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Frustrated phase separation in the momentum distribution of field-driven light-heavy Fermi-Fermi
mixtures of ultracold atoms
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Time-of-flight images are a common tool in ultracold atomic experiments, employed to determine the
quasimomentum distribution of the interacting particles. If one introduces a constant artificial electric field,
then the quasimomentum distribution evolves in time as Bloch oscillations are generated in the system and then
are damped, showing a complex series of patterns. In different-mass Fermi-Fermi mixtures, these patterns are
formed from a frustrated phase separation in momentum space that is driven by Mott physics for large electric
fields which stabilize them for long times.
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I. INTRODUCTION

It is well known that systems driven out of equilibrium
can sometimes develop persistent patterns in space and time
which are metastable [1]. Can such metastable hydrodynamic
instabilities persist in quantum fluids? Here we show an
example which does in light-heavy Fermi-Fermi mixtures
placed in a uniform artificial electric field [2].

Many different mixtures of ultracold atoms have already
been made in the laboratory. We are interested in light-heavy
mixtures of fermionic atoms, which include 6Li and 40K
mixtures as the only possibility in the alkali-metal series. With
the advent of alkaline-earth species, there are a number of
possible Fermi-Fermi mixtures of different masses that can
be achieved, as well as alkali-metal–alkaline-earth mixtures.
In particular, experiments have already demonstrated such
mixtures and have also examined the phenomenon of Bloch
oscillations in optical lattices [3], so the experiment we
describe below is feasible with experimental setups available
today.

The equilibrium system of such a light-heavy mixture is
described by the Falicov-Kimball model [4,5] [which can be
obtained from the Hubbard model by fixing one of the spin
species on the lattice (heavy) while the other is allowed to hop
(light)]:
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where c
†
i (ci) is the creation (annihilation) operator for a

light fermionic atom at site i, wi = 0,1 is the occupation
number operator of a heavy fermionic atom at site i, U is
the s-wave interspecies interaction for doubly occupied lattice
sites, J ∗

ij = J ∗ is the rescaled hopping amplitude between
nearest-neighbor sites i and j of the light atoms and is used
as the energy unit, and μ is the light-atom chemical potential.
The system is initially in equilibrium at a temperature T = 0.1
(in units of J ∗), which is experimentally feasible and is
higher than the equilibrium critical temperature Tc for density
wave formation or phase separation. A constant (artificial)

electric field E along the diagonal of the hypercubic lattice
with E = E(1,1,1, . . . ) is then switched on at time t = t0 and
kept constant for subsequent times (this can be done using
techniques in Ref. [2] or by using a light sheet to create a linear
potential). In either case, the uniform electric field E(t) can
be described by a vector-potential-only gauge with nonzero
A(t) and E(t) = −∂A(t)/∂t , which is incorporated into the
Hamiltonian via the Peierls substitution [6]:

J ∗
ij → J ∗

ij e
−i

∫ Rj

Ri
A(t)·dr

. (2)

This problem is similar to an interaction quench, where a
parameter of the Hamiltonian is instantaneously switched from
one constant value to the other, except here we have current
flow, so thermalization is not so obvious [7]. We choose our
units so that c = e = � = 1.

To solve this problem, we consider the infinite-dimensional
limit of the hypercubic lattice (d → ∞ where the noninter-
acting density of states is a Gaussian [8]), and we use the
dynamical mean-field theory (DMFT) [9–11], which is exact
in infinite dimensions and provides a good approximation in
finite dimensions at least if the temperature is not too low. In
fact, a direct comparison of the DMFT and two-dimensional
quantum Monte Carlo (QMC) results for the Falicov-Kimball
model shows excellent agreement [12]. We ignore the trap in
this work.

Each atomic species is chosen to have only one spin state,
so we can ignore the intraspecies interaction. We consider the
model at half filling for each atomic species (ρlight = ρheavy =
0.5), where it obeys particle-hole symmetry.

