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Abstract. Inelastic light scattering is an important probe of the two-particle charge
excitations in a correlated material. We show how to determine the nonresonant response
to inelastic light scattering exactly in the limit of large spatial dimensions by employing
dynamical mean field theory. We examine the optical photon case of Raman scattering
and the X-ray photon scattering case which exchanges both energy and momentum with
the charge excitations. A number of formal details that have not appeared elsewhere are
included here.

1. Introduction

In correlated materials, two-particle properties, such as charge fluctuations,
may be quite different from single-particle properties (such as the interact-
ing density of states measured in photoemission). In particular, one expects
significant renormalization effects of the charge excitations near the corre-
lated metal-insulator transition. There are a number of direct experimental
probes of the charge excitations in a material. The most common probe is
an optical conductivity measurement, which is either performed directly in
a transmission geometry in the THz range, or involves a Kramers-Kronig
analysis of reflectivity data for higher frequencies. Another important ex-
perimental probe involves the inelastic scattering of light from the charge
excitations. If optical photons are used, the process is called electronic
Raman scattering, and only energy is exchanged with the correllated charge
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excitations. If X-rays are employed, then both energy and momentum are
exchanged with the charge excitations.

The theoretical description of inelastic light scattering is complicated,
and has only been solved recently in the limit of large dimensions (1, 2, 3).
This solution involves the exact evaluation of the two-particle diagrams for
nonresonant inelastic light scattering. Nonresonant scattering implies that
there is no feedback effect from the energy of the incident photon, and only
the transferred photon energy (and momentum) enters into the scattering
response function. While it is well known that many resonant scattering
effects exist, and indeed, resonant effects are necessary for some experiments
to even be possible, the main qualitative features of the inelastic scatter-
ing process are contained in the nonresonant formalism. Furthermore, the
computations are significantly more tractable.

2. Formal Development

We employ dynamical mean-field theory (DMFT) to solve the inelastic light
scattering problem. In DMFT, the electronic self energy is local, and only
the local piece of the irreducible vertex function enters into any physical
response function. We describe below how to formulate the inelastic light
scattering problem on a hypercubic lattice in d → ∞ dimensions. It turns
out that much of the formalism is independent of the explicit form of the
Hamiltonian, but the interactions must all be local. For concreteness, we
consider the Hubbard Hamiltonian (4)

H = − t∗

2
√

d

∑

〈i,j〉,σ

(c†iσcjσ + c†jσciσ) + U
∑

i

c†i↑ci↑c
†
i↓ci↓, (1)

with rescaled hopping integral t∗ (5) (between nearest neighbors—the sum-
mation is over nearest-neighbor pairs) and screened Coulomb integral U .

The c†iσ (ciσ) operators create (destroy) an electron with spin σ at site i. The

noninteracting bandstructure is ǫ(k) = − limd→∞
∑d

i=1 t∗ cos(ki)/
√

d and
the noninteracting DOS becomes ρ(ǫ) = exp(−ǫ2)/t∗

√
π. The inelastic light

scattering response function is given by an effective density-density corre-
lation function S(q, ν) = − 1

π
[1+n(ν)]Imχ(q, ν) for transferred momentum

q and energy ν with

χ(q, ν) = 〈[ρ̃(q), ρ̃(−q)]〉(ν) (2)

formed with an “effective” density operator given by

ρ̃(q) =
∑

k,σ

γa(k)c†σ(k + q/2)cσ(k − q/2), (3)
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where the c†σ(k) and cσ(k) operators create or destroy an electron with spin
σ and momentum k and n(ν) = 1/[1 − exp(ν/T )] is the Bose factor. The
strength of the scattering γa is determined by the curvature of the band as

γa(k) =
∑

α,β

es
α

∂2ǫk
∂kα∂kβ

ei
β . (4)

Here ei,s denote the incident, scattered photon polarization vectors, respec-
tively, and we have chosen units kB = c = ~ = t∗ = 1 and have set the
hypercubic lattice constant equal to 1. We can classify the scattering am-
plitudes by point group symmetry operations. If we choose ei = (1, 1, 1, ...)
and es = (1,−1, 1,−1, ...), then we have the B1g sector, while ei = es =
(1, 1, 1, ...) projects out the A1g sector since the B2g component is identically
zero in our model due to the inclusion of only nearest-neighbor hopping (1).
Hence γA1g

(q) = −ǫ(q) and γB1g
(q) = t∗

∑∞
j=1 cosqj(−1)j/

√
d.

