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We calculate the resonant inelastic x-ray scattering (RIXS) response in a Mott insulator, which is described
by the Falicov-Kimball model. The model can be solved exactly within the single site dynamical mean-field
theory (DMFT) approximation and the RIXS response can also be calculated accurately up to a local background
correction. We find that on resonance the RIXS response is greatly enhanced. The response systematically evolves
from a single-peak structure, arising due to relaxation processes within the lower Hubbard band, to a two-peak
structure, arising due to relaxation processes within the upper Hubbard band and across the Mott gap into the
lower Hubbard band. This occurs as we vary the incident photon frequency to allow excitations from the lower
Hubbard band to the upper Hubbard band. The charge transfer excitations are found to disperse monotonically as
we go from the center of the Brillouin zone towards the zone corner. These correlation-induced features have been
observed by Hasan et al. [Science 288, 1811 (2000)] and many other experimentalists in RIXS measurements over
various transition-metal oxide compounds. They are found to be robust and survive even for large Auger lifetime
broadening effects that can mask the many-body effects by smearing out spectral features. As a comparison, we
also calculate the dynamic structure factor for this model, which is proportional to the nonresonant part of the
response, and does not show these specific signatures.
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I. INTRODUCTION

Resonant inelastic x-ray scattering is essentially a deep
core level spectroscopic method that is increasingly becom-
ing an essential technique in understanding the complex
electronic dynamics of a wide class of novel materials like
cuprates, manganites, and various other transition-metal oxide
compounds. In the RIXS process, a highly energetic x-ray
photon (with energy ∼1–10 keV) excites a deep core level
electron into the unoccupied states of the conduction band. The
excited electron then undergoes inelastic scattering processes
with various intrinsic excitations present in the system and
finally, a conduction band electron fills up the core-hole and
emits a photon with relatively lower energy. So, this is a
two-photon inelastic process with no core-hole present in
the final state. The transferred energy and momentum to the
intrinsic excitations of the system as well as the change in
the polarization of the scattered photon can provide important
information regarding these excitations. Also, RIXS being a
resonant technique, the incident photon energy can be chosen
to coincide with, and hence resonate with, certain intrinsic
x-ray atomic transitions which in effect can greatly enhance
the inelastic scattering cross section. This enhancement allows
RIXS to be used as a probe for charge, magnetic, and orbital
degrees of freedom on selective atomic sites.

RIXS has several advantages over other spectroscopic
techniques like angle resolved photo-emission spectroscopy
(ARPES) and neutron scattering. First, in ARPES, the incident
photon knocks out an electron from the system and hence
can only probe the occupied states in a system, whereas
RIXS, being a high-energy process, can excite a system
into unoccupied intermediate states (like the upper Hubbard
band in a Mott insulator) and hence can be used as a
probe for understanding complex electron dynamics in those
strongly correlated intermediate states. Inverse photoemission
techniques, in which an electron is injected into the system,

can also access the unoccupied states of a system. But this
method will charge the system and so far no momentum
resolved inverse photoemission spectroscopy with sufficient
energy resolution has been developed. Second, the scattering
phase space, i.e., the range of energies and momenta that
can be transferred in the RIXS process, is much larger than
other available photon scattering techniques involving visible
or infrared light. As a result, RIXS can probe low-energy
excitations over a wider range of the Brillouin zone and most
importantly it can be used to probe all three directions of
the Brillouin zone, and hence can be used even for materials
that are intrinsically three dimensional in nature. On the
other hand, ARPES, because of the in plane momentum
conservation, is widely used for materials which are inherently
two dimensional in nature. For three-dimensional materials,
the analysis of ARPES spectra is much more complicated (the
perpendicular component of momentum is integrated over in
the ARPES spectra). Another advantage is that the electron-
photon interaction is much stronger than the electron-neutron
interaction (which arises through the magnetic dipole-dipole
interaction). As a result, RIXS can be used on small volume
samples, thin films, surfaces, and nano-objects in addition to
bulk single crystal or powder samples. Besides these, RIXS
is polarization dependent and hence can be used to probe
magnetic excitations and also it can be used as a probe
for certain specific elements or orbitals in a system. The
main disadvantage of RIXS over other techniques is that it
requires substantially large incident photon flux in order to
have comparable or better energy and momentum resolution.
But recent progress in RIXS instrumentation has dramatically
improved upon this situation and RIXS is beginning to become
an important probe for condensed matter physics.

Over the past decade or so, RIXS measurements have
been performed over large classes of transition-metal oxide
compounds like cuprates, manganites, iridates, etc. (see
Ref. 1 for a detailed review). Most notably, RIXS
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measurements have been performed at the Cu K

edge2–11 over a large class of cuprates like the un-
doped La2CuO4,3,7 Nd2CuO4,2,4 Sr2CuO2Cl2,2 Ca2CuO2Cl2,5

quasi-one-dimensional cuprates like SrCuO2,6,8 Sr2CuO3,6

hole-doped cuprates La2−xSrxCuO4,11 YBa2Cu3O7−δ ,9 and
electron-doped cuprates Nd1.85Ce0.15CuO4.10 Also, RIXS
has been performed at the Cu L3 edge12–14 over vari-
ous undoped cuprates CuO,12 Sr2CuO2Cl2,12 La2CuO4,12,14

and doped systems Bi2Sr2CaCu2O8+δ , Nd2−xCexCuO4,12

La2−xSrxCuO4.12–14 Besides these, RIXS measurements at the
Mn K edge in the orbitally ordered manganite LaMnO3,15 at
the Mn L2,3 absorption edge in MnO,16 at the Ni L3-edge
in NiO,17 and at the Ir L3 edge in the 5d Mott insulator
Sr2IrO4

18,19 have also been reported. A common feature of
these materials is that all of them are either Mott insulators
or doped Mott insulators and have interesting magnetic
ground states. RIXS measurements on these materials have
probed energy and momentum resolved features of charge
transfer excitations,5,6,19 dd excitations12,13,16 (arising due to
transitions between crystal field split d orbitals), orbitons15 in
orbitally ordered systems and even magnetic excitations like
magnons14 and bimagnons.11

Theoretical approaches in understanding the RIXS response
are mainly either based on exact diagonalization of model
Hamiltonians over finite but small clusters5,20–23(typically with
a large Auger broadening put in by hand) or based on a single-
particle approach24–30 that includes realistic band structure
effects. The correlation effects are treated perturbatively
under the random phase approximation24–28 (RPA) or under
a self-consistent renormalization29,30 (SCR) approach and the
effect of scattering from the core hole in the first-order Born
approximation or multiple scattering approximation. The exact
diagonalization method treats the strong correlation effects ex-
actly but because of the exponentially growing basis problem,
this method is limited to small size clusters and small number
of orbitals and hence has limited momentum resolution. Also,
the effects of the core hole in this approach as well as in the
SCR-based calculations are taken either through an input core-
hole lifetime, arising due to Auger and fluorescence effects,
which broadens the intermediate states or under the ultrashort
core-hole lifetime (UCL) approximation31,32 that is found to
be perturbatively exact for small as well as large core-hole
potentials. But the effect of the core-hole lifetime arising solely
due to intrinsic strong correlation effects in a Mott insulator
on the RIXS response has not been addressed so far and in
this work we use the Falicov-Kimball33 (FK) model to address
this issue. The main motivation in choosing the FK model is
that the FK model is one of the simplest models of strongly
correlated electron systems that can be exactly solved34,35

under the single-site dynamical mean-field theory36,37 (DMFT)
approximation and most notably shows a Mott insulating
ground state for large interaction strength between the itinerant
and the static electrons. Also, the fully renormalized two-
particle dynamic charge correlation function involving the
itinerant species as well as the finite temperature core-hole
propagator in this model can be calculated exactly.

