†,C†

s3d s− in1,− in2,− in3d. s2.18d

After analytic continuationina→za with the constraint
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z1 + z2 + z3 = 0, s2.19d

one can see that the expression in Eq.s2.17d has three branch
cuts when Imza→0± sfor a=1, 2, or 3d. Note that the con-
straint in Eq.s2.19d forbids only two of theza’s to simulta-
neously have Imza=0±, but the imaginary part of all three
can vanish simultaneously. In order to produce the expres-
sion for the mixed Raman cross section in Eq.s2.8d, we need
to focus on the branch cuts that occur whenz1→−V± i0+

and z1→V± i0+ in order to produce the appropriate
d-function and matrix elements in the mixed scattering cross
section. The corresponding discontinuity across the branch
cut when Imz1=0, occurs when the terms in Eq.s2.17d are
analytically continued withz1 moving onto the real axis. In
the first case whenz1→−V± i0+, andz2→V−z3, we find

U 1

2pi
xg̃,f,i

s3d sz1,z2,z3dU
z1→−V+i0+

z1→−V−i0+

=
1

2pi
fxg̃,f,i

s3d s− V − i0+,V − z3,z3d

− xg̃,f,i
s3d s− V + i0+,V − z3,z3dg

= s1 − e−bVdo
i,f,l

e−b«i

Z g̃i,fF j f,l
sfd j l,i

sid

«l − «i − z3
+

j f,l
sid j l,i

sfd

«l − « f + z3
G

3ds« f − «i − Vd. s2.20d

The sum on the right-hand side of Eq.s2.20d, with z3=vi
− i0+, is proportional to the first two terms in Eq.s2.8d. In a
similar way we can derive last two terms in Eq.s2.8d from
the branch cutz1→V± i0+, andz2→−V−z3 sone also inter-
changesi ↔ fd. Hence, we arrive at the general expression for
the mixed scattering

RMsq,Vd =
2pg2skidg2sk fd
1 − exps− bVd

xMsq,Vd s2.21d

with the mixed Raman response function defined by

xMsq,Vd =
1

2pi
fxg̃,f,i

s3d s− V − i0+,− v f + i0+,vi − i0+d

− xg̃,f,i
s3d s− V + i0+,− v f + i0+,vi − i0+d

+ xg̃,f,i
s3d sV + i0+,v f + i0+,− vi − i0+d

− xg̃,f,i
s3d sV − i0+,v f + i0+,− vi − i0+dg s2.22d

on the real axis. The operatorsg̃sqd, j sfdsk fd and j sidskid are
Hermitian for optical light scattering, which has vanishing
momentumki =k f =q=0, and, with the use of Eq.s2.18d, one
can change the sign of all of the frequency arguments in the
first two terms of Eq.s2.22d.

C. Resonant scattering

For the resonant scattering case in Eq.s2.9d, the procedure
is similar: one has to calculate the multitime correlation
function constructed from the four current operators

xi,f,f,i
s4d st1,t2,t3,t4d = kTt j

sidst1d j sfdst2d j sfdst3d j sidst4dl. s2.23d

Once again, defining the Fourier transform in terms of four
Matsubara frequenciesswith the same sign in the exponentd
yields the following resultswith the delta function arising
from the time-translation invarianced

xi,f,f,i
s4d sin1,in2,in3,in4d = dsn1 + n2 + n3 + n4d

3fx̃i,f,f,i
s4d sin1,in2,in3,in4d

+ x̃i,f,i,f
s4d sin1,in2,in4,in3d

+ xi,i,f,f
s4d sin1,in4,in2,in3dg.

s2.24d

Here we introduce the generic four-particle susceptibility

x̃A,B,C,D
s4d sin1,in2,in3,in4d

= o
i,f,l,l8

Ai,lBl,fCf,l8Dl8,i
1

Z

3 F exps− b«id
s«l − «i + in1ds«l8 − «i − in4ds« f − «i − in3 − in4d

+
exps− b«ld

s« f − «l + in2ds«i − «l − in1ds«l8 − «l − in4 − in1d

+
exps− b« fd

s«l8 − « f + in3ds«l − « f − in2ds«i − « f − in1 − in2d

+
exps− b«l8d

s«i − «l8 + in4ds« f − «l8 − in3ds« f − «l8 − in2 − in3dG
+ o

i,f,l,l8

Di,l8Cl8,fBf,lAl,i
1

Z

3 F exps− b«id
s«l − «i − in1ds«l8 − «i + in4ds« f − «i + in3 + in4d

+
exps− b«ld

s« f − «l − in2ds«i − «l + in1ds«l8 − «l + in4 + in1d

+
exps− b« fd

s«l8 − « f − in3ds«l − « f + in2ds«i − « f + in1 + in2d

+
exps− b«l8d

s«i − «l8 − in4ds« f − «l8 + in3ds« f − «l8 + in2 + in3dG
s2.25d

with

x̃A,B,C,D
s4d sin1,in2,in3,in4d = x̃A†,B†,C†,D†

s4d s− in1,− in2,− in3,− in4d.

s2.26d

The expression in Eq.s2.24d contains 4! =24 terms collected
into six different groups of the terms, with each group mem-
ber connected by the cyclic permutation of four objects.

After analytic continuationina→za with the constraint
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z1 + z2 + z3 + z4 = 0, s2.27d

one can see that the expression in Eq.s2.24d has branch cuts
when any Imza→0± or when any pair Imsza+zbd→0±. The
d-function in the expression for the resonant scattering cross
section in Eq.s2.9d is connected to the branch cut atz3+z4
=−z1−z2→V± i0+ and the discontinuity of the response
function across this branch cut is equal to