Figure 1. Coupled Dyson equations for the inelastic light scattering density-density
correlation functions described by the scattering amplitude γa. Panel (a) depicts the
Dyson equation for the interacting correlation function, while panel (b) is the supple-
mental equation needed to solve for the correlation function (the difference in the two
equations is the number of γa factors). The symbol Γ stands for the local dynamical
irreducible charge vertex. In situations where there are no charge vertex corrections (like
B1g scattering along the zone-diagonal), the correlation function is simply given by the
first (bare-bubble) diagram on the right hand side of panel (a).

The Dyson equation for the density-density correlation function takes
the form given in Figure 1. Note that there are two coupled equations
illustrated in Figures 1 (a) and (b); these equations differ by the number
of γa factors in them. The irreducible vertex function Γ is the dynamical
charge vertex which is known explicitly only for the Falicov-Kimball mod-
el (6). If the scattering amplitude γ does not have a projection onto the full
symmetry of the lattice, then there are no vertex corrections from the local
dynamical charge vertex (7). This is the only case that can be analyzed for
the Hubbard model.

Let’s begin our discussion on the imaginary axis in the B1g sector. If we
restrict ourselves to the zone diagonal, then q = (q, q, q, ..., q). Examining
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the diagrams in Figure 1 (a), we see that there is a bare response plus a
vertex correction term. The vertex correction term, however, must vanish,
because the leftmost piece of that diagram is

0 = −T
∑

n

∑

k

lim
d→∞

d
∑

j=1

cos(kj)(−1)j

√
d

1

iωn + µ − Σ(iωn) − ǫ(k − 1
2q)

× 1

iωn + iνl + µ − Σ(iωn + iνl) − ǫ(k + 1
2q)

(5)

for “energy” transfer iνl = 2iπT l and momentum transfer q [in Eq. (5)
iωn = iπT (2n + 1) is the fermionic Matsubara frequency and µ is the
chemical potential]. It vanishes, because each term indexed by j is equal
in magnitude, but opposite in sign, so the overall summation is equal to
zero. Hence the B1g response on the zone diagonal (including the Raman
response) is given by the bare bubble.

The bare bubble on the zone diagonal is simple to calculate directly (we
shift k → k + q/2):

χ0(q, iνl) = −T
∑

n

∑

k

lim
d→∞

d
∑

i,j=1

cos(ki + 1
2q) cos(kj + 1

2q)(−1)i+j

d

× 1

iωn + µ − Σ(iωn) − ǫ(k)

× 1

iωn + iνl + µ − Σ(iωn + iνl) − ǫ(k + q)
. (6)

Now, the terms with i 6= j are all equal in magnitude, but there are as many
positive as negative, so they vanish—only the terms with i = j survive. If
we assume that n and n + l are both larger than 0, and define Zn = iωn +
µ − Σ(iωn), then we can rewrite the fractions as integrals of exponentials

χ0(q, iνl) = T
∑

n

∑

k

lim
d→∞

d
∑

j=1

cos2(kj + 1
2q)

d

×
∫ ∞

0
dλ

∫ ∞

0
dλ′ exp[iλZn + iλ′Zn+l − iλǫ(k) − iλ′ǫ(k + q)]. (7)

To evaluate this integral, we first expand the functions ǫ(k) and ǫ(k + q)
in terms of the Cartesian momentum components. Then it is obvious that
each j term is equal in magnitude, so the sum over j is trivial. The next step
is to expand each exponential factor that has a 1/

√
d prefactor in a Taylor

series expansion, and keep the lowest nonvanishing terms in the multiple
integrals (8). The multiple integral over momentum then becomes

limd→∞

∫

dk1

∫

dk2...

∫

dkd cos2(k1 +
q

2
)
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d
∏

j=1

(

1 +
i√
d
λ cos kj +

i√
d
λ cos(kj + q) − λ2

2d
cos2 kj

− λλ′

d
cos kj cos(kj + q) − λ′2

2d
cos2(kj + q) + ...