One might ask how this solution for RIXS in the Falicov-
Kimball model compares with the solution in the Hubbard
model. Since the exact solution for the Hubbard model is
not known, we can only speculate here. But because the

predominant property of the Mott phase (above the magnetic
ordering temperature) is its gap, we expect that much of the
results in this regime will be generic to the two models.
This reasoning has shown to be true when comparing Raman
scattering calculated in the Falicov-Kimball model to that
calculated in the Hubbard model,38,39 where in the insulating
phase much of the behavior was quite similar, with details
varying in the temperature dependence.

In the following sections, we calculate the RIXS response
in the limit of large core-hole energy using only two ap-
proximations: (1) we neglect some momentum independent
background contributions and (2) we calculate the charge
vertex for the core-hole–band-electron exchange processes
(see below) under the Hartree-Fock approximation. The
organization of the paper is as follows. In Sec. II, we provide a
brief mathematical formulation for the calculation of the RIXS
cross section followed by Sec. III where we show a more
detailed calculation for the RIXS response in the FK model.
In Sec. IV, we show our results for a half-filled Mott insulator
followed by Sec. V where we discuss the core-hole lifetime
broadening effects on the RIXS response and in Sec. VI we
show some results for the case of particle-hole asymmetric
Mott insulator. Finally, in Sec. VII we conclude.

II. MATHEMATICAL FORMULATION OF RIXS

Our starting point is the familiar electron-photon interaction
Hamiltonian1

Hint =
N∑

i=1

[
e

m
A(ri ,t) · pi + eh̄

2m
σ i · ∇ × A(ri ,t)

+ e2

2m
A2(ri ,t) − e2h̄

4m2c2
σ i · ∂A(ri ,t)

∂t
× A(ri ,t)

]
(1)

for a system of N electrons. A(r,t) is the vector potential for
the external electromagnetic field and can be expanded in a
plane-wave basis as

A(r,t) =
∑
k,ε

√
A0[εakεe

i(k·r−ωt) + ε∗a†
−kεe

−i(k·r−ωt)], (2)

where A0 = h̄
2Vε0ωk

, V is the volume of the system, and
ε is the polarization of the light, and we have fixed the gauge
by choosing ∇ · A(r,t) = 0 in Eq. (1).

In the RIXS process, an incident x-ray photon with
momentum ki , energy ωi , and polarization εi is scattered
to a final state described by momentum kf , energy ωf , and
polarization εf . Fermi’s golden rule to second order in Hint

gives the scattering cross section for this process:

W = 2π

h̄

∑
F,I

∣∣∣∣∣〈F|Hint|I〉 +
∑

n

〈F|Hint|n〉〈n|Hint|I〉
EI − εn

∣∣∣∣∣
2

× ρ(εi)δ (EF − EI) , (3)

where |I〉 ≡ |i〉 ⊗ |ki ,ωi〉, |F〉 ≡ |f 〉 ⊗ |kf ,ωf 〉, and |n〉 are
the direct product states for the initial, final and the interme-
diate states of the systems, respectively (both electronic and
photon states are present in the initial and final states, while
the intermediate states are just the electronic states), and EI,
EF, and εn are the corresponding energies, respectively. It
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is interesting to mention that the intermediate state |n〉 has
a core hole, while the initial and final states, |I〉 and |F〉,
have no core hole. Also, at finite temperature, the system
is in a mixed state, so we sum over all possible initial
configurations weighted by the appropriate Boltzman factor,
ρ(εi). The first-order amplitude is in general dominant over
the second-order contribution except near resonance when the
incident photon energy is nearly equal to a specific atomic
transition in a material, i.e., ωi ≈ εn − εi . At resonance, the
second-order term becomes overwhelmingly large compared
to the first-order term and hence the second-order term causes
resonant scattering while the first-order term gives rise to
nonresonant scattering.

The diamagnetic term proportional to A2 as well as the
spin-orbit coupling term proportional to σ · (∂A/∂t) × A in
Eq. (1) contribute to the first-order amplitude. The latter is
smaller than the former by a factor of ωi(f )/mc2 	 1 and
also, at resonance, the contribution from the diamagnetic term
is negligibly small compared to the resonant term and hence
their contributions will be neglected. So, then the resonant part
of the second-order amplitude at zero temperature is given
by1,40,41

e2h̄
√

ωki
ωkf

Vε0

∑
n

[
〈f |Dkf

|n〉〈n|D†
−ki

|i〉
εn − εi − ωi

+ 〈f |D†
−ki

|n〉〈n|Dkf
|i〉

εn − εi + ωf

]
, (4)

where

Dk = 1

imωk

N∑
i=1

eik·ri

(
ε · pi + ih̄

2
σ i · k × ε

)
(5)

is the relevant transition operator for the RIXS cross section.
The first term in Eq. (5) causes nonmagnetic scattering. The
second term, arising from the spin-orbit coupling term in Hint,
causes magnetic scattering which, for typical incident photon
energy (∼1–10 keV) and the localized core levels involved
in a RIXS process, is about 100 times smaller than the non-
magnetic term1 and hence will also be neglected. Finally, under
such circumstances, we assume the dipole limit for the RIXS
process and the transition operator is then given by

D = ε · D with D = 1

imωk

N∑
i=1

pi . (6)

The expression for the transition operator is model specific,
and in the following section, we will explicitly show it for the
Falicov-Kimball model.