U 1

2pi
xi,f,f,i

s4d sz1,z2,z3,z4dU
z3+z4=−z1−z2→V−i0+

z3+z4=−z1−z2→V+i0+

= s1 − e−bVd o
i,f,l,l8

e−b«i

Z ds« f − «i − Vd

3F j i,l
sid j l,f

sfd j f,l8
sfd j l8i

sid

s«l − «i + z1ds«l8 − «i − V + z3d

+
j i,l
sfd j l,f

sid j f,l8
sid j l8,i

sfd

s«l − «i − V − z1ds«l8 − «i − z3d

+
j i,l
sid j l,f

sfd j f,l8
sid j l8,i

sfd

s«l − «i + z1ds«l8 − «i − z3d

+
j i,l
sfd j l,f

sid j f,l8
sfd j l8,i

sid

s«l − «i − V − z1ds«l8 − «i − V + z3dG . s2.28d

The analytic continuation procedure then requires us to take
the following limits

z1 → − vi − i0+, s2.29d

z2 → v f + i0+,

z3 → − v f8 + i0+,

z4 → vi8 − i0+

and then take the limit

vi8 − vi = v f8 − v f → 0 s2.30d

in order to reproduce an expression proportional to the reso-
nant scattering cross section in Eq.s2.9d. The final general
expression for the resonant scattering becomes

RRsq,Vd =
2pg2skidg2sk fd
1 − exps− bVd

xRsq,Vd s2.31d

with the resonant Raman response function defined by

xRsq,Vd =
1

2pi
UHxi,f,f,i

s4d sz1,z2,z3,z4dUU
z3+z4=−z1−z2→V−i0+

z3+z4=−z1−z2→V+i0+JU
*

z1 → − vi − i0+

z2 → vf + i0+

z3 → − vf8 + i0+

z4 → vi8 − i0+
*

vi8−vi→0

v f8−v f→0

. s2.32d

Note that it is critical to perform the analytic continuation of
z3+z4=−z1−z2→V± i0+ first and then analytically continue
the other frequenciesfas in Eq.s2.28d ands2.29dg since these
procedures do not commute with one another.

III. EXACT RESULTS FOR THE FALICOV-KIMBALL
MODEL

We now evaluate the general expressions derived above
for the case of optical Raman scattering, where all momenta
vanish ski =k f =q=0d and for the spinless Falicov-Kimball
model. The Falicov-Kimball model involves the interaction
of conduction electrons with localized electrons and has the
following Hamiltonian24

H = −
t*

2ÎD
o
ki,jl

sci
†cj + cj

†cid + Efo
i

wi − mo
i

sci
†ci + wid

+ Uo
i

ci
†ciwi , s3.1d

whereci
† scid createsdestroyd a conduction electron at sitei,

wi is a classical variablesrepresenting the localized electron
number at siteid that equals 0 or 1,t* is a renormalized
hopping matrix that is nonzero between nearest neighbors on
a hypercubic lattice inD-dimensionssand we take the limit
D→`d, and U is the local screened Coulomb interaction
between conduction and localized electrons.ki , jl denotes a
sum over sitesi and nearest neighborsj . Ef and m are ad-
justed to set the average filling of conduction and localized
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electrons. In our calculations the average filling for each is
set to 1/2, respectivelysm=U /2 ,Ef =0d.

This model can be solved exactly by using DMFT, as first
described by Brandt and Mielsch.26 The algorithm used to
solve for the local Green’s function at sitei, defined by

Gistd = − kTtcistdci
†s0dl, s3.2d

where the angle brackets denote the trace weighted by the
Boltzmann factor expf−bHg /Z. We usually work with the
Fourier transform of the imaginary-time Green’s function to
yield the Matsubara frequency Green’s function. The
momentum-dependent Green’s function becomes

Gmskd =
1

Zm − ek
, s3.3d

with

ek = − lim
D→`

t*
ÎD

o
a=1

D

coska s3.4d

being the noninteracting band energy, and

Zm = ivm + m − Sm. s3.5d

The local self-energySm is a solution of the following set of
equations:

FIG. 1. Feynman diagrams for nonresonant Raman scattering.
The wavy lines denote photon propagators and the solid lines de-
note electron propagators. The cross-hatched rectangle is thereduc-
ible charge vertex. In theB1g channel, only the baresfirstd diagram
enters, while in theA1g channel both diagrams enter. The symbolg
denotes the stress-tensor vertex of the corresponding electron-
photon interaction.

FIG. 2. Feynman diagrams for the mixed contributions to Ra-
man scattering. The symbolsj f and j i remind us to include the
relevant vertex factors from the current operator in the electron-
photon interaction. The mixed contribution vanishes in theB2g

channel, it consists of only the bare diagrams on the top line in the
B1g channelsand turns out to be a 1/D correctiond, and all diagrams
enter for theA1g channel.

FIG. 3. Feynman diagrams for the resonant contributions to Ra-
man scattering. Only the first two diagrams in the first four lines,
and the first diagram in the last two lines contribute in theB1g and
B2g sectors. TheA1g response includes all diagrams.
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Gm =
1

N
o
k

1

Zm − ek
=

1

Zm − lm

=
w1

ivm + m − lm − U
+

1 − w1

ivm + m − lm
, s3.6d

where we introduced the self-consistent dynamical mean-
field of Brandt and Mielschsdenotedld; the self-energy can
be expressed as a simple function of this field

Sm = Uw1 +
U2w1s1 − w1d

ivm + m − lm − Us1 − w1d
. s3.7d

Here w1 is given by w1=ef−bsEf−mdgZ0sU−md /Z, with
Z0smd=2ebm/2Pn=−`

` sivn−m−lnd / ivn.

A. Nonresonant scattering

The case of nonresonant Raman scattering was considered
by two of us,7 so we only sketch the derivation to show our
notation and to present the final results. In general, the two-
time correlation function in Eq.s2.13d, constructed from the
stress operators, can be represented by the summation of a
generalized “polarization”

xg̃,g̃
s2d s− in,ind = To

m

Psivm,ivm+nd, s3.8d

where we use a shorthand notationivm+n= ivm+ in and
Gm+n=Gsivm+nd=Gsivm+ ind and similarly for S and Z. A
tedious calculation shows that7

Psivm,ivm+nd = −
t*2

2

Gm − Gm+n

Zm+n − Zm
s3.9d

in the B1g channel and

Psivm,ivm+nd = −
1

in

Sm − Sm+n

Gm+n
−1 − Gm

−1sZm+n − Zmd s3.10d

in the A1g channelssee Fig. 1 for the relevant Feynman dia-
gramsd.