II. METHODS

Our solutions are formulated in the Kadanoff-Baym-
Keldysh formalism [13,14], in which observables are related
to two-time Green’s functions. The Green’s functions are
calculated for times on the Kadanoff-Baym-Keldysh contour
which is discretized with a spacing �t between consecutive
times on the real branch while the imaginary branch has
a spacing of 0.1i, as shown in Fig. 1. The calculation is
carried out for different values of �t and is then extrapolated
using a quadratic extrapolation to �t = 0. The two-time
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FIG. 1. Kadanoff-Baym-Keldysh contour for the nonequilibrium
calculation of the two-time Green’s function.

contour-ordered Green’s function is defined by

Gc
k(t,t ′) = −i Tr Tce

−βHeqck(t)c†k(t ′)/Zeq, (3)

with the operators in the Heisenberg representation. Here k is
a quasimomentum vector in the Brillouin zone, β = 1/T is
the inverse temperature, and Zeq is the equilibrium partition
function. (In the remainder of the paper, we will refer to
quasimomentum as momentum.) In the presence of a constant
electric field along the diagonal, the infinite-dimensional k
space can be mapped onto a two-dimensional space character-
ized by a band energy E(k) given by Eq. (4) and the negative
of the band velocity projected onto the direction of the electric
field V (k) given by Eq. (5) as follows:
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d→∞

J ∗
√

d

d∑

i=1

cos(ki), (4)

V (k) = − lim
d→∞

J ∗
√

d

d∑

i=1

sin(ki), (5)

where the ki’s denote the coordinates of the momentum vector
along the different axes of the hypercubic lattice. The two-
time Green’s function is calculated within the nonequilibrium
DMFT where the self-energy keeps its time dependence but
has no momentum dependence. This can be written as

�k(t,t ′) = �(t,t ′). (6)

To calculate the local contour-ordered Green’s function
Gc

loc(t,t ′), a summation over momentum is necessary. We
use the above mapping of the momentum onto the band
energy E(k) and band velocity V (k) to reduce the summation
to a double integration which is then calculated using a
double-Gaussian integration (which employs at least 2500
total Gaussian integration points). The retarded and the lesser
Green’s functions, GR

k (t,t ′) and G<
k (t,t ′), defined by Eqs. (7)

and (8), respectively, where {·,·}+ denotes the anticommutator,
are extracted from the local contour-ordered Green’s function.

GR
k (t,t ′) = −i θ (t,t ′)TrTc e−βHeq{ck(t),c†k(t ′)}+/Zeq, (7)

G<
k (t,t ′) = i Tre−βHeqc

†
k(t ′)ck(t)/Zeq. (8)

The complete description of this solution is given in
Ref. [11]. In addition, the algorithm also determines the
local self-energy. From this, the k-dependent retarded and
lesser Green’s functions, GR

E(k),V (k)(t,t
′) and G<

E(k),V (k)(t,t
′),

are constructed by using Dyson’s equation and the momentum-
dependent noninteracting Green’s function in the presence of
a field. Note that these Green’s functions are calculated in the

vector-potential-only gauge. In an experiment, one performs a
time-of-flight measurement by suddenly dropping the trap and
the lattice and allowing the atoms to expand before imaging
them with resonant light. In this case, one actually measures the
momentum distribution in the gauge [15]. Since many gauge
choices are possible for a particular experiment, it is easier to
represent the results in terms of the gauge-invariant Wigner
distribution [16]. One can always reconstruct the experimental
measurements by transforming from the gauge-invariant re-
sults to those in the particular gauge of the experiment. For the
results presented here, this transformation involves a rotation at
the Bloch frequency if the vector-potential gauge is employed
in the experiment.

The gauge-invariant Wigner distribution is defined by

nE(k),V (k)(t) = −iG<
E(k+A(t)),V (k+A(t))(t,t), (9)

but we actually calculate it from the ratio

nE(k),V (k)(t) = −i
G<

E(k+A(t)),V (k+A(t))(t,t)

GR
E(k+A(t)),V (k+A(t))(t,t)

(10)

since the equal-time retarded Green’s function is simply the
equal-time anticommutator which is equal to 1. We find this
ratio expression to converge faster to the �t → 0 result since
the retarded Green’s function for a given discretization size
often is not precisely equal to 1. The convergence is generally
robust for small interactions and becomes harder for large
interactions for which a finer time grid is required and for
which the equilibrium result is difficult to reproduce. Moment
sum rules extrapolated to �t = 0 are used to gauge the
accuracy of the final calculations.