III. RIXS RESPONSE IN THE FALICOV-KIMBALL MODEL

The Falicov-Kimball33 model involves the interaction of
mobile conduction electrons with static localized electrons. It
was originally developed for rare-earth compounds, and hence
the particles were denoted as d electrons for the conduction
electrons and f electrons for the localized electrons. One can
apply it in an approximate way to transition metal compounds
where the labels d and f should no longer be associated with
the corresponding atomic orbitals. The Hamiltonian for the

Falicov-Kimball model (in the hole representation) including
the interaction with a core hole is given by

H = − t∗

2
√

d

∑
〈ij〉

d
†
i dj −

∑
i

μndi +
∑

i

(Ef − μ)nf i

+
∑

i

(Eh − μ)nhi +
∑

i

Undinf i +
∑

i

Qdndinhi

+
∑

i

Qf nf inhi, (7)

where ndi = d
†
i di , nf i = f

†
i fi , and nhi = h

†
i hi are the occu-

pation number operators for the d-hole, f -hole, and core-hole
state at a given site i, respectively. t∗/2

√
d is the nearest-

neighbor hopping amplitude of the itinerant d hole on a d-
dimensional hypercubic lattice and μ is the common chemical
potential. U is the onsite Coulomb interaction between the
itinerant d and the static f holes, Qd > 0 and Qf > 0 are
the Coulomb interactions between the core hole, the d and f

holes, respectively, Ef is the site energy of the f state and
Eh ∼ 102–104 eV is the energy of the core-hole state. It is
important to mention that at half-filling (〈nf 〉 = 〈nd〉 = 0.5),
we choose μ = U/2 and Ef = 0, which corresponds to
the particle-hole symmetric case (in the restricted subspace
involving d and f operators). It is important to mention that
under the hole-particle transformation d → d†, f → f † the
interactions between core-hole and band states transform as
Qd → −Qd , Qf → −Qf , i.e., they become attractive instead
of repulsive and the core-hole energy, Eh gets shifted to
Eh + Qd + Qf .

Under single-site DMFT the model reduces to an effective
single impurity problem,34,35 described by the local Hamilto-
nian

Hloc = Undnf + Qdndnh + Qf nf nh − μnd

+ (Ef − μ)nf + (Eh − μ)nh (8)

together with an effective bath to which the d holes hop in and
out. The equilibrium density matrix for the single-impurity
problem in DMFT is then given by

ρ = e−βHloc

Z Tc exp

[
−i

∫
c

dt ′
∫

c

dt ′′d†(t ′)λ(t ′,t ′′)d(t ′′)
]

, (9)

where the time ordering and integration are performed over the
Kadanoff-Baym-Keldysh contour (see Fig. 1) and β = 1/kBT

is the inverse temperature. Here, the dynamical mean field
λc(t ′,t ′′) and the chemical potential μ are taken from the equi-
librium solution of the conduction electron problem without
the core hole, arising under the single-site DMFT approxima-
tion. This in effect implies that we are treating the creation of
the core hole under the sudden approximation instead of a full
nonequilibrium treatment of the core-hole propagator.

The equilibrium impurity problem arising under the DMFT
approximation can be solved exactly in this case and the local
d-hole propagator, Gloc

d (ω), is given by

Gloc
d (ω) = w0

ω+ + μ − λ(ω+)
+ w1

ω+ + μ − λ(ω+) − U
, (10)

where ω± = ω ± iδ (δ > 0) and w0 and w1 are the prob-
abilities for finding a given site unoccupied and occupied
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− iβ

0
t

FIG. 1. The Kadanoff-Baym-Keldysh contour. The contour starts
at time zero, moves forward along the real axis to time t then moves
backward along the real axis to time zero, and finally, downwards
along the imaginary axis to time −iβ.

by an f hole, respectively. The momentum-dependent fully
renormalized d-hole propagator is given by

Gd (q,ω) = 1

ω+ + μ − εq − �loc
d (ω+)

, (11)

where the local self-energy is related to the local propagator
through Dyson’s equation

�loc
d (ω+) = ω+ + μ − λ(ω+) − [

Gloc
d (ω+)

]−1
. (12)

Similarly, the core-hole Green’s functions, G>
h (t) =

−i〈h(t)h†(0)〉 and G<
h (t) = i〈h†(0)h(t)〉, can also be

calculated42 at finite temperature by using either numerical in-
tegration over the Kadanoff-Baym-Keldysh contour as shown
in Fig. 1 or by the Wiener-Hopf sum equation approach.43,44

The angular brackets 〈 〉 denote a trace over all states weighted
by density matrix in Eq. (9) and the operators are in the
interaction representation with respect to Hloc. Also, it is
important to mention that for the calculation of the itinerant as
well as the core-hole propagators we use the d-dimensional
hypercubic lattice density of states (DOS) in the limit of
d → ∞ (DMFT approximation).

The interaction of the x-ray photon with the electronic
subsystem of matter can be represented by the diagrams shown
in Fig. 2. The dipole operator31,32 is given by

D =
∑

l

(e−iki .r l h
†
l dl + eikf .r l hld

†
l + H.c.). (13)

The first two terms in Eq. (13) correspond to Figs. 2(a) and 2(b),
while the Hermitian conjugate terms correspond to Figs. 2(c)
and 2(d). We have explicitly shown the direct dependence of
the core-hole propagator on the core-hole energy Eh, which
is typically much larger than the band energies and is of
the order of the incident (ωi) and the scattered (ωf ) x-ray
photon energies, respectively. One can see that in the case of
large photon and core-hole energies only the first two vertices
[see Figs. 2(a) and 2(b)] contribute significantly whereas the
contribution from the remaining two [see Figs. 2(c) and 2(d)]
are negligibly small because the hole propagators are evaluated
too far off the energy shell.

The calculation of the RIXS cross section involves the
analytic continuation of the four-particle correlation function

ωi

ωi

ωf

ωf

ω − Eh

ω − ωfω + ωi − Eh

ω

ω − Eh ω

ω − ωf − Ehω + ωi

(a) (b)

(c) (d)

FIG. 2. (Color online) RIXS interaction vertices. Wavy lines
(blue) represent incident or scattered photons, the dashed lines (green)
represent the core-hole propagator, and the solid lines (red) represent
the propagator for the itinerant d holes. The labels indicate the
energies of the different particles. Note that the momentum and energy
are conserved at each vertex.

