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Optical Sum Rules that Relate to the Potential Energy of Strongly Correlated Systems
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A class of sum rules for inelastic light scattering is developed. We show that the first moment of the
nonresonant response provides information about the potential energy in strongly correlated systems. The
polarization dependence of the sum rules provides information about the electronic excitations in different
regions of the Brillouin zone. We determine the sum rule for the Falicov-Kimball model, which possesses
a metal-insulator transition, and compare our results to the light scattering experiments in SmB6.
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One of the key signatures of strong electron correlations
in condensed matter systems is the redistribution of spec-
tral weight from low to high energies. A classic example of
this phenomenon occurs when a normal metal becomes a
superconductor at low temperatures. The optical conduc-
tivity is suppressed at low energy due to the presence of the
superconducting gap [1]. Because there is an optical sum
rule—the f-sum rule—which constrains the integrated
spectral weight in ����, the spectral weight suppressed
below the superconducting energy gap reappears as a delta
function peak at � � 0, reflecting the onset of many-body
coherence in the system. In high temperature superconduc-
tors, low-energy spectral weight has also been observed to
shift to high energies below the superconducting transition
[2]. This dramatic spectral weight transfer is believed to be
a signature of the strong electronic correlations in these and
related materials [3].

The use of sum rules in optical conductivity measure-
ments has had a wide impact in a number of fields of
science. The optical sum rule originated in atomic physics
as a relationship between the total number of electrons in
the atomic system and the integrated spectral weight [4]. In
a solid state system, the optical sum rule is usually pro-
jected onto the lowest energy band. In this case, the inte-
grated spectral weight associated with electrons in the
lowest band is related to the average kinetic energy of
the electrons, regardless of the nature of the electronic
interactions [5]. Since the electronic kinetic energy usually
varies on an energy scale on the order of electron volts, the
average kinetic energy is essentially a constant at low to
moderate temperatures, and so the optical conductivity
sum rule is essentially temperature independent.

It would be useful to have similar sum rules that relate to
the potential energy. In strongly correlated electron sys-
tems in which electronic interaction energies are on the
order of, or greater than, the kinetic energy, efforts to study
the potential energy as functions of doping, pressure, or
temperature have been hindered by the limited tools avail-
able for measuring dynamical properties. We show here
that the nonresonant inelastic light scattering response has
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sum rules similar to the f-sum rule that relate to the
potential energy, and that these sum rules should provide
valuable insight into the scattering of optical or x-ray
photons from materials [6]. As an added benefit compared
to optical conductivity measurements, inelastic light scat-
tering allows one to probe the electronic excitations in
different regions of the Brillouin zone (BZ) by orienting
the incident and scattered light polarizations. Our approach
shares some similarities with work performed on higher-
moment sum rules of the optical conductivity in a model
with an Umklapp scattering potential [7].

Shastry and Shraiman [8] were the first to point out that,
if the self-energy is local and d! 1, the optical conduc-
tivity and the nonresonant Raman response function in the
depolarized (incident photon polarization �I perpendicular
to the scattered photon polarization �S) scattering geome-
try are related according to ���� / S���=�, a relationship
that was proved in Ref. [9]. This result implies that there is
also a sum rule for Raman scattering, which is related to
the f-sum rule for the optical conductivity and to the
average kinetic-energy of the electrons.

In this Letter, we show that there are also interaction-
dependent sum rules for inelastic light scattering that are
related to the potential energy for q � 0 Raman scattering,
and to combinations of the potential and kinetic energies
for q � 0 inelastic x-ray scattering.

The formalism used to derive these sum rules is straight-
forward. If we consider the time-ordered product that
yields the susceptibility corresponding to the fluctuations
of an operator O

	�
� � TrhT 
e��HO�
�Oy�0�i=Z� �Trhe��HOi=Z�2;

(1)

where 
 is the imaginary time, H is the Hamiltonian, � is
the inverse temperature, Z � Tre��H is the partition
function, and O�
� � e
HOe�
H . Then it is easy to
show from the Lehmann representation that when the
susceptibility is Fourier transformed, and analytically con-
tinued to the real frequency axis, we get
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Z 1

0
d��Im	�q; �� �

�
2
Trhe��H �O; �H ;Oy��i=Z (2)

as the general sum rule for the first moment of the suscep-
tibility (the brackets indicate commutators). If we consider
the polarization operator Opol � e
iRini with ni the num-
ber density operator at site i, then this gives the f-sum rule
where ���� � Im	JJ���= �h� in terms of the current-
current correlation function 	JJ (with J � i�H ;Opol�= �h):
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Z 1

0
d����� �

�e2a2

2 �h
Trhe��H ��T̂�i=Z; (3)

with a the lattice spacing. The sum rule is proportional
to the average kinetic energy (we consider only
nearest-neighbor hopping on a hypercubic lattice T̂ �

�t
i;�;�c
y
i;�ci
�;� with � a nearest-neighbor translation

vector). Likewise, if we consider the dynamical charge
susceptibility Och�q� � 
kc

y
k
q=2;�ck�q=2;� we obtain
Z 1

0
d��Im	ch�q;���

�
2
Tr
�
e��H

X
k

���k
q�
��k�q��2��k��
��

Z���1�X�Trhe��H ��T̂�i=Z �ind!1� (4)
with X � limd!1

d
i�1 cos�ki�=d and ��q� the band struc-

ture. This vanishes as q2 for q � 0 as it must, due to total
charge conservation.