In equilibrium, the noninteracting momentum distribution
is given by the Fermi-Dirac distribution function. In nonequi-
librium and with interactions, it is given by the gauge-invariant
Wigner distribution nk(t) = −iG<

k+A(t)(t,t) [16], which de-
pends only on the two aforementioned variables and is denoted
nE(k),V (k)(t). We use this quantity to track the occupation of
states in momentum space as a function of time in different
parameter regimes with both E(k) and V (k) between −3.9
and 4.0. This corresponds to the observable that would be
measured in a time-of-flight experiment after postprocessing
to make it gauge invariant.

III. RESULTS

Prior to the electric field being switched on, the system
is in equilibrium at a temperature T = 0.1, and the Wigner
distribution in momentum space is shown in the top panel of
Fig. 2 for U = 0.25 and is similar for other values of U (but
broadened). Vertical cuts through the data are plotted in the
bottom panel for V (k) = 0 as a function of E(k) for various
values of U . Note that despite its similarity to the Fermi-Dirac
distribution of a noninteracting system (which is recovered for
U = 0.0), this result includes the effects of interactions. The
shaded area represents the range [0.45,0.55] over which nk
is plotted in the top panel. This same range is used for all
of the following figures because it is the typical range over
which the structures are seen in the long-time behavior. This
10% fluctuation in the signal should be measurable in current
experiments.
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FIG. 2. (Color online) False-color image of the initial equilib-
rium Wigner distribution function at T = 0.1. The top panel plots
nk as a function of E(k) and V (k) for U = 0.25. The bottom panel
shows nk as a function of E(k) for V (k) = 0.0 and different values
of U ; the shaded area represents the range [0.45,0.55] over which
nk is plotted in the top panel. The deviation from the Fermi-Dirac
distribution for T = 0.1 comes from the many-body effects of the
interactions between the two types of atoms.

In the case of a noninteracting system, turning on a
static electric field produces Bloch oscillations characterized
in frequency space by Wannier-Stark ladders [17] and in
momentum space by periodic oscillations with a period of
2π/E . These Bloch oscillations can be measured in the current
or other observables [10,11,18,19]. The time evolution of the
gauge-invariant Wigner distribution in momentum space is
simply the rotation of the equilibrium configuration around
the origin like a clock hand with an unchanged Fermi surface
shape.

With the interspecies interaction turned on, the Bloch
oscillations are gradually damped and decay towards zero,
while the Wannier-Stark ladder in frequency space broadens
and (for large electric fields) splits due to Mott transitions in
each of the minibands [11]. The Joule heating resulting from
the interaction increases the energy of the system at a rate
given by J (t) · E , with J (t) being the light-atom current [20].
This current eventually decays to zero as the isolated system

either thermalizes to an infinite temperature or gets stuck in
a nonthermal nonequilibrium steady state. When thermaliza-
tion occurs, all states are equally occupied, and we expect
limt→∞ nE,V = 0.5 for all (E,V ) points [7]. Regardless of the
thermalization scenario, the long-time limit is approached with
the formation of specific patterns depending on the values of
the electric field and the interspecies interaction. Two time
scales characterize this development. One is related to the
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FIG. 3. (Color online) False-color images of the evolution of the
gauge-invariant Wigner distribution in momentum space at different
times for E = 2.0 and U = 0.25. Each panel shows a snapshot of
nk(t) at an instant in time after the field is switched on (at t0). (a)–(d)
show the evolution for multiples of the time scale 2π/E , while (e)–(h)
show multiples of the time scale 2π/U .
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Bloch oscillations, TBloch = 2π/E , and the other is related to
the collapse and revival of the Bloch oscillations for large
fields and small interactions, TBeat = 2π/U [19,21,22]. We
focus here on the large-field case (E = 2), which has rich
behavior that should be detectable in experiments.

Figure 3 shows different stages of the time evolution of
the gauge-invariant Wigner distribution in the (E,V ) plane
for E = 2.0 and U = 0.25. Figures 3(a)–3(d) probe the time
scale TBloch, while Figs. 3(e)–3(h) probe the time scale TBeat.
This evolution is characterized by the formation of concentric
ring-shaped disturbances with a region of high occupation and
a region of low occupation that are spawned at the origin,
(E,V ) = (0,0), and then move outward while at the same time
oscillating around this origin (as an analogy to help picture
the inherent motion that can be seen in the movies provided
in the Supplemental Material, this is similar to a pebble being
dropped into a pond). These disturbances are formed on a
time scale of TBeat reminiscent of the beats that are observed
in the current as a function of time for large fields and small
interaction values as previously illustrated in Ref. [11]. While
they are moving away from the center, these disturbances also
subtly rotate around the origin with a time scale of TBloch. Each
new TBeat time interval sees the formation of a new ring at the
origin; they eventually pack closer and closer together at long
times, making the region more homogeneous. Movies of the
evolutions are shown in the Supplemental Material [23], where
it is easier to see the additional rotations with period TBloch.