χ
(4)
i,f,f,i(iνi,iνf ,iν ′

f ,iν ′
i) from Matsubara frequencies

χ
(4)
i,f,f,i(iνi,iνf ,iν ′

f ,iν ′
i)

F.T .−→ χ (4)(τ1,τ2,τ3,τ4)
(14)

χ (4)(τ1,τ2,τ3,τ4) = −〈TτD(τ1)D(τ2)D(τ3)D(τ4)〉
to real frequencies, which is a well defined but tedious
procedure.45,46 In the considered limit of large photon and
core-hole energies, the bare-loop contribution to the amplitude
for the RIXS process is represented by the two diagrams
shown in Fig. 3. The contribution of the top diagram to
the four-particle correlation function, χ

(4)
i,f,f,i(iνi,iνf ,iν ′

f ,iν ′
i),

evaluated on the imaginary axis, is equal to

− 1

β

∑
m

χdd
0 (iωm − iνi + iνf ,iωm|q)

×χhh
0 (iωm + iνf ,iωm + iν ′

f ), (15)

whereas the contribution of the bottom diagram to
χ

(4)
i,f,f,i(iνi,iνf ,iν ′

f ,iν ′
i) is equal to

− 1

β

∑
m

χhh
0 (iωm + iνi − iνf ,iωm)

×χdd
0 (iωm − iνf ,iωm − iν ′

f |0). (16)

Here, we have introduced the bare charge susceptibilities

χdd
0 (iωm + iν,iωm|q) = − 1

N

∑
k

Gd (k + q,iωm + iν)

× Gd (k,iωm), (17)

χhh
0

(
iωh

m + iν,iωh
m

) = −Gh

(
iωh

m + iν
)
Gh

(
iωh

m

)
, (18)

and iωh
m ≡ iωm − Eh. Since the core-hole propagator is local,

the bottom diagram in Fig. 3 does not depend on the photon
wave vector and hence can only contribute to momentum-
independent background effects as evident in Eq. (16). The
first diagram does depend on the transferred momentum
q = ki − kf . Since in the present study, we are interested in
the energy and wave-vector dependence of the RIXS response,
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ω
k

ω + ωfω + ωf

ω − Ω
k − q

ω − ωf

k − kf

ω − ωf

k − kf

ω

ω + Ω

j l

j l

j l

j l

Gdd(q, ω)

Ghh(ω)

ωi,ki ωi,ki

ωi,ki ωi,ki

ωf ,kf ωf ,kf

ωf ,kf ωf ,kf

FIG. 3. (Color online) Bare loop contribution to the four-particle
correlation function corresponding to the direct RIXS process. The
bottom diagram gives a momentum-independent contribution (see
text) to the RIXS process and hence will be neglected in this
calculation.

we neglect all such momentum-independent contributions.
The technical reason behind neglecting these terms is that
the momentum independent contributions are the local ones
and hence they include all types of many body scattering
processes. Hence they can only be derived from the solution
of the single-impurity problem for the four-particle correlation
function χ (4) (which involves multiparticle vertices and many
more complications) and at this moment we do not have well
developed approach for this even in the simplified Falicov-
Kimball model.

Analytic continuation to real frequencies of the bare
diagram in Fig. 3(a) gives the following contribution to the
RIXS cross section:

− 1

2π2

∫ +∞

−∞
dω [f (ω) − f (ω + �)] χhh

0 (ω− + ωi,ω
+ + ωi)

×Re
[
χdd

0 (ω−,ω− + �|q) − χdd
0 (ω+,ω− + �|q)

]
, (19)

where f (ω) = 1/[exp(βω) + 1] is the Fermi function and

χhh
0 (ω− + ωi,ω

+ + ωi) = −∣∣Gh

(
ω+ + ωh

i

)∣∣2
. (20)

Here, ωh
i,f = ωi,f − Eh is the incident and scattered photon

energy measured with respect to the core-hole energy, Eh.
Next, we introduce the renormalization of the bare charge

susceptibilities through inclusion of charge vertices. In the
simplest case, this can be done by inserting the two-particle
charge vertex either in between the two d-hole propagators
(dd channel) or between the two core-hole propagators (hh

channel). Physically speaking, the incident x-ray photon
creates a core-hole–d-electron pair. The excited d-electron

FIG. 4. (Color online) Diagrams for the renormalized four-
particle correlation function χ (4). Panel (a) total direct resonant
scattering, (b) full exchange resonant scattering, and (c) partial
exchange resonant scattering processes. Explicit Eh dependence of
the core-hole propagator is not shown.

undergoes various inelastic scattering processes with other
charge excitations in the correlated d band as well as with
the electron-hole pairs created due to the presence of the
core-hole potential. As a result the total scattering amplitude
contains contributions from both direct and indirect scattering
processes.1,32 The total scattering cross section, as shown in
Eq. (3), is the square of the total scattering amplitude and
contains four contributions. The corresponding contributions
to the four-particle correlation function χ (4) are represented
by different rows in Fig. 4. The first row [see Fig. 4(a)]
corresponds to the pure direct Coulomb processes which do
not involve core-hole–band-electron scattering. The second
row [see Fig. 4(b)] corresponds to full exchange scattering
processes and involves dynamical screening of the core-hole
potential. The last two rows [see Fig. 4(c)] describe mixed
scattering arising due to the quantum mechanical interference
of the direct and indirect scattering processes, which we call
partial exchange.

In real experiments, the RIXS processes31,32 can happen
either through a direct process, as in the case of the L2,3-edge
2p → 3d RIXS in which the core electron is excited to an
unoccupied state of the correlated valence band (d band)
or through an indirect process, as in the case of K-edge
1s → 4p RIXS in which the excited core-electron goes into
an uncorrelated 4p band several electron volts above the Fermi
level. In the present case, the excited core-electron goes to the
correlated d band and the dipole selective transition 2p → 3d

or 3p → 4d is consistent with the involvement of a 2p or 3p

core hole and hence our study is related to the direct RIXS
processes like L-edge or M-edge RIXS.

The sum of the two diagrams in Fig. 4(a) corresponds
to the replacement in Eq. (19) of the bare charge suscepti-
bility χdd

0 (iωm + iν,iωm|q) by the fully renormalized charge
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susceptibility χdd (iωm + iν,iωm|q), which in the case of the
Falicov-Kimball model is given by

[χdd (iωm + iν,iωm|q)]−1 = [
χdd

0 (iωm + iν,iωm|q)
]−1

+�(iωm + iν,iωm), (21)

where the irreducible charge vertex47–49 is

�(iωm + iν,iωm) = 1

T

�(iωm) − �(iωm + iν)

G(iωm) − G(iωm + iν)
. (22)

The sum of the two diagrams in Fig. 4(a) corresponds to the
direct scattering contribution to the RIXS process and is given
by

− 1

2π2

∫ +∞

−∞
dω[f (ω) − f (ω + �)]

∣∣Gh

(
ω+ + ωh

i

)∣∣2

×Re
[
χdd (ω−,ω− + �|q) − χdd (ω+,ω− + �|q)

]
. (23)

The contribution of the diagram in Fig. 4(b), which we
label as the full exchange scattering process to the four-particle
correlation function, χ (4)

i,f,f,i(iνi,iνf ,iν ′
f ,iν ′

i), on the imaginary
axis is given by

Q2
d�(iνi,iνf ,iνi − iνf )�(iν ′

i ,iν
′
f ,iνi − iνf )

×χdd (iνi − iνf ,q). (24)

In this equation,

χdd (iν,q) = 1

β

∑
m

χdd (iωm + iν,iωm|q)