Since one can show that there are no additional singulari-
ties or nonanalyticities in Eqs.s3.9d and s3.10d connected
with the denominators,27 one can directly perform the ana-
lytic continuation and replace the sum over Matsubara fre-
quencies in Eq.s3.8d by an integral over the real axis

xg̃,g̃
s2d s− in,ind =

1

2pi
E

−`

+`

dvfsvdfPsv − i0+,v + ind

− Psv + i0+,v + ind + Psv − in,v − i0+d

− Psv − in,v + i0+dg, s3.11d

where fsvd=1/f1+expsbvdg is the Fermi distribution func-
tion. After substituting Eq.s3.11d into the expression for the
nonresonant response function in Eq.s2.15d, we obtain

xNsVd =
2

s2pid2E
−`

+`

dvffsvd − fsv + Vdg

3 RehPsv − i0+,v + V + i0+d

− Psv − i0+,v + V − i0+dj. s3.12d

Now we can take the trivial analytic continuation of Eqs.
s3.9d ands3.10d to find the final expressions for the nonreso-
nant Raman response function:

xN,B1g
sVd =

t*2

4p2E
−`

+`

dvffsvd − fsv + Vdg

3 ReHGsvd − G*sv + Vd
Z*sv + Vd − Zsvd

−
Gsvd − Gsv + Vd
Zsv + Vd − Zsvd J

s3.13d

in the B1g channel, and

xN,A1g
sVd

=
1

2p2V
E

−`

+`

dvffsvd − fsv + Vdg

3ReH fSsvd − S*sv + VdgfZ*sv + Vd − Zsvdg
G−1*sv + Vd − G−1svd

−
fSsvd − Ssv + VdgfZsv + Vd − Zsvdg

G−1sv + Vd − G−1svd J s3.14d

in the A1g channel, respectively.

B. Mixed scattering

The mixed Raman response corresponds to the scattering
processes that involve three external vertices: one stress ten-
sor and two current operators, and there are two types of
diagrams corresponding to the direct and exchange processes
ssee Fig. 2d. There is no mixed Raman response for theB2g
channel because the stress tensor vanishes for the case of
nearest neighbor hopping only. In theB1g channel it appears
to be only a bare responseswe will see below that it actually
vanishesd and for theA1g channel, the bare mixed response is
renormalized by the irreducible charge vertex.

1. B1g channel

In the B1g channel, the mixed Raman response contains
only the bare direct and exchange contributionssfirst two
terms in Fig. 2, respectivelyd:

xg̃,f,i
s3d sini − in f,in f,− inid

= To
m

1

No
k

t*3

D3/2o
a=1

D

s− 1da coska

3o
b=1

D

s− 1db sinkbo
g=1

D

sinkg

3 fGmskdGm−nf
skdGm+ni−nf

skd

+ GmskdGm+nf
skdGm−ni+nf

skdg, s3.15d
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because the symmetry of all two and three-particle vertices is
that of the latticesA1gd, so all renormalizations vanishsrecall
the current operator has odd parity, whereasek is even inkd.
The expression in Eq.s3.15d has nonzero values only when
the subscripts are equala=b=g. In this case, we expand the
product of Green’s functions into partial fractions overek
and the summations over momentum involve only expres-
sions of the typefzm=−sgnsIm Zmdg:

1

N
o
k

t*3

D3/2o
a=1

D

coska sin2 ka

1

Zm − ek

=
it*3

ÎD
E

0

zm`

dle−ilZmJ0
D−1Slt*

ÎD
D

3 E
−p

p dk

2p
sin2 k coskeislt*/ÎDdcosk s3.16d

with J0 being Bessel’s function. The last exponent is ex-
panded in a power series overlt* / ÎD that yields in theD
→` limit

lim
D→`

−
t*4

8D

d

dZm
Fizm

Îp

t*
e−Zm

2 /t*2 erfcSizm
Zm

t*
DG

= lim
D→`

t*2

4D
sZmGm − 1d → 0 s3.17d

so the mixed contribution vanishes in theB1g channel.

2. A1g channel

In the A1g channel, the mixed Raman response contains
both bare and renormalized contributions:

xg̃,f,i
s3d sini − in f,in f,− inid

= To
m
H−

1

N
o
k

ek
t*2

D o
a=1

D

sinkao
b=1

D

sinkbGmskdGm−nf
skd

3Gm+ni−nf
skd −

1

N
o
k

t*2

D o
a,b=1

D

sinka sinkb

3GmskdGm−nf
skdGm+ni−nf

skd

3TG̃sivm,ivm + ini − in fd 3
1

N
o
k

ekGmskdGm+ni−nf
skdJ

+ F ini → − ini

in f → − in f
G . s3.18d

The renormalizations are only with respect to two-particle
vertices, because the current operators are odd in parity and
cannot be renormalized by a local three-particle vertex. Here

G̃sivm,ivm + ini − in fd

=
Gsivm,ivm + ini − in fd

1 − TGsivm,ivm+ni−nf
d
1

N
ok

GmskdGm+ni−nf
skd

s3.19d

is the totalsreducibled charge vertex. In theD=` Falicov-
Kimball model, the irreducible charge vertex satisfies

Gsivm,ivm + ind =
1

T

Sm − Sm+n

Gm − Gm+n

s3.20d

on the Matsubara frequency axis.27 Substituting into the ex-
pression for the reducible charge vertex gives

G̃sivm,ivm+ni−nf
d =

1

T

Zm+ni−nf
− Zm

ini − in f

Sm − Sm+ni−nf

Gm − Gm+ni−nf

=
1

T
S Zm − Zm+ni−nf

Gm − Gm+ni−nf

+
sZm+ni−nf

− Zmd2

sini − in fdsGm − Gm+ni−nf
dD .

s3.21d

Now Eq. s3.18d has nonzero values only whena=b and,
noting that in theD→` limit one can replace sin2 ka by its
average value12, yields

xg̃,f,i
s3d sini − in f,in f,− inid = To

m

fPs3dsivm − in f,ivm + ini

− in f,ivmd + Ps3dsivm + ini,ivm

+ ini − in f,ivmdg, s3.22d

where

Ps3dsivm − in f,ivm + ini − in f,ivmd

=
t*2

2sini − in fd

Sm − Sm+ni−nf

Gm − Gm+ni−nf

3FGm+ni−nf

Gm − Gm−nf

Zm−nf
− Zm

− Gm

Gm+ni−nf
− Gm−nf

Zm−nf
− Zm+ni−nf

G .

