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Abstract

The f-sum rule for the optical conductivity has been known for many years, and has found widespread use in a number of different

fields of science. In this contribution, we show how the f-sum rule can be generalized to inelastic light scattering and we explicitly derive

the form of the sum rule for the single-band Hubbard model. We discuss evidence that indicates such a sum rule likely holds in already

calculated dynamical mean-field theory results and we describe evidence in support of these new sum rules in electronic Raman scattering

data for SmB6.

r 2006 Elsevier B.V. All rights reserved.

PACS: 71.10.�w; 71:27:þ a; 78.20.Bh; 78.30.�j; 78:90:þ t

Keywords: Inelastic light scattering; Sum rule; Hubbard model; Dynamical mean-field theory; SmB6
It has long been thought that neither electronic Raman
scattering nor inelastic X-ray scattering have any sum
rules, so spectral weight can appear or disappear as a
function of temperature. In recent work [1], we showed that
there is a sum rule for electronic Raman scattering, which
may help with calibration and analysis of experiments and
may aid in determining new physics about models that
describe real materials.

When we examine the optical conductivity of a solid-
state material, and restrict our spectral range to the lowest
band, then the f-sum rule [2] which counts the total number
of electrons in the material, gets replaced by the projected
version of the sum rule [3] which measures the average
kinetic energy of the material. Hence, using a proper
energy cutoff for the optical conductivity sum rule allows
one to examine the evolution of the kinetic energy as a
function of temperature, pressure, or other parameters.
This is a direct way to measure the average kinetic energy
of a strongly correlated material. The sum rules for
inelastic light scattering are more complicated, and depend
on both the potential energy (and for X-rays) the kinetic
energy of the material.
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Our starting point is to examine the imaginary-time
susceptibility of an operator O that appears in the
nonresonant light-scattering correlation function

wðtÞ ¼ hTtOðtÞOyð0Þi � jhOij2, (1)

where t is the imaginary time operator, Tt is the
time-ordering operator, and OðtÞ ¼ exp tðH� mNÞO
exp�tðH� mNÞ is the imaginary-time-dependent opera-
tor. We use the notation hOi ¼ Tr exp½�bðH� mNÞ�O=Z
with H the Hamiltonian, m the chemical potential, N the
electron number operator, b ¼ 1=T the inverse tempera-
ture, and Z ¼ Tr exp½�bðH� mNÞ� the partition func-
tion. Taking the Fourier transform of Eq. (1) yields

wðinlÞ ¼

Z b

0

dteinltwðtÞ

¼
X
mn

e�bðEn�mNnÞ � e�bðEm�mNmÞ

inl þ Em � mNm � En þ mNn

jhmjOjnij2

Z
ð2Þ

with inl ¼ 2pilT the Bosonic Matsubara frequency and we
introduced two complete sets of basis states for the
Lehmann representation in the last equation (Hjmi ¼
Emjmi and Njmi ¼ Nmjmi). We will only investigate
operators O that do not change the total electron number,
so Nm ¼ Nn throughout.
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Next, we perform an analytic continuation inl ! nþ id
and integrate n Im wðnÞ from 0 to 1 to get

Z 1
0

dnn Im wðnÞ

¼
p
2

X
mn

ebmNn ðe�bEn � e�bEm ÞðEm � EnÞ
jhmjOjnij2

Z

¼
p
2
h½O; ½H;Oy��i. ð3Þ

Note that we need the single power of frequency, which
yields an even summand over the states m and n, because
the integral restricts us to nX0. Since the operator O does
not normally commute with either the kinetic energy
operator or the potential energy operator in H, the sum
rule in Eq. (3) normally depends on both the kinetic and
the potential energies (similar ideas were considered by
Turlakov and Leggett [4]).

The Hamiltonian we will examine here is that of the
Hubbard model [5]

H ¼ �t
X
hijis

ðc
y

iscjs þ c
y

jscisÞ þU
X

i

c
y

i"ci"c
y

i#ci#, (4)

where c
y

is (cis) creates (destroys) an electron at lattice site i

with spin s, t is the hopping integral, U is the screened
(local) Coulomb interaction, and the sum over hiji is a sum
over nearest-neighbor pairs. We will work on a hypercubic
lattice in d dimensions and take the limit d !1. Then if
we scale the hopping matrix by t ¼ t�=2

ffiffiffi
d
p

and use t� as
our energy unit, all many-body correlations become local,
and the many-body problem can be solved with dynamical
mean-field theory (DMFT) [6].