= i

2π

∫ +∞

−∞
dω[χdd (ω+,ω + iν|q)

−χdd (ω−,ω + iν|q) + χdd (ω − iν,ω+|q)

−χdd (ω − iν,ω−|q)]f (ω) (25)

is the dynamical charge susceptibility and � satisfies

�(iνi,iνf ,iνi − iνf ) = − 1

β

∑
m

Gh(iωm + iνi − Eh)

×Gd (iωm)Gh(iωm + iνf − Eh). (26)

It is important to mention that in the derivation of the full
exchange scattering process contribution to RIXS in Eq. (24),
we have approximated the core-hole–d-hole charge vertex
by the core-hole–d-hole interaction Qd under the Hartree-
Fock approximation, which is exact to leading order. After
analytic continuation to real frequencies, the corresponding
contribution to the RIXS cross section is equal to

Q2
d

π
Im[�(ωi + iδ,ωf + iδ,� + iδ)

×�(ωi − iδ,ωf − iδ,� + iδ)χdd (� + iδ,q)], (27)

where �(ωi ± iδ,ωf ± iδ,� + iδ) is given by

1

π

∫ +∞

−∞
dω f (ω)

[
Gh(ω± + ωh

i )Gh

(
ω± + ωh

f

)
ImGd (ω+)

+Gd (ω∓ − ωi)Gh(ω∓ − � − Eh)ImGh(ω+ − Eh)

+Gd (ω∓ − ωf )Gh(ω± + � − Eh)ImGh(ω+ − Eh)
]
. (28)

For large core-hole energy, Eh, we need to keep only the first
term that has a small difference of energies μ + ωi,f − Eh and
can safely neglect the other two terms containing large differ-
ences in energies (μ − Eh and μ + � − Eh, respectively). We
then obtain the contribution from the full exchange processes
as

Q2
d

π
|�̄(ωi + iδ,ωf + iδ)|2Imχdd (� + iδ|q), (29)

where

�̄(ωi + iδ,ωf + iδ) = 1

π

∫ +∞

−∞
dωf (ω)Gh

(
ω+ + ωh

i

)
×Gh

(
ω+ + ωh

f

)
ImGd (ω+), (30)

Imχdd (� + iδ,q) = 1

2π

∫ +∞

−∞
dω [f (ω) − f (ω + �)]

× Re[χdd (ω−,ω− + �|q)

−χdd (ω+,ω− + �|q)]. (31)

Apart from the direct and full exchange resonant scattering
processes, we also have processes, termed as the partial
exchange processes, as shown in Fig. 4(c). The sum of
their contributions to the four-particle correlation function,
χ

(4)
i,f,f,i(iνi,iνf ,iν ′

f ,iν ′
i), on the imaginary axis is equal to

−Qd

1

β

∑
m

χdd (iωm,iωm + iνi − iνf |q)

× [Gh(iωm + iν ′
i − Eh)�(iνi,iνf ,iνi − iνf )

+Gh(iωm + iνi − Eh)�(iν ′
i ,iν

′
f ,iν ′

i − iν ′
f )]. (32)

After analytic continuation to real frequencies, we obtain the
following partial exchange contribution to the RIXS response:

−Qd

π2
Re

{
�̄(ωi + iδ,ωf + iδ)

∫ +∞

−∞
dω [f (ω) − f (ω + �)]

×Gh(ω− + ωi − Eh)Re[χdd (ω−,ω− + �|q)

−χdd (ω+,ω− + �|q)]

}
. (33)

It is interesting to mention that for the L-edge RIXS process,
which we consider in the present study, pure direct resonant
scattering processes are overwhelmingly dominant over the
resonant exchange (both full and partial) processes. Besides
the diagrams considered above, we could also have considered
other contributions to the charge vertex between the two core-
hole propagators which produce diagrams like the parquet
diagram in Fig. 5. From a simple power counting argument,
we can show that the contribution of such diagrams goes at
least as an inverse power of the dimension of the lattice, d. So,
in the limit of d → ∞, they all have vanishing contributions
except in the case when they are all local (and we neglect all
such momentum-independent contributions).

The nonresonant part of the RIXS response is found to
be related to the density-density correlation function. To be
precise, the nonresonant part is proportional to the dynamical
structure factor,50S(q,�), which is given by

S(q,�) = − 1

π
[1 + nB(�,T )] Imχdd (� + iδ|q), (34)
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FIG. 5. (Color online) Parquet diagrams with vanishing contribu-
tion to the RIXS response in the limit of infinite dimension.

where nB(ω,T ) = 1/[exp(βω) − 1] is the Bose distribu-
tion function and χdd (� + iδ|q) is the dynamic charge
susceptibility48[see Eq. (31)] of the system.

IV. RIXS RESPONSE FOR THE HALF-FILLED
MOTT INSULATOR

As has been already stated, the Falicov-Kimball model at
half-filling (〈nd〉 = 〈nf 〉 = 0.5, μ = U/2, and Ef = 0) on a
hypercubic lattice shows a Mott insulating ground state for
U > Uc = √

2. We choose U = 2.0, Qd = Qf = 2.5, and
T = 0.1 in units of effective hopping amplitude t∗ and from
here onwards we choose t∗ = 1. This choice of U gives a small
“gap” (�gap � 0.25 in units of t∗) Mott insulator. Note that for
the d → ∞ hypercubic lattice DOS there is no true gap as
there is an exponentially small DOS inside the gap.

In Fig. 6, we show the spectral function for the itinerant
species, Ad (ω), as well as for the core-hole, Ah(ω − Eh).
Ad (ω) clearly shows a gap (Mott gap) at the Fermi level
(ω = 0) while Ah(ω − Eh) also shows a gap at some other
frequency (at ω = Eh − 1.2 in this example) and the origin
of this gap is related to the same strong correlation effects
that gives rise to the Mott gap in the itinerant species spectral
function. Surprisingly, the gap structure is quite different for
the core hole, which is arising due to the asymmetry in the

-4 -3 -2 -1 0 1 2 3 4 5 6

ω/t
*

0

0.2

0.4

0.6

0.8

1

A
(ω

)

Ad(ω)
Ah(ω-Eh)

U = 2.0
Qd = 2.5
Qf = 2.5

T = 0.1

(ω - Eh)/t
*

FIG. 6. (Color online) Spectral function for the d hole, Ad (ω),
and the core hole, Ah(ω − Eh). For Ah(ω − Eh), the frequency is
measured with respect to the core-hole energy, Eh, as shown in the
top horizontal axis.