There is, however, no charge conservation for inelastic
light scattering with q � 0 optical photons (Raman scat-
tering). Raman scattering can be classified into repre-
sentations of the irreducible point group symmetry of the
crystal, selected by orienting the incident and scattered
polarization vectors. The light scattering polarizations al-
low energy fluctuations to be projected onto different re-
gions of the BZ, which has been useful in elucidating the
behavior of electron dynamics for different momentum
states [10]. For example, for nonresonant scattering in te-
tragonal systems, the operator OA1g

�q��
k��k�c
y
k
q=2�

ck�q=2� T̂�q� is the kinetic-energy operator for A1g scat-
tering, and OB1g

�q��
k��k
Q�cyk
q=2ck�q=2 is a modi-
fied kinetic-energy operator for B1g scattering for the zone
boundary wave vector Q � ��; 0� [which is generalized to
higher dimensions as Q � ��; 0; �; 0; . . .�]. Thus the A1g

scattering response is associated with energy fluctuations
from all regions of the BZ, while the B1g response is
associated with dynamics near the BZ edges and away
from the diagonals. The sum rule in Eq. (2) for nonresonant
light scattering is similar to the optical sum rule, except the
(model-dependent) operator average is different, and now
depends on the potential energy since H � T̂ 
 V̂ [see
Eq. (2)]. In the general case, there are two contributions:
one from the kinetic-energy commutator and one from the
potential energy commutator:
Z 1

0
d��Im	in�q;���

�
2Z

Trhe��H �T̂�q;Q�
Û�q;Q��i:

(5)

The first term on the right-hand side of Eq. (5) does not
depend on the type of Hamiltonian and is given by
T̂�q;Q� � �
k;�t�k;q;Q�cyk;�ck;�, with t�k;q;Q� �

��k�Q�q=2�2���k�q�� ��k��
 ��k�Q
q=2�2 �
���k
q�� ��k��. Regardless of the symmetry [Q � 0 for
A1g or ��; 0� for B1g] the kinetic-energy part of the sum
rule does not contribute to the �q � 0� Raman scatter-
ing response, but it does contribute to the �q � 0� inelastic
x-ray scattering response in a polarization-dependent
manner.

However the second term in Eq. (5) depends on the parti-
cular choice for the potential energy in the Hamiltonian.
Evaluating these sum rules for different models is compli-
cated, because the operator averages involve complex cor-
relation functions. We consider the simplest model here,
the spinless Falicov-Kimball model (FK) [11]

H FK � �
t�

2
���
d

p
X
hi;ji

cyi cj 
U
X
i

cyi ciwi: (6)

Here cyi �ci� creates (destroys) a conduction electron at
site i, wi is a classical variable (representing the local-
ized electron number at site i) that equals 0 or 1, t� is a
renormalized hopping matrix that is nonzero between
nearest neighbors on a hypercubic lattice in d dimen-
sions [12], U is the local screened Coulomb interaction
between conduction and localized electrons, and hi; ji
denotes a sum over sites i and nearest neighbors j. We
set the average filling for conduction and localized elec-
trons to 1=2.

For the FK model, the operator Û in the sum rule is

ÛFK�q;Q� �
Ut�2

2dN

X
i;�;�0

cyi ci
�
�0e
�iQ���
�0�

� �e�iq=2���
�
0��wi
�0 � wi
�
�0 �

� eiq=2���
�
0��wi � wi
���: (7)

This operator involves the difference of correlated hopping
operators, where the hopping of the conduction electrons is
correlated with the presence of the localized electrons; note
how the potential energy directly enters when �
�0 �0.
The operator for the Hubbard model is similar, but involves
complex spin and spin-flip hopping correlation functions.

The result in Eq. (8) is valid for any dimension. It can be
evaluated exactly by examining the large dimensional limit
using results from dynamical mean field theory (DMFT)
[13]. The result for the FK model is
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; (8)
with f�!� � 1=�1
 exp��!�� the Fermi function, G�!�
and 
�!� the Green’s function and self-energy, respec-
tively, and Z�!� � !
(� 
�!�. The difference be-
tween A1g and B1g scattering comes from the momentum
factors X0 � limd!1�1=d�


d
i�1 cos�qi=2�h

i, with h �
1��1� for A1g�B1g� scattering. Note that both the first
term associated with the kinetic energy and the second
term associated with the potential energy contribute to
the sum rule for inelastic x-ray scattering (q � 0). On
the other hand, only the second ‘‘potential energy’’ term
contributes to the sum rule for Raman scattering (q � 0).
Therefore, the sum rule’s momentum dependence contains
information regarding the potential and kinetic-energy
contributions.