s3.23d

In the case when there are neither singularities nor nonana-
lyticities in Eq. s3.23d connected with the denominators, one
can trivially perform the analytic continuation and replace
the sum over Matsubara frequencies in Eq.s3.22d by an in-
tegral over the real axis. We only keep the eight terms that
contain the differenceini − in f and hence contribute to the
mixed scattering. Substituting into Eq.s2.22dswith the sign
of the arguments of the first two terms invertedd we get the
final expression:
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xM,A1g
sVd =

2

s2pid2E
−`

+`

dvffsvd − fsv + Vdgo
h=±

RehhPs3dsv − v f + i0+,v + V + hi0+,v − i0+d + hPs3dsv − v f − i0+,v + V

+ hi0+,v − i0+d + hPs3dsv + vi − i0+,v + V + hi0+,v − i0+d + hPs3dsv + vi + i0+,v + V + hi0+,v − i0+dj. s3.24d

Here the analytic continuation of Eq.s3.23d is

Ps3dsv1,v2,v3d =
t*2

2sv2 − v3d
Ssv3d − Ssv2d
Gsv3d − Gsv2dFGsv2d

Gsv3d − Gsv1d
Zsv1d − Zsv3d

− Gsv3d
Gsv2d − Gsv1d
Zsv1d − Zsv2d G . s3.25d

C. Resonant scattering

The resonant Raman response corresponds to scattering
processes that involve four external current vertices. The cor-
relation function constructed from four current operators
contains six types of diagrams corresponding to the different
direct and exchange processesssee Fig. 3d. It should be noted
that sincej sid and j sfd are odd functions of momentum, the
only way to get a nonzero momentum summation is to have
an even number of current operators in any given momentum
integration s“current-operator pairing”d. Hence all local
three-particle and four-particle vertex renormalizations must
vanish, although two-particle vertex renormalizations are
possible. For theB1g andB2g channels the “current-operator
pairing” is possible only between either both incomingj sid or
both final j sfd current operators, but for theA1g channel all
operators can be involved in the “pairing” and the contribu-
tion from the bare diagrams in theA1g channel is three times
larger than for theB1g channel. As a result, in theB1g andB2g
channels we have contributions from the first two diagrams
in the first four lines and from only the first diagram in the

last two lines of Fig. 3, and in theA1g channel all diagrams
contribute.

For the B1g and B2g channels, the productj sid j sfd is or-
thogonal to the charge vertex withA1g symmetry, so the dia-
grams are not renormalized across the vertices that contain
both j sid and j sfd factors. In addition, for theB2g channel, the
polarization vectors select either odd or even momentum co-
ordinates and, as a result, the resonant Raman response for
the B2g channel is four times smaller than for theB1g one,
and it is the only contribution to the total Raman response in
the B2g channel. In theA1g channel, besides the diagrams
presented in Fig. 3 that include all possible horizontal and
vertical “ladder” renormalizations, one could renormalize by
parquet-like terms that involve simultaneous horizontal and
vertical renormalizations. But it can be shownssee the Ap-
pendixd, that such contributions are 1/D corrections, and dis-
appear in theD→` limit.

As a result, the Fourier transform of the four-time corre-
lation function constructed from the current operators can be
represented in the following formsini − in f = ini8− in f8d:

xi,f,f,i
s4d s− ini,in f,− in f8,ini8d = To

m

fPI
s4dsivm,ivm − in f,ivm + ini − in f,ivm − in f8d

+ PI
s4dsivm,ivm + in f8,ivm − ini + in f,ivm + in fd + PI

s4dsivm,ivm − in f,ivm − in f8 − in f,ivm − in f8d

+ PI
s4dsivm,ivm + in f8,ivm + ini + in f8,ivm + in fd + PII

s4dsivm,ivm + ini,ivm + ini − in f,ivm − in f8d

+ PII
s4dsivm,ivm − in f,ivm + ini − in f,ivm + ini8dg. s3.26d

In the B1g andB2g channels,PII
s4d contains only the bare contributionscorresponding to only the first diagram on last two

lines of Fig. 3d

PII ,B1g

s4d siv1,iv2,iv3,iv4d = Pbare
s4d siv1,iv2,iv3,iv4d, s3.27d

PII ,B2g

s4d siv1,iv2,iv3,iv4d =
1

4
PII ,B1g

s4d siv1,iv2,iv3,iv4d,

where

SHVAIKA et al. PHYSICAL REVIEW B 71, 045120s2005d

045120-10



Pbare
s4d siv1,iv2,iv3,iv4d = −

t*4

D2

1

N
o
k

oa=1

D
sin2 kaob=1

D
sin2kb

sZ1 − ekdsZ2 − ekdsZ3 − ekdsZ4 − ekd
= −

t*4

4
F G1

sZ2 − Z1dsZ3 − Z1dsZ4 − Z1d

+
G2

sZ1 − Z2dsZ3 − Z2dsZ4 − Z2d
+

G3

sZ1 − Z3dsZ2 − Z3dsZ4 − Z3d
+

G4

sZ1 − Z4dsZ2 − Z4dsZ3 − Z4dG .