Green’s function for large Eh. Ah(ω − Eh) is dominated by
a broad feature, arising from the projection of G>(t) onto
the nh = 0,nf = 0 configuration, along with a very sharp
peak arising from the projection onto the nh = 0,nf = 1
configuration in the final state.42

From the knowledge of the itinerant electron prop-
agator, Gd (q,ω), core-hole propagator, Gh(ω − Eh), and
the fully renormalized two-particle charge susceptibility,
χdd (iωm,iωm + iν|q), we can calculate the RIXS response
either as a function of transferred energy (�) for a given
fixed incident photon energy, ωi (measured with respect to
the core-hole energy Eh), or as a function of ωi for a given
fixed transferred energy, �, for various transferred momenta
q of the photon. It is interesting to mention that in the limit
d → ∞ the momentum on the hypercubic lattice only enters
through the dimensionless parameter,51

X(q) = lim
d→∞

1

d

d∑
i=1

cos(qi). (35)

So, −1 � X � 1 and X = 1 and X = −1 corresponds to
the center, (0, . . . ,0) (� point), and the corner, (π, . . . ,π )
(M point), of the Brillouin zone of a d-dimensional hyper-
cubic lattice, respectively. It is convenient to think of this
parametrization as corresponding to RIXS scattering in the
diagonal 〈1 · · · 1〉 direction.

First, in Fig. 7, we plot the resonant part of the RIXS
response as a function of the transferred energy, �, for various
transferred momenta, X, for three different incident photon
energies, ωi = −0.5, 0.5, 1.5. For ωi = −0.5, the core
electron, excited by the incident x-ray photon, is injected into
the lower Hubbard band and the inelastic relaxation processes
can happen only within the lower Hubbard band that is evident
in the single-peak structure in the RIXS response in Fig. 7(a).
At the M point, the peak is large and well defined but as we go
towards the middle of the Brillouin zone (X = 0.0), the peak
gets broadened and the position of the peak does not disperse
significantly. Finally, as we approach the zone center, the
position of the peak disperses significantly and moves towards
lower energy, also at the same time the peak gets more and
more well defined though the integrated spectral intensity
under the peak gradually diminishes and eventually goes to
zero at the center of the Brillouin zone (X = 1). This is related
to the vanishing of the uniform charge susceptibility (due to
the fact that we exactly include the screening dynamics for the
conduction electrons and long-wavelength charge excitations
are fully screened).

As we increase the incident photon energy above the Mott
gap, we start to excite the system into the upper Hubbard
band and in Fig. 7(b), we show a characteristic response
when the incident photon, with energy ωi = 0.5, excites a
core electron into the bottom of the upper Hubbard band.
Near the zone corner the response still shows a single-peak
structure albeit shifted by the insulating gap, but as we go
towards the zone center, the response at low energy develops
a very narrow secondary peak separated from the broad main
peak by the Mott gap. The low-energy peak arises due to
relaxation processes within the upper Hubbard band and is
nondispersive in nature, whereas the high-energy peak arises
due to relaxation processes across the Mott gap into the lower
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FIG. 7. (Color online) RIXS response as a function of transferred
energy (�) for various fixed transferred momenta (X) with three
different incident photon energies, ωi . (a) The incident photon energy
is at the lower Hubbard band, in (b), at the bottom of the upper
Hubbard band, and in (c), it is at the middle of the upper Hubbard
band. The inset of each plot schematically depicts the possible
RIXS relaxation processes. The chosen parameters are U = 2.0,
Qd = Qf = 2.5, and T = 0.1. Note, the signal vanishes exactly at
X = 1 due to screening.

Hubbard band and is found to be dispersive over the Brillouin
zone. With further increase in the incident photon energy to
ωi = 1.5 the low-energy peak and the spectral weight under it,
as shown in Fig. 7(c), grows significantly and is visible for all
momenta along the 〈1 · · · 1〉 direction. However, the intensity
of this low-energy peak shows nonmonotonic behavior: it
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FIG. 8. (Color online) RIXS response as a function of transferred
energy (�) for various fixed incident photon energies, ωi , varying
from the bottom of the lower Hubbard band to the top of the upper
Hubbard band for three different momenta, X: (a) zone corner (M
point) X = −1, (b) somewhere in the middle of the zone X = 0, and
(c) near the zone center X = 0.9. Inset of each plot shows the position
of each X inside the first Brillouin zone. All other parameters are the
same as in Fig. 7.

first increases up to X = 0 and then starts to decrease and
eventually vanishes at the zone center, X = 1. On the other
hand, the intensity of the high-energy peak monotonically
decreases as well as disperses to lower energies as we go
from the zone corner towards the zone center and eventually
vanishes at the center of the Brillouin zone.
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FIG. 9. (Color online) Systematic evolution of the RIXS response
as a function of transferred energy (�) for six incident photon energies
from the bottom of the upper Hubbard band: ωi = 0.5 (a) to the top
of the upper Hubbard band ωi = 3.0 (f). The dispersive nature of
the high-energy peak (Mott gap excitation) is noticeable. All other
parameters are the same as in Fig. 7.

In Figs. 8(a)–8(c), we show the systematic evolution of the
RIXS response for three transferred momenta X = −1, 0, and
0.9, respectively. As we vary the incident photon energy, the
energy of the excited core electron varies from the bottom of
the lower Hubbard band to the top of the upper Hubbard band
and the RIXS response evolves from a single-peak structure to
a two-peak structure. Finally, when the excited core electron
goes into states beyond the edges of the Hubbard bands the
response vanishes quickly due to an exponential reduction
of the density of states that in effect drastically reduces the
phase space for inelastic scattering. Also, the overall response
decreases as we go towards the zone center.

In Fig. 9, we show a more detailed and systematic evolution
of the RIXS response with varying energy of the incident
photon, which excites the core electron into the upper Hubbard
band. As we can clearly see, the low-energy peak, which arises
due to relaxation processes within the upper Hubbard band,
does not disperse over the Brillouin zone (except its intensity
varies), whereas the high-energy peak (which arises due to
relaxation processes across the Mott gap) shows significant
dispersion over the Brillouin zone. Similar features like the
two-peak structure and the dispersive nature of the high-energy
peak have been observed in the RIXS measurements on a
Mott insulator Ca2CuO2Cl2 by Hassan et al.5 and have been
attributed to strong correlation effects.