Inelastic light scattering is a process where light of one
frequency is incident on a material; the light then interacts
with the charge excitations, and either loses or gains energy
before being scattered out of the solid. By examining the
number of photons that lose or gain energy as a function of
that energy, one can probe the charge excitations of the
material. Since light has a polarization vector, controlling
the polarization of the incident and reflected photons
allows us to project the scattering process onto charge
excitations that have a well-defined symmetry in the
Brillouin zone (BZ). In the A1g scattering geometry, the
incident and scattered light polarizers are parallel, and the
photon is sensitive to charge excitations from all regions of
the BZ. In the B1g geometry, the polarizers are oriented for
example at 45� with respect to the copper–oxygen bonds in
a high-temperature superconductor, but are perpendicular
to each other. This case probes charge excitations near the
BZ edge and away from the BZ diagonal. The full light-
scattering process involves two types of terms: terms where
the matrix elements for the scattering depend on the
incident photon frequency (so-called resonant and mixed
scattering terms) and terms that are independent of the
incident photon frequency (so-called nonresonant terms).
We consider only nonresonant scattering here. The
resulting operators for the nonresonant scattering of a
photon with wavevector q can be summarized as follows (in
momentum and real space):

O ¼ �
X
ks

�ðkþQÞc
y

kþðq=2Þsck�ðq=2Þs

¼
t�

2
ffiffiffi
d
p

X
jd̄s

e�iðq=2þQÞ�d̄e�iq�Rj c
y

jscjþd̄s. ð5Þ

The wavevector Q determines the symmetry of the light
scattering: Q ¼ 0 for A1g scattering and Q ¼ ðp; 0;p; 0; . . .Þ
for B1g scattering. In Eq. (5), we used the notation �ðkÞ ¼
�t� limd!1

Pd
i¼1 cos ki=

ffiffiffi
d
p

for the bandstructure, d̄ for a
nearest-neighbor translation vector, and Rj for the position
vector of the jth lattice site. Note that in the case of Raman
scattering, with q ¼ 0, the scattering operator is propor-
tional to a sum over momentum of the number operator
times a function that depends on momentum and hence
commutes with the kinetic energy operator; the sum rule
depends solely on the multiple commutator with the
potential energy operator for Raman scattering.
Evaluation of the double commutator is straightforward,

but lengthy. In momentum space, we find

½O; ½H;O�� ¼
X
ks

½�ðk� qÞ � �ðkÞ��2 k�
q

2
þQ

� �n

þ ½�ðkþ qÞ � �ðkÞ��2 kþ
q

2
þQ

� �o
c
y

kscks

þU
X
kq0ps

c
y

ksck�q0scyp�scpþq0�s

� �� k�
q

2
þQ

� �
� k�

q

2
þQ

� �hn

� � k� q0 �
q

2
þQ

� �
þ � pþ

q

2
þQ

� �

� � pþ q0 �
q

2
þQ

� �i

þ � k� q0 þ
q

2
þQ

� �
� kþ

q

2
þQ

� �h

� � k� q0 þ
q

2
þQ

� �
þ � pþ

q

2
þQ

� �

� � pþ q0 �
q

2
þQ

� �io
. ð6Þ

When evaluating the expectation value of the operator in
Eq. (6), the first term is simple to evaluate, since it can be
expressed in terms of single-particle Green’s functions; the
second term (proportional to U) is more complicated, since
it involves a two-particle expectation value, and hence it
requires the irreducible two-particle charge and spin
vertices to solve the corresponding Bethe–Salpeter equa-
tion. While this is possible to do in principle, it is difficult
to find a robust numerical technique to evaluate such a
term efficiently. Note that when q ¼ 0, the first term
vanishes, as it must, but the second term only has minor
simplifications. A careful inspection of Eq. (6) also shows
that there are spin flip processes present in the second
piece; for example, the term with pþ q0 ¼ k includes both a
spin-raising and a spin-lowering operator. It does not look
like such terms vanish when summed over momentum (if
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Fig. 1. Data for the sum rule in the Hubbard model at half filling. We take

the Raman scattering results, multiply by the frequency, and integrate.

Since the sum rule holds, the integral is equal to the operator average of

Eq. (6) with q ¼ 0. The three curves correspond to U ¼ 2:12, 3.54, and
4.24.
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qa0), so the operator should involve both the charge and
the spin degrees of freedom.