In Fig. 4, the evolution is observed for the same value
of the electric field, E = 2.0, and U = 1.0. In this case, the
formation of the rings, their outward motion away from the
origin, and their oscillation around the center occur on similar
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FIG. 4. (Color online) False-color images of the evolution of the
gauge-invariant Wigner distribution in momentum space with time
for E = 2.0 and U = 1.0. Each panel shows a snapshot of nk(t) at
the corresponding instant in time.

time scales. As a result, the rings are no longer separated as in
the case of smaller interactions. Instead, we see the formation
of a spiral whose length grows with time. The spiral grows in
length with the addition of a new layer after each TBeat time
step in a way analogous to the case of smaller interactions.
The central region has a persistent pattern similar to the yin
and yang symbol in Chinese culture.

When the interspecies interaction becomes larger, we see
the formation in the middle of the spiral of a feature with
one region of high occupation and one of low occupation (see
Fig. 5). The formation of rings is initially reduced to that of
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FIG. 5. (Color online) False-color image of the evolution of the
gauge-invariant Wigner distribution with time for E = 2.0 and U =
3.0. (a)–(d) show the behavior of the system on the time scale 2π/U ,
while (e)–(h) show the time scale 2π/E .
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small sharp edges on two well-defined regions, as shown in
Figs. 5(a)–5(d). At even longer times, we observe no further
changes to this central feature, and all the disturbances seem
to be taking place outside of the simulated region. Throughout
this evolution, the whole system rotates around the origin with
a period of TBloch, as seen in Figs. 5(d)–5(h). The size of this
region grows with the interaction, so that for even larger U , one
would see a behavior analogous to the rotating Fermi surface
of the noninteracting system at the Bloch frequency (when
restricted to this 0.45–0.55 window).

The evolution of the gauge-invariant Wigner distribution
shows the development of patterns that are robust and persis-
tent up to long times. These patterns are most apparent when
one focuses in on a window around the infinite-temperature
thermal state where nk = 0.5. Initially, the Wigner distribution
is between 0 and 1, and as the system heats up due to Joule
heating, this interval is gradually reduced, so that at long times,
the high-density region and the low-density region are shown
with Wigner distributions focused between 0.45 and 0.55. The
distribution will appear to saturate quickly if plotted for values
smaller than 0.45 and larger than 0.55. Note that the diffraction
pattern at the boundaries between different regions is due to
the rendering algorithm of the plotting software [24] and is
not a physical result. Movies showing the real-time evolution
of the Wigner distribution for the different regimes described
here are available in the Supplemental Material, along with a
description of their production.

IV. CONCLUSION

We have studied the real-time evolution of the distribution
function in the momentum space of a field-driven light-heavy
Fermi-Fermi mixture and have found a surprising long-time
stability of complex patterns in momentum space. The origin
of this behavior lies in the tendency for these systems to
phase separate when near a Mott phase [25,26]. Because

of the localizing effect of the field (which causes Wannier-
Stark ladders of minibands with infinitesimal bandwidths),
the Mott-like behavior is enhanced. For example, in the
large-field regime even a small interaction can cause the
Wannier-Stark-ladder-like peaks to split [11], creating Mott
transitions in the minibands at interaction strengths much
lower than the critical field needed in the absence of the
field. But since the heavy particles must remain spatially
homogeneous because they are not coupled to the field,
the phase separation can occur only in momentum space
as it is completely frustrated in real space. The frustrated
phase separation is driven by the large mass difference,
which enhances the tendency for phase separation; similar
calculations for the Hubbard model show no such patterns [27].
What this implies is that the inherent tendency towards phase
separation, which occurs when the interaction between the two
species is large, is amplified in the presence of a large field.
But because the heavy particles are immobile in the model
(and move quite slowly in experiment), the system cannot
phase separate in real space, so it must do so in momentum
space, giving rise to the long-term stability of these systems.
This nonequilibrium dynamical phase separation should be
observable in cold-atom experiments with currently available
technology.
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