It is interesting to mention that at zero temperature in the
half-filled Mott-insulating ground state, the chemical potential
as well as the Fermi level lies within the Mott gap, which
results in a completely filled lower Hubbard band (LHB)
and a completely empty upper Hubbard band (UHB). As a
result, when the incident photon energy is within the LHB,
the RIXS response will vanish due to the unavailability of any
unoccupied state in the LHB to which the core electron can

be excited and when the incident photon energy is within the
upper Hubbard band the RIXS response will have a single-peak
structure arising due to charge transfer excitations across the
gap. At finite temperature, some of the states near the top of
the LHB get thermally excited across the gap and occupy the
bottom of the UHB. So, at finite temperature, if the incident
photon excites a core-electron into the unoccupied states of
the LHB, the RIXS response will have a single-peak structure
corresponding to relaxation processes involving LHB states.
If the excited core-electron goes into the unoccupied states of
the UHB then it can undergo relaxation processes either with
the thermally excited UHB electrons occupying the bottom
of the UHB giving rise to a low-energy nondispersive peak or
through charge transfer excitations across the gap giving rise
to a dispersive high-energy peak. Also, the whole structure
gets shifted to higher energy with increasing incident photon
energy due to the fact that with increasing incident photon
energy the transferred energy must also increase in order to
have resonant scattering from the thermally excited states,
which predominantly occupy the bottom of the UHB and the
top of the LHB. In the case of a large gap Mott insulator, as will
be shown in a following section (see Sec. VI), the intraband
relaxation processes from the thermally excited states are
negligibly small compared to the excitations across the
Mott gap.

Finally, in Figs. 10(a)–10(c), we plot the RIXS response as
a function of the incident photon energy, ωi , for various fixed
transferred photon energies, �, for three transferred momenta
X = −1, 0, and 0.9, respectively. For small �, the RIXS
response shows a two-peak structure in ωi , which corresponds
to the relaxation processes within the individual bands (upper
and lower Hubbard bands). As we increase � an additional
peak develops between the two peaks. This peak corresponds
to the interband relaxation processes across the Mott gap and
grows very rapidly with increasing �, while the other two
peaks decrease in intensity until we are finally left with a lone
peak. Hence, we can infer that in a Mott insulator, interband
relaxation processes across the Mott gap are dominant over
intraband relaxation processes. Also, as we go from the zone
corner to the zone center, the intensity of the peaks decreases
as in Fig. 7.

We also have calculated the dynamical structure factor,
S(q,�), which is proportional to the nonresonant part of the
RIXS response.48 In Fig. 11, we plot S(q,�) for the small-gap
insulator at T = 0.1. Near the zone corner, S(q,�) has a broad
charge transfer peak but as we go towards the zone center,
a secondary peak develops near � = 0 and the integrated
spectral weight under the charge transfer peak decreases.
Finally, exactly at the zone center (X = 1), the charge transfer
peak completely vanishes while the peak around � = 0 turns
into a δ function, which again arises due to the vanishing
of the uniform charge susceptibility at finite frequency. This
behavior is quite different from the resonant response where
the two-peak structure is most prominent near the zone corner
and also the charge transfer peak in S(q,�) is much smaller
and much less dispersive than the high-energy peak observed in
the resonant response and most importantly the position of the
peak cannot be identified with any particular x-ray transition
process.
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FIG. 10. (Color online) RIXS response as a function of incident
energy, ωi , for various fixed transferred energies, �, for three
characteristic transferred momenta, X: (a) zone corner (M point)
X = −1, (b) in the middle of the zone X = 0, and (c) near the zone
center X = 0.9. The inset of each plot shows the position of each X

inside the first Brillouin zone. All other parameters are the same as
in Fig. 7.

V. CORE-HOLE BROADENING EFFECTS

In the preceding section, we have not included any
additional core-hole lifetime broadening effects that can arise
due to various nonradiative Auger and fluorescence effects and
are important in the transition metal RIXS processes (we only
included the intrinsic many-body effects in determining the
core-hole lifetime). In our calculation, we can easily include
such effects by simply making the core-hole energy Eh com-
plex, i.e., by making the transformation Eh → Eh − i� into
the retarded Green’s function, Gr

h(t) = �(t)[G>
h (t) − G<

h (t)],
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FIG. 11. (Color online) Dynamical structure factor, S(q,�), for
U = 2.0 and T = 0.1. Note, it vanishes for X = 1 due to screening.

and Eh → Eh + i� into the advanced Green’s function,
Ga

h(t) = �(−t)[G<
h (t) − G>

h (t)], respectively. Here, � = h/τ

with τ being the core-hole lifetime and for most materials,
� ∼ 100–400 meV (1–3 in units of t∗).

While this may seem like an ad hoc procedure, microscopic
calculation of Auger lifetimes in condensed matter systems is
beyond the scope of this work, and this broadening effect on the
core hole spectra function is important to determine whether
all of the features calculated above survive when the core hole
spectral function is further broadened. Hence it is an important
element in any analysis.

First, in Fig. 12, we show the systematic evolution of the
core-hole spectral function, Ah(ω − Eh), with additional core-
hole broadening effects parameterized by �. With increasing
�, the height of the sharp peak in Ah(ω − Eh) reduces, while
its width significantly broadens but the asymmetrical nature
of the structure is largely retained. Also, the Mott gap in the
� = 0.0 case (near ω − Eh ∼ −1.0) is replaced by a dip in
the spectral function and the tail of Ah(ω − Eh) increases with
increasing �.
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FIG. 12. (Color online) Core-hole spectral function, Ah(ω − Eh),
evolution with core-hole broadening parameter, �. All other param-
eters are same as in Fig. 7.
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FIG. 13. (Color online) Evolution of the RIXS response as a
function of the transferred energy, �, and various fixed transferred
momenta, X, for incident photon energy ωi = 2.5 with various
core-hole lifetime broadening parameters, �. (a) Response for � = 0
and the inset of panel (a) shows the quasielastic peak in the blown
up far-infrared region. (b)–(d) Responses for broadening parameters
much smaller (� = 0.1), comparable (� = 0.2), and larger (� = 0.3)
than the Mott insulating gap �gap ∼ 0.25. All other parameters are
the same as in Fig. 7. For all the four sets, calculations have been
performed from X = −1.0 (top most curve) to X = 0.9 (bottom most
curve) with a step size of 0.1 for the momentum variable X.

In Figs. 13(a)–13(d), we show a detailed evolution of
the RIXS response with various broadening parameters, �

(measured in units of t∗). We choose four characteristic
parameters � = 0.0, 0.1, 0.2, and 0.3 corresponding to no
broadening, much smaller, comparable, and larger broadening
compared to the intrinsic Mott-insulating gap in the system,
respectively. All other parameters chosen are the same as in the
previous case. In Fig. 13 (a), we plot the RIXS response without
any additional core-hole broadening effect and the response
shows a clear two-peak structure with the peaks well separated
by the Mott gap. The low-energy peak is nondispersive but the
high-energy peak is highly dispersive in momenta and also
changes its shape significantly as we go from the zone corner
to the zone center. Also, interestingly, close to the zone center
a quasielastic peak develops in the far-infrared region. The
intensity as well as sharpness of this peak increases as we go
towards the zone center.

From the detailed analysis of the weights of the different
scattering processes presented in Fig. 4 for the total RIXS
response, we find that the main two-peak structure and its
rather strong momentum dependence originates from the direct
scattering processes described by Eq. (24) [see Fig. 4(a)].
Contribution from the full exchange (indirect) processes in
Eq. (29) [see Fig. 4(b)] is much smaller and are mainly
responsible for the quasielastic peak, which corresponds to
the dynamical structure factor, S(q,�) [see Fig. 11].