s3.28d

However, the other polarizationPI
s4d contains a vertical “ladder” renormalizationscorresponding to the first two diagrams on

the first four lines of Fig. 3d

PI,B1g

s4d siv1,iv2,iv3,iv4d = Pbare
s4d siv1,iv2,iv3,iv4d + Pr

s4dsiv1,iv2,iv3,iv4d, s3.29d

PI,B2g

s4d siv1,iv2,iv3,iv4d =
1

4
PI,B1g

s4d siv1,iv2,iv3,iv4d

with

Pr
s4dsiv1,iv2,iv3,iv4d = − TS 1

N
o
k

t*2

D o
a=1

D

sin2 kaG1skdG2skdG4skdDGs2,4dS 1

N
o
k

t*2

D o
a=1

D

sin2 kaG2skdG4skdG3skdD
= − T

t*4

4
SG4 − G1

Z1 − Z4
−

G2 − G1

Z1 − Z2
D G̃s2,4d

sZ2 − Z4d2SG4 − G3

Z3 − Z4
−

G2 − G3

Z3 − Z2
D . s3.30d

Using the solution of Eq.s3.21d in the Bethe-Salpeter-like equations3.19d yields

Pr
s4dsiv1,iv2,iv3,iv4d = P̃r

s4dsiv1,iv2,iv3,iv4d +
Cr

s4dsiv1,iv2,iv3,iv4d
iv2 − iv4

, s3.31d

with

P̃r
s4dsiv1,iv2,iv3,iv4d =

t*4

4

1

sG2 − G4dsZ2 − Z4dSG4 − G1

Z1 − Z4
−

G2 − G1

Z1 − Z2
DSG4 − G3

Z3 − Z4
−

G2 − G3

Z3 − Z2
D , s3.32d

and

Cr
s4dsiv1,iv2,iv3,iv4d = −

t*4

4

1

G2 − G4
SG4 − G1

Z1 − Z4
−

G2 − G1

Z1 − Z2
DSG4 − G3

Z3 − Z4
−

G2 − G3

Z3 − Z2
D

= Cr
s4dsiv3,iv2,iv1,iv4d = − Cr

s4dsiv1,iv4,iv3,iv2d. s3.33d

In the A1g channel we have contributions from all the diagrams in Fig. 3, hence

PI,A1g

s4d siv1,iv2,iv3,iv4d = PII ,A1g

s4d siv1,iv2,iv3,iv4d = 3Pbare
s4d siv1,iv2,iv3,iv4d + Pr

s4dsiv1,iv2,iv3,iv4d + Pr
s4dsiv2,iv3,iv4,iv1d.

s3.34d

Here the last term corresponds to the horizontal “ladder” renormalizationsthe last diagram on each line of Fig. 3d.
Next, we perform the analytic continuation in Eq.s3.26d and replace the sum over Matsubara frequencies by an integral

over the real axis in the same way as was done in Eq.s3.24d for the mixed scattering. Then we substitute it into the expression
in Eq. s3.32d for the resonant Raman response. After some tedious algebra, we achieve the final expression for the resonant
Raman response of theD=` Falicov-Kimball model:

xRsVd =
2

s2pid2E
−`

+`

dvffsvd − fsv + Vdgo
h=±

RehhPI
s4dsv − i0+,v − v f − i0+,v + V + hi0+,v − v f + i0+d

+ hPI
s4dsv − i0+,v + vi − i0+,v + V + hi0+,v + vi + i0+d + hPII

s4dsv − i0+,v + vi + i0+,v + V + hi0+,v − v f + i0+d

+ hPII
s4dsv − i0+,v + vi − i0+,v + V + hi0+,v − v f − i0+dj. s3.35d
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The analytic continuation in Eq.s3.35d can be found simply
by substitutingiva→va± i0+ in the corresponding expres-
sions in Eqs.s3.27d–s3.34d which will not be explicitly re-
peated here. It might appear that “polarizations”PI

s4d contain
divergences connected with vanishing denominators in the
last term in Eq.s3.31d, but the contribution of these terms
into the expression in braces in Eq.s3.35d must be consid-
ered in the limit:

lim
D→0

1

2D
o

h=±1
hhCr

s4dsv − hi0+,v − v f − i0+,v + V + i0+,v

− v f − D + i0+d + hCr
s4dsv + hi0+,v − v f − i0+,v + V

− i0+,v − v f − D + i0+d + hCr
s4dsv − hi0+,v + vi + D − i0+,v

+ V + i0+,v + vi + i0+d + hCr
s4dsv + hi0+,v + vi + D − i0+,v

+ V − i0+,v + vi + i0+dj, s3.36d

whereD=v f8−v f =vi8−vi. When the limitD→0 is taken, we
find that the imaginary part of Eq.s3.36d diverges, but the
real partswhich is all that contributes to the Raman scatter-
ingd is finite and can be calculated analytically using
l’Hopital’s rule; one must do this carefully in the insulating
phase where the self-energy develops a pole.

D. Bare contributions and multiple resonances

In summary, the total Raman response function is the sum
of the nonresonantfEq. s3.12dg, mixedfEq. s3.24dg, and reso-
nant fEq. s3.35dg contributions and has a complicated form.
It is educational to consider the contributions of the bare
diagrams, which can be summed up and rewritten in the
following form:28

xsVd =
1

N
o
k
E

−`

+`

dvffsvd − fsv + VdgAksvdAksv + Vd

3 ugk + vk
i vk

f fGksv + vi + i0+d + Gksv − v f − i0+dgu2,

s3.37d

where gk=oa,bea
i s]2«k /]ka]kbdeb

f , vk
i,f =oaea

i,fs]«k /]kad,
Aksvd=s1/pdIm Gksv− i0+d, and

Gksvd =
1

v + m − Ssvd − ek
s3.38d

is the momentum-dependent Green’s function.
In general, the bare response function in Eq.s3.37d is a

function of the frequency shiftV=vi −v f, of the incoming
photon frequencyvi and the outgoing photon frequencyv f;
it can be enhanced when one or both of the denominators are
resonantsi.e., they coincided. In the latter case, we have a
so-called “double” or “multiple resonance.”30 The full re-
sponse function also includes the vertex renormalizations.
But the totalsreducibled charge vertex in Eq.s3.21d for the
Falicov-Kimball model does not diverge, and hence it does
not introduce any additional “resonances.” It only leads to a
renormalization of the total Raman response.

IV. NUMERICAL RESULTS

We begin our results by showing the single particle den-
sity of states of the spinless Falicov-Kimball model in infi-
nite dimensions withkrel=kwil=1/2. Thedensity of states is
independent of temperature, and a metal-insulator transition
occurs atU=Î2. In the insulating phase, the self-energy de-
velops a pole atv=0, and the Green’s function vanishes
there. There is no true gap to this system, as the bare Gauss-
ian density of states forces the interacting density of states to
be nonzero whenever the self-energy is finite.31 In Fig. 4, we
plot the DOS for 5 values ofU ranging from a weakly scat-
tering metalU=0.5, to a strongly scattering metalU=1, to a
near-critical insulatorU=1.5, a “small-gap”-insulatorU=2
and a “moderate-gap”-insulatorU=3. Note that the metal-
insulator transition is continuous for the Falicov-Kimball
model, in the sense that the zero-temperature dc conductivity
continuously goes to zero at the transition. Note further that
in the metallic phase, the system is not a Fermi liquid be-
cause the scattering time at the putative Fermi surface does
not become infinite asT→0.