In real space, the operator becomes

½O; ½H;Oy�� ¼ �
t�3

8d
ffiffiffi
d
p

X
id̄d̄
0
d̄
00
s
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0
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While this form appears more complex than in Eq. (6), it
does show that the operator involves correlated hopping
and correlated spin-flip processes, when one examines all
possibilities for the nearest-neighbor translation vectors.

The inelastic light scattering sum rule depends explicitly
on the model that describes the material of interest
(because of the commutator with H). In the case of the
Falicov–Kimball model [7], an explicit form for the sum
rule can be found in terms of the single-particle Green’s
functions and self-energies [1]. When this expression is
evaluated, we find that the temperature dependence is weak
at low temperature. This is because the expectation value
depends on electronic energies, which do not vary
significantly at low temperature. Similar results hold for
the f-sum rule in an optical conductivity measurement. So
we expect the temperature dependence to be weak for the
Hubbard model, except possibly when one is close to the
metal–insulator transition, where the system develops a
renormalized low-energy scale. We have not yet been able
to evaluate Eq. (6) explicitly for the Hubbard model, but
we can indirectly investigate the inelastic light scattering
sum rule for the Hubbard model in the B1g channel
(Q ¼ 0), by integrating the Raman data calculated with the
numerical renormalization group [8], to test to see whether
the numerical data is consistent with the underlying sum
rule. In Fig. 1, we plot these results for three different
values of U at half filling: (i) U ¼ 2:12 which is a strongly
correlated metal; (ii) U ¼ 3:54 which is near the Mott
transition; and (iii) U ¼ 4:24 which is a small-gap strongly
correlated insulator. Note how the overall sum rule tracks
with U due to the prefactor of U since q ¼ 0, and how the
sum rule typically flattens at low temperature, and picks up
stronger temperature dependence as T increases. Like in
the Falicov–Kimball model, we find a T-dependence that
decreases as T increases, but here there seems to be a small
region at the lowest temperatures, where the sum rule
drops as T ! 0. We expect the numerical errors to be
similar to the size of the symbols.
We plot similar results, but now in the correlated metal

phase with re ¼ 0:9. The differences with Fig. 1 at half
filling are most significant for the larger U values where the
system is now metallic. Note how the sum rule drops
significantly in overall magnitude when we dope off of half
filling. These curves also show a slight drop at the lowest
temperatures. It is interesting that the sum rule is acting as
we expect, being able to give us a quantitative measure of
the strength of the correlations (or the size of the potential
energy effects in the system). The more correlated the
system, the larger the sum rule is. Taken in this vein, the
small downturn at the lowest temperatures could be arising
from the development of the low-temperature coherence of
a Fermi liquid which can be viewed as a reduction in
the correlations. This is supported by the fact that the
coherence temperature is approximately 0.1–0.15 for the
largest two U values and approximately 0:2 for the lowest
U value (as estimated from the T-evolution of the local
DOS).
Finally, we perform the same analysis on the experi-

mental Raman data for SmB6 [1,9]. This material is an
excellent candidate material because (i) there are no
significant resonant scattering effects, and (ii) there is a
clear separation between the low-energy, strongly corre-
lated band, and the higher energy bands. Note how the
sum rule has a generic shape that is similar to those of the
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Fig. 2. Data for the sum rule in the Hubbard model at re ¼ 0:9. The three
curves correspond to U ¼ 2:12, 3.54, and 4.24.
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Hubbard model—it is relatively flat, with a slight downturn
at the lowest temperatures. One interesting application of
this sum rule is that it could be employed to track relative
changes of the electron correlation as one varied the
pressure, or the chemical doping of a material (compare
Figs. 1 and 2). This may provide interesting insight into the
microscopic effects of the pressure or the doping.

In conclusion, we have shown that inelastic light
scattering has a first-moment sum rule that involves the
potential energy of the material. We examined the results
explicitly for the Hubbard model, and showed that both
numerical evidence, and experimental measurements on
SmB6 indicate that these results can be used to quantify the
level of electron correlation in a given material. Note that
the sum rule holds in all dimensions, since it arises from an
operator identity. The similarity between the Hubbard-
model results and the experimental results indicates that
the correlations are probably dominated by local correla-
tions in SmB6, as expected for a three-dimensional system
(Fig. 3).
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