The presence of additional core-hole lifetime broadening
effects strongly suppresses the direct contribution. We no
longer see a clear gap structure in Figs. 13(b)–13(d) but the
two-peak structure is still clearly evident for all momenta. Also

the high-energy peak still remains dispersive throughout the
Brillouin zone, while the low-energy peak is more or less
nondispersive in nature as in the case with no additional
core-hole broadening. The height of the quasielastic peak
close to the zone center slightly decreases with increasing �,
which is related to the weak dependence of the �̄ prefactor in
Eq. (29) on �, while its width and dispersive features remains
similar to the � = 0.0 case. However, in a real experiment,
finite resolution and the resolution broadened tail of the
huge elastic peak will mask such quasielastic features which
will then not be observable. So, the presence of additional
core-hole broadening effects can significantly modify the
overall response, but the most important qualitative features,
like the two-peak structure and the dispersive features of these
peaks remain similar.

VI. RESPONSE AWAY FROM HALF-FILLING

Finally, we consider a Mott insulator at arbitrary filling to
examine the breaking of particle-hole symmetry in the RIXS
response. We choose U = 4.0, Qd = Qf = 5.0, 〈nf 〉 = 0.25,
〈nd〉 = 0.75, and T = 0.1. This choice of parameters gives
a large-gap Mott insulator (�gap ∼ 1.8 in units of t∗). In
Fig. 14(a), we show the d-hole spectral function, Ad (ω), as well
as the core-hole spectral function, Ah(ω − Eh), with (� = 1.0)
and without (� = 0.0) core-hole broadening effects. Ad (ω) is
dominated by two asymmetrical peaks separated by a large
gap at the Fermi level. Ah(ω − Eh) [without any additional
core-hole broadening effect (� = 0.0)] shows two very closely
spaced sharp peaks on top of a broad feature but with the
inclusion of large core-hole broadening (� = 1.0), the whole
structure gets drastically modified and Ah(ω − Eh) resembles
a broad nearly symmetrical single peak.

In Fig. 14(b), we show the RIXS response as a function
of the transferred energy, �, for various fixed transferred
momenta, X, for � = 0.0. The response in this case is
overwhelmingly dominated by a huge peak arising due to
relaxation processes across the Mott gap into the LHB, while
the intraband (within the UHB) relaxation processes as shown
in the inset of Fig. 14(b) are much weaker than the interband
processes. As already has been mentioned in Sec. IV, in
a large-gap Mott insulator, the density of thermally excited
states, which occupy the bottom of the UHB, is extremely
small and hence cannot provide any significant relaxation to
the core electrons excited to the UHB. The high-energy peak,
just as in the case of particle-hole symmetric half-filled case,
shows significant dispersion with transferred momentum—the
peak disperses outwards in energy as we go from the zone
center towards the zone corner. Finally, we study the RIXS
response in the presence of finite core-hole broadening. In
Fig. 14(c), we show results for a typical broadening (of the
order of the Mott gap) � = 1.0. The first noticeable feature
is the reemergence of the two-peak structure. This is mainly
due to a huge suppression of the sharp resonating peak in
Ah(ω − Eh), as can be observed in Fig. 14(a), which in effect
drastically reduces the resonant response across the Mott gap
by six orders of magnitude. The high-energy peak still shows
significant dispersion across the entire Brillouin zone and
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FIG. 14. (Color online) (a) d-hole spectral function, Ad (ω), as
well as the core-hole spectral function, Ah(ω − Eh), with (� = 1.0,
blue line) and without (� = 0.0, green line) core-hole broadening
effects in a particle-hole asymmetric large gap Mott insulator. For the
core-hole spectral function, energy is measured with respect to the
core-hole energy, Eh, i.e., ω → ω − Eh. (b) and (c) RIXS response as
a function of the transferred energy, �, for various fixed transferred
momenta, X, without [� = 0.0 (b)] and with [� = 1.0 (c)] core-hole
broadening effects for incident photon energy (measured with respect
to Eh) ωi = 3.5. Magnified response in the inset of panel (b) clearly
shows a two-peak structure and the inset of panel (c) shows the
quasielastic peak in the blown up far-infrared region. The parameters
used for this plot are U = 4.0, Qd = Qf = 5.0, T = 0.1, and nf =
0.25, nd = 0.75.

the low-energy peak also shows dispersive features. Also, as
shown in the inset of Fig. 14(c), a very weak quasielastic peak
similar to the half-filled case emerges due to the full exchange
(indirect) processes.

VII. CONCLUSIONS

In conclusion, we have studied the RIXS response in
a Mott insulator which is modeled by the Falicov-Kimball
model. We have considered both the particle-hole symmetric
half-filled case as well as the general particle-hole asymmetric
case. We find that when the incident photon energy is lying
within the upper Hubbard band, the resonant response shows
a two-peak structure arising from the intraband (low-energy
peak) and interband (high-energy peak) relaxation processes
(as expected since the gap is larger but the temperature is
the same as before). The high-energy peak is found to be
much larger and sometimes overwhelmingly larger (away
from half-filling case) than the low-energy peak and shows
dispersive features throughout the entire Brillouin zone, while
the low-energy peak remains more or less nondispersive. Such
distinctive features have already been observed in a large class
of transition metal K-edge RIXS responses in a wide class of
oxide materials and have been attributed to the nonlocal nature
of the Mott gap excitations.

We also have considered moderately large core-hole broad-
ening effects (due to finite Auger lifetime of the core hole) on
the RIXS response and we see that despite significant change
in the RIXS response many interesting qualitative features
like the two-peak structure and the dispersive nature of the
high-energy peak remains more or less intact. The quasielastic
feature near the zone center, which originates from the pure
full exchange (indirect) processes, becomes comparable to the
other two peaks. However, this peak will be completely masked
by the resolution limited tail of the elastic peak (and cannot be
observed in any current experiments). For the half-filled case,
we also have calculated the dynamical structure factor, S(q,�),
which is proportional to the nonresonant part of the response.
S(q,�) is either dominated by a very weakly dispersive charge
transfer peak when the transferred photon momentum, X, is
near the zone corner or by a narrow peak around � = 0,
which corresponds to the quasielastic peak in RIXS from
the full exchange (indirect) processes, when the momentum
is close to the zone center. Exactly at the zone center S(q,�)
vanishes for finite frequencies, while the narrow peak becomes
a delta function peak. We believe, features like the two-peak
structure and the dispersive natures of the charge transfer peak
are generic features of the RIXS response in a Mott insulator
and similar features are expected to be observed in calculations
based on the more realistic Hubbard model.
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