A fundamental question is to the size of the energy scales
in the system. Normally one would take the hoppingt* to be
on the order of 0.25 to 4 eV for a general correlated system.
In this case, room temperature would range from 0.006 to 0.1
sdepending on the actual value oft* d. The hopping scale can
be reduced, however, if we do not view it as the microscopic
scale, but instead view it as describing a renormalized low-
energy band, which is further correlated by the Falicov-
Kimball interaction term. In that case, we would adjust the
hopping to produce the bandwidth of the actual strongly cor-
related bands of the system, which could result in a lower
value for t* in eV.

Once the self-energy and the DOS are known, the differ-
ent contributions to Raman scattering can be determined by
straightforward, but tedious numerical integrations of the rel-
evant functions for each scattering channelfEqs. s3.13d,
s3.14d, s3.24d, s3.25d, s3.35d, and s3.36dg. There are some
subtleties with this approach, especially in the insulating
phase, as the iterative approach to determining the DOS and
the self energy becomes inaccurate once the imaginary part
of the self energy becomes smaller than about 10−13. Fortu-
nately, there is a simple analytic form that can be used to

FIG. 4. Interacting single-particle density of states forU=0.5,
1.0, 1.5, 2.0, and 3.0sU increases as the pseudogap becomes stron-
gerd. Note how the DOS first develops a depression near the chemi-
cal potential and then develops a pseudogap as the metal-insulator
transition occurssthe DOS vanishes only atv=0 in the insulatord.
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construct the imaginary parts of the Green’s functions and
self-energies in this regime, so all relevant quantities can be
evaluated with care.32

We find that the Stokes response is significantly larger
than the anti-Stokes response in the resonant regime, because
the double resonance greatly enhances the signal when the
transfered energy approaches the incident photon frequency
sin the nonresonant regime, both Stokes and anti-Stokes re-
sponses are identicald. Hence, we will present only the

Stokes response here. We also find that, generically, the re-
sponse “sharpens” asT→0, with the spectral response grow-
ing at low temperaturesexcept for the low-energy, thermally
excited response in the insulating phased.

In Figs. 5 and 6 we plot the total Raman response forU
=0.5 andU=1, respectively. The former case is of a dirty
metal, while the latter case is a metal that has such strong
scattering that the density of states is depressed near the
Fermi energysbut not so much as to create an insulatord. The
Stokes branch of the Raman response behaves in many re-
spects as expected. The double resonance causes a large en-
hancement of the signal as the transfered frequency ap-
proaches the incident photon frequency. In the Loudon-
Fleury regime, where the photon energy is much larger than
the band energies, one can see a nice separation of the signal
into the nonresonant and resonantsplus mixedd piecessnote
that the nonresonantA1g response is small due to screening
effects and the nonresonantB2g response vanishes due to
symmetry, but the resonant effects are strong in both of these
channelsd. In general, the resonant effects are strongest near
the double resonance, and it is not true that the total response
looks like the nonresonant response plus a uniform resonant
enhancement, so resonant effects must be studied with care
to understand the effects they play on the light scattering.
Finally, note the overall similarity between panelssbd andscd
in Figs. 5 and 6. This arises from the fact that generically, the
resonant effects overwhelm both nonresonant effects and
mixed scattering effects, and it shows that there is not a
huge variation in the resonant Raman response due to the
additional renormalizations in theA1g channel.

The insulating phasesU.Î2d provides a number of in-
teresting new features to the electronic Raman scatteringsre-
sults for the near-critical insulator29 at U=1.5 and for the
small-gap insulator20 at U=2 have already appearedd. We
begin with a discussion of a good correlated insulatorU=3,

FIG. 5. Stokes Raman response for the three symmetry channels
in a dirty metal withU=0.5. The Raman scattering response func-
tion is plotted as a function of the transfered frequency for incident
photon frequencies ranging from 0.25 to 4.5 in steps of 0.25sthe
thickness of the lines aids in distinguishing the different curvesd.
This data is at low temperaturesT=0.05d where the results are the
“sharpest.”

FIG. 6. Stokes Raman response for the three symmetry channels
in a strongly scattering “metal” withU=1.0. The Raman scattering
response function is plotted as a function of the transfered fre-
quency for incident photon frequencies ranging from 0.25 to 4.5 in
steps of 0.25. This data is at the temperaturesT=0.5d where the
nonresonant response has enhanced low-energy spectral weight in
the B1g channel.

FIG. 7. Stokes Raman response for the three symmetry channels
in a correlated insulator withU=3.0. The Raman scattering re-
sponse function is plotted as a function of the transfered frequency
for incident photon frequencies ranging from 0.25 to 5.0 in steps of
0.25. This data is at a high temperaturesT=1.0d where the nonreso-
nant response has enhanced low-energy spectral weight inB1g and
A1g channels.
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which appears to have a well defined gap region in the DOS
sbut note that the DOS only vanishes exactly atv=0d. Hence
we expect there to be significant thermally driven effects in
this case. To begin, we plot the Raman scattering at a fixed
temperature, but with varying incident photon frequency in
Fig. 7. Note that there is substantial spectral weight in both a
low-energy and a high-energy peak, and that when the inci-
dent photon frequency is approximately equal toU, the high-
energyscharge-transferd peak can be enhanced significantly.
But something strange occurs for higher frequencies in the
A1g channel. Asvi increases beyond about 3.25, we stop to
see the development of a separate charge transfer peak, and
the net scattering curve looks like a simple double resonance
curve even though the nonresonant response has a well-
developed charge transfer peak. In other words, we are not
seeing the evolution of the scattering to a simple break up of
a nonresonant piece and a double resonance piece asvi is
made large. This may not be too surprising, because in the
A1g channel we have nonresonant, resonant, and mixed con-
tributions to the scattering. To illustrate how this occurs, we
plot the separate contributions to the Raman scattering in
Fig. 8 for theB1g and A1g channels forvi =4.0. In the top
panel, we see the expected shape for the nonresonant curve,
with both low and high energy peaks, but surprisingly, there
is a strong resonant enhancement of both peaks. This is even
more dramatic in the bottom panel, where the vertex correc-
tions suppress the nonresonant low-energy peak in theA1g
channel, but the resonant terms bring back a strong enhance-
ment in that regionsin essence because the conservation of
total charge acts to effectively screen the low-energy excita-
tions, but the screening is much less effective for the reso-
nant termsd. The mixed contribution is small at low energy,
but has a well developed charge-transfer-like feature, that is
negative, and completely overwhelms, and cancels the non-
resonant charge-transfer peak, leaving behind essentially a
double resonance-like curve. These results are obviously
quite complex. If the incident photon frequency increases
further, then the peak in the mixed response moves to higher
energy, and the nonresonant peak plus a higher frequency
double resonance peak picture holds, but the width of the
double resonance peak can be extremely narrow. One might