)

. (8)

Here we have chosen the extra prefactor to lie in the 1 direction. Each
integral over kj , except the first, is equal to each other and equal to 1 −
(λ2 + 2λλ′X(q) + λ′2)/4d + ... . The first integral becomes 1

2 [1 − (λ2 +

2λλ′X(q)+λ′2)/4d−(λλ′+λ′2 cos q) sin2 q/8d+...]. Here we use the notation
X(q) = limd→∞

∑d
j=1 cos qj/d (= cos q for a zone-diagonal momentum).

The next step is to rewrite each factor as an exponential, and then take the
infinite product. The result for the integral over k is

1

2
exp

[

−λ2 + 2λλ′X(q) + λ′2

4

]

(9)

since the terms proportional to sin2 q coming from the 1-direction are just
a 1/d correction. The end result for the susceptibility is then

χ0(q, iνl) = −1

2

∫

dǫρ(ǫ)
1

Zn − ǫ

1√
1 − X2

F∞

(

Zn+l − Xǫ√
1 − X2

)

, (10)

with F∞ the Hilbert transformation of the DOS: F∞(z) =
∫

dǫρ(ǫ)/(z − ǫ).
The analytic continuation of this expression is straightforward, and

produces the final result for the B1g response

χB1g
(q, ν) =

i

4π

∫ ∞

−∞
dω{f(ω)χ0(ω; X, ν) − f(ω + ν)χ∗

0(ω; X, ν)

− [f(ω) − f(ω + ν)]χ̃0(ω; X, ν)}
(11)

with

χ0(ω; X, ν) = −
∫ ∞

−∞
dǫρ(ǫ)

1

ω + µ − Σ(ω) − ǫ

1√
1 − X2

× F∞

(

ω + ν + µ − Σ(ω + ν) − Xǫ√
1 − X2

)

, (12)

and

χ̃0(ω; X, ν) = −
∫ ∞

−∞
dǫρ(ǫ)

1

ω + µ − Σ∗(ω) − ǫ

1√
1 − X2

× F∞

(

ω + ν + µ − Σ(ω + ν) − Xǫ√
1 − X2

)

. (13)

Here f(ω) = 1/[1 + exp(ω/T )] is the fermi factor.
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A similar, but more complicated analysis can be performed for the A1g

response, or the B1g response off of the zone diagonal, but we don’t have
enough space to report those results here, and they cannot be analyzed
numerically for the Hubbard model.

3. Results

Figure 2. Nonresonant B1g Raman response (X = 1) for different temperatures at
U = 4.24 and half filling. The numbers in the legends label the temperature.

We employ a numerical renormalization group analysis to determine the
self energy and Green’s function of the Hubbard model on the real axis (9).
We begin by showing Raman scattering results at half filling for U = 4.24
and a variety of temperatures in Figure 2. At this value of U , the system
is a correlated insulator for all temperatures. The results display all of
the behavior seen on correlated insulators like FeSi (10), or SmB6 (11), or
the high-temperature superconductors (12). In particular, we see a charge-
transfer peak at high-energy and the onset of low-energy spectral weight
at a low (but nonzero) temperature. The curves also cross at the so-called
isosbestic point (near ν ≈ 3.2).

We show the inelastic X-ray scattering at four different temperatures
for a slightly smaller value of U and at n = 0.9 in Figure 3. Here the
behavior is quite different because the system is metallic for all tempera-
tures. In particular, we see a Fermi-liquid peak form and evolve toward zero
frequency as T is lowered for momentum transfer near the zone diagonal.
But for finite momentum transfer, the peak never fully evolves. In addition,
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Figure 3. Nonresonant B1g inelastic X-ray response for different temperatures at
U = 3.54 and ρe = 0.9. Five values of the transferred photon momentum are plotted,
each shifted by an appropriate amount, and running from the zone center (X = 1) to
the zone boundary (X = −1) along the zone diagonal. The temperature decreases with
decreasing thickness of the lines and ranges from 0.503 to 0.114 to 0.042 to 0.026.

there is significant “mid-IR” spectral weight occuring at energies below the
charge-transfer peak but not corresponding to the fermi peak.

4. Conclusions

We have presented a number of new results for the inelastic scattering
of light with correlated materials. On the insulating side of the metal-
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insulator transition, Raman scattering results agree well with experiments
that have been performed on a wide variety of different materials. We find a
number of interesting features for correlated metals as well, and it would be
interesting to experimentally measure both Raman scattering and inelastic
X-ray scattering for these materials. We expect this behavior might be able
to be seen in a variety of different heavy-fermion compounds.
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