Note that the sum rule for �X � 1� Raman scattering is
proportional to the correlated part of the self-energy, due to
the factor 
�!� �Uhwii which has the Hartree shift sub-
tracted off. Further, we note that in DMFT, where the self-
energy is local (and d! 1), the sum rule for B1g Raman
scattering would also apply to the second moment of the
optical conductivity:

Z 1

0
d��Im	B1g

�q � 0; �� /
Z 1

0
d��2����: (9)

However, this relationship is violated in finite dimensions
whether or not the self-energy has momentum dependence.

We plot the sum rule for the FK model in Fig. 1 for B1g

Raman scattering (q � 0) and different values of U as a
function of temperature (results for A1g are similar). We
have verified that an explicit integral of the nonresonant
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FIG. 1 (color online). B1g sum rules as a function of tempera-
ture for the spinless FK model solved within DMFT (the A1g

results are similar). The different curves correspond to different
values of the interaction strength increasing in steps of 0.5 from
0.5 on the lowest curve to 4.0 on the highest curve.
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Raman response agrees with the sum rule plotted in Fig. 1
for many different values of U and T. We expect similar
results to hold for other models of correlated electrons like
the Hubbard model. Figure 1 shows that these sum rules are
essentially constant at low temperature, indicating (i) the
sum rule can be used to calibrate data from different
samples and different temperatures; (ii) the sum rule can
be used to determine the frequency above which interband
transitions become prominent; (iii) the Raman response
function multiplied by the frequency should be used to
track spectral weight shifts because of the sum rule; and
(iv) the sum rules have a momentum dependence for
inelastic x-ray scattering that can be calculated and com-
pared to experiment. Note that unlike the f-sum rule,
which is evenly weighted throughout the spectral range,
the Raman sum rules are heavily weighted at higher en-
ergies due to the multiplication by the frequency. Conse-
quently, unless there is a clear separation between low and
high energy bands in the system, higher energy bands can
significantly distort the sum rule.

The momentum dependence of the sum rule is reduced
as U increases and the physical properties become more
local. The sum rule generally increases for increasing
momentum transfer since the kinetic-energy term in
Eq. (8) contributes to the sum rule as phase space is created
for light scattering by increasing q.

The underlying metal-insulator transition (MIT) is re-
vealed via a simple scaling analysis, shown in Fig. 2. It can
be shown that for metallic systems the sum rule varies as
U2 for small U, with large deviations occurring as the MIT
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FIG. 2 (color online). B1g scaled sum rules showing the scaling
behavior with U2 for the FK model discussed in the text. Devia-
tions in scaling occur when U � Uc �

���
2

p
t�, the critical value of

U for the metal-insulator transition in the half-filled FK model.
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FIG. 3 (color online). (a) Raman response multiplied by fre-
quency for SmB6 at four different temperatures (in K). (b) Corre-
sponding plot of the integrated sum rule as a function of the
frequency cutoff. All curves in (a) and (b) are plotted in arbitrary
units.
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is approached. In Fig. 2 we plot the sum rule divided byU2

for different temperatures as a function of U. We see that
the sum-rule data collapses for small U onto a single line
for all temperatures. The scaled data abruptly fans out from
the straight line at approximately U � Uc and a strong
temperature dependence emerges for larger U. Thus the
onset of a strong temperature dependence and deviations
from U2 scaling can be used as a straightforward and
quantitative way to identify a MIT from the optical data.

We show the relevance of these sum rules to an experi-
mental system that is ideal for this situation, SmB6. The
Raman results on SmB6 [14] provide an ideal comparison
to this model for several reasons: the spectra have a clear
separation between the low-energy (intraband) and high-
energy (interband) scattering contributions; only the low-
energy component in SmB6 exhibits significant spectral
weight changes due to the gap formation at low tempera-
tures; and the photon energy used in the experiment lies in
a gap in the density of states of SmB6, and therefore the
Raman response is not likely to be influenced by resonant
or mixed-scattering effects. When we take the Raman data,
and multiply by the frequency, we find that the sum rule
holds to within 5% in this system (see Fig. 3), confirming
the behavior determined from the FK model in DMFT
(Fig. 1).

In summary, we have discovered sum rules for inelastic
light scattering that are useful in analyzing both Raman
scattering and inelastic x-ray scattering. The sum rules
depend crucially on the form of the electron interactions,
and thereby yield useful information about the correlations
in the material. While light scattering data on correlated
metals or insulators is still rather limited (particularly with
regard to inelastic x-ray scattering), our sum rules may be
employed to analyze data and elucidate how the kinetic and
21640
potential energy of the system evolves as a function of
doping, pressure, or temperature. The existence of a sum
rule implies that it can be employed to calibrate light
scattering data (especially for inelastic x-ray scattering)
and it can be employed to try to discriminate between
different strongly correlated models. We believe the two
best methods for doing this are as follows: (i) compare the
efficacy with which different models satisfy both the mea-
sured optical conductivity f-sum rule and the measured
Raman scattering sum rules for different polarizations, or
(ii) measure the temperature dependence of the Raman
scattering sum rule for a range of temperatures, then com-
pare this measurement with the calculated temperature
dependence obtained using different models.
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