be surprised that the double resonance peak survives in the
insulator sbecause there are no electronic states within the
gapd, but in this case, we only have a pseudogap, and the
states in the “gap region” are few in number, but long-lived
and hence contribute to the scattering.32

One of the common features in resonant Raman scattering
is a large enhancement of the scattering when a new scatter-
ing channel opens, as the photon frequency becomes larger
than an energy gap, for example. One question to ask is does
such a feature survive in a correlated system. As described
above, there is no energy gap in the insulating phaseson the
hypercubic latticed, but there is a region where the DOS is
exponentially small, and then increases rapidly to be of order
unity. One can ask whether there are features in the Raman
scattering that show enhancements when the photon fre-
quency is larger than the width of the exponentially small
“gap region” of the DOS. Since the gap region forU=3 is
about 0.5 above and below the chemical potential, we expect

FIG. 8. Separation of different contributions to the Stokes re-
sponse forU=3, T=1.0, andvi =4.0 in the sad B1g and sbd A1g

channels. The solid line is the total response, the dotted line is the
resonant piece, the dashed line is the nonresonant piece, and the
chain-dotted line is the mixed contribution. FIG. 9. Raman response at low energy forU=3 andT=0.2. The

incident photon frequency changes from 0.1 to 1.0 in steps of 0.1.

FIG. 10. Raman response atV=3 for U=3 and various tempera-
tures. The horizontal axis is the incident photon frequency. The
thickest curve isT=0.05, and the temperature increases to 0.2, 0.5,
and 1 as the curves are made thinner. Note that the curves for the
lowest two temperatures are the largest, and are hard to separate.
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interesting results for photon frequencies near 0.5. We plot
the Raman scattering forvi increasing from 0.1 to 1 in steps
of 0.1 in Fig. 9 for low temperaturesT=0.2d. Note how small
the overall scale of the Raman scattering is. We see different
behavior in theB1g andB2g sectors versus theA1g sector. In
panelssad andsbd we see the low energy scattering increases
as vi increases untilvi reaches approximately 0.5, where it
starts to decrease. The increasing behavior is essentially this
resonant enhancement due to the opening of scattering chan-
nels as the photon frequency becomes larger than the gap.
Note how this phenomenon essentially does not occur in
panel scd, where the curves lie below each other asvi is
increased. Hence theA1g channel does not show the analogue
of this resonant-enhancement effect. The effect disappears in
all channels once the temperature becomes larger than about
0.5, where thermal excitations can be easily made across the
“gap region.” Note, furthermore, that the largest resonant
effects occur not when the scattering channel first opens, but
rather whenvi <U because that is the value of frequency
that separates the peaks in the single-particle DOS, and
hence it corresponds to the strongest scattering from occu-
pied to unoccupied states.

We saw in Fig. 8 that there is a resonant enhancement at
low energy when the incident photon frequency is close toU
in size. To examine this phenomenon further, we plot the
total Raman scattering at a fixed transfered photon frequency
schosen to be 0.5 for the low-energy peak and 3.0 for the
high-energy peakd as a function of the incident photon fre-
quency in Figs. 10 and 11.

In Fig. 10, we see expected behavior. The charge-transfer
peak atV=U=3 has a resonant enhancement for photon fre-
quencies slightly higher thanU, then a suppression to the
nonresonant peak values at the highest incident frequencies
sexcept for theA1g channel, where the charge transfer peak is
initially suppressed until the incident photon frequency is
larger than about 6, due to the cancellation from the mixed

diagrams described aboved. The width of the resonant peak is
about 0.5, and it is pushed to higher frequency in theB1g and
B2g channels. In Fig. 11, we find an interesting joint reso-
nance effect. There is a resonant enhancement nearvi =0.5,
that comes from the double resonance. In addition, there is
another broad resonance effect centered just slightly higher
than vi =U=3, where both the charge-transfer and the low-
energy peaks resonate at the same incident photon frequency.
In the A1g channel, the joint resonance peak is a single
smooth peak, while in theB1g and B2g channels, the joint
resonance peak seems to have a double-peak structure to it.
As the temperature is reduced, the resonant effects remain,
but the spectral weight in the low-energy peak gets sup-
pressed to very small valuesstheT=0.05 curves are indistin-
guishable from the horizontal axis because they are at least
three orders of magnitude smaller than theT=0.2 curvesd.
The evolution of the resonant profile for other values of
transferred frequencyV is complex and can be found in Ref.
28 for U=3.

The low-energy isosbestic behaviorswhich means that the
Raman response is independent of temperature at a charac-
teristic frequencyd is plotted in Fig. 12. We choosevi =3.5
because it corresponds to the maximal joint resonance effect
for both the charge-transfer and low-energy peaks. We find
that the low-energy isosbestic behavior is generic for the
resonant Raman scattering, with the response curves crossing
at V<U /2=1.5 for all symmetries. Hence, the low-energy
isosbestic behavior seen in the nonresonant responseswhich
was most apparent in theB1g channel, but can also be seen in
theA1g channel when the response is plotted on a logarithmic
scale28d, survives in the resonant cases as well, and this helps
explain why it is seen in so many experimental systems. In
addition to the low-energy isosbestic point shown in Fig. 12
at V<U /2, there is a second isosbestic point28 that appears
near the double resonanceV<vi. Starting from largevi
sVi .Ud, as vi is reduced, the two isosbestic points move
closer to each other, eventually joining together and disap-

FIG. 11. Raman response atV=0.5 for U=3 and various tem-
peratures. The horizontal axis is the incident photon frequency. The
thickest curve isT=0.05, and the temperature increases to 0.2, 0.5,
and 1 as the curves are made thinner. Note that theT=0.05 curves
are more than three orders of magnitude smaller than theT=0.2
curves, and cannot be distinguished from the horizontal axis in the
figure.

FIG. 12. Low-energy isosbestic behavior of the resonant Raman
response forU=3 andvi =3.5. The different thicknesses correspond
to different temperatures, with thicker curves corresponding to
lower temperaturessfour curves are plotted forT=1, 0.5, 0.2, and
0.05d. Note how the curves all cross at an isosbestic point, just
slightly smaller thanU /2.
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pearing whenvi <U /2. So the isosbestic behavior will not
be seen if the incident photon frequency is too low.

V. DISCUSSION

With the use of DMFT, we solved for the full Raman
response for all frequencies of incoming light in the Falicov-
Kimball model. Since the Falicov-Kimball model can be
tuned across a metal-insulator transition, we have determined
the form of Raman scattering in both the metallic and insu-
lating states, and have investigated light scattering on both
sides of the quantum critical point atU=Î2. Resonant, non-
resonant, and mixed contributions have all been treated on an
equal footing and we allowed for an analysis of the depen-
dence of Raman scattering with temperature, interactions,
and different light polarizations.

Our results confirm a number of previously held beliefs.
First, we find a strong resonant enhancement of the charge-
transfer peak in Raman scattering when the incident photon
energy lies near the charge-transfer energy. This behavior is
robust to temperature and polarization changes due to the
local nature of the charge-transfer excitation in our model.
Second, we also find a polarization-independent “double-
resonance” enhancement when the transfered frequency of
the light approaches the incident light frequency. This feature
survives in the insulating phase because of the pseudogap
nature of the insulator on the hypercubic lattice.

In addition, we find a number of new features of light
scattering in correlated insulators. We find that low energy
spectral features, related to thermal populations of elemen-
tary excitations, show resonance behavior when the incident
light is tuned to the much higher frequency of the charge-
transfer energy. This is a specific case where the correlations
are crucial, since in uncorrelated materials, this would corre-
spond to off-resonant conditions. Yet due to the many-body
nature of the correlated band, spectral features well separated
from the charge transfer peak have a non-trivial resonance
profile. We believe that these may be potentially useful to
understand the complex nature of charge excitations in cor-
related materials as it would impact both electronic and
phononic Raman scattering at low frequencies. Finally, we
find that the presence of an isosbestic point in the Raman
response for correlated insulators results from a symmetry-
dependent combination of all resonant, mixed, and nonreso-
nant terms, and appears to be generic.

We close with a discussion of open questions concerning
improvements to the theory. Here we have restricted our-
selves to Raman scattering in a correlated band of electrons
in the limit of large spatial dimensions. Performing calcula-
tions in physical dimensions requires more many-particle
charge vertex renormalizations which makes the problem ex-
tremely difficult, though possible in principle. But we found
that most vertex renormalizations were rather mild, so in-
cluding nonlocal effects into the verticessfinite dimensionsd
probably does not change these results dramaticallysunless
the vertex can diverge in finite dimensionsd. In addition,
q-dependent information would prove to be useful for inves-
tigating dispersive many-particle excitations, as probed in
inelastic x-ray scattering. These are topics of future interest.
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APPENDIX A: PARQUET CONTRIBUTIONS

In addition to the diagrams presented in Fig. 3, there can
also be parquet-like contributions with both vertical and
horizontal renormalizations. One type of these diagrams is
shown in Fig. 13. The corresponding expression has the form

t*4

D2

1

N3 o
qkk8

aba8b8

sinka sinskb + qbdsinka8
8 sinskb8

8 + qb8d

3 T2Gs1,3dGs2,4dG1sk8dG2sk8dG2sk8 + qdG3sk8 + qd

3 G2sk + qdG4sk + qdG4skdG1skd. sA1d

In the expression in Eq.sA1d, all the momentum dependence
sin the D=` limit d is contained in the band energyfsee Eq.
s3.3dg and, after expanding the products of the Green’s func-
tions with the same momentum into partial fractions overek,
the summations over momentum are of the form

t*4

D2

1

N
o
q
F 1

N
o
k

o
ab

sinka sinskb + qbd
sZ1 − ekdsZ2 − ek+qdG

3 F 1

N
o
k8

o
a8b8

sinka8
8 sinskb8

8 + qb8d

sZ3 − ek8dsZ4 − ek8+qdG . sA2d

In the same way as was done for Eq.s3.16d, we find the

FIG. 13. Feynman diagrams for a typical parquetlike renormal-
ization. This resonant diagram has a simultaneous horizontal and
vertical renormalization by the two-particle reducible charge vertex.
Note that such a renormalization is only possible in theA1g sector.
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expression in the bracket reduces to the following in theD
→` limit fzi =sgnsIm Zidg

i2E
0

z1`

dl1E
0

z2`

dl2e
−isl1Z1+l2Z2de−t2sl1

2+l2
2+2l1l2Xqd/4

3 F1

2o
a

cosqa +
t*2l1l2

4D
o

aÞb

sinqa sinqbG , sA3d

where Xq=limD→`s1/Ddoa=1
D cosqa. The main contribution

comes from the first term in Eq.sA3d and there is a similar

term in the second bracket of Eq.sA2d. Replacing the square
of a cosine by its average value12, we find that Eq.sA2d
reduces to

lim
D→`

t*4

8D
G1G2G3G4 → 0 sA4d

which vanishes asD→`. A similar procedure can be per-
formed for all other terms with a parquet-like renormaliza-
tion. Hence, the parquet-like contributions are unimportant
for resonant Raman scattering in large dimensions.
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