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In a large transverse field, there is an energy cost associated with flipping spins along the axis of the field.
This penalty can be employed to relate the transverse-field Ising model in a large field to the XY model in no
field (when measurements are performed at the proper stroboscopic times). We describe the details for how this
relationship works and, in particular, we also show under what circumstances it fails. We examine wave-function
overlap between the two models and observables, such as spin-spin Green’s functions. In general, the mapping
is quite robust at short times, but will ultimately fail if the run time becomes too long. There is also a tradeoff
between the length of time one can run a simulation out to and the time jitter of the stroboscopic measurements
that must be balanced when planning to employ this mapping.
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I. INTRODUCTION

Recently, there has been significant activity in employ-
ing the transverse-field Ising (TFI) model within quantum
simulators to examine adiabatic state preparation, excitation
spectroscopy, quantum propagation speeds (Lieb-Robinson
bounds), and complicated many-body phenomena like many-
body localization and time crystals [1-11]. The transverse-field
Ising model is given by

Hrr = Z Jjij’fO’jﬁ — B ZO’JZ (D)
J

i<y’

where o is the Pauli spin matrix at site j in spatial direction «.
The spin-spin interactions are given by J;;- for the interaction
between spins at sites j and j’ and will be called the spin-
exchange (SE) piece of the Hamiltonian H3E,, while the
magnetic-field strength in the z direction is given by B (and the
magnetic-field piece of the Hamiltonian is denoted 7%;)). In an
adiabatic state preparation, the system would be initialized in
a state polarized along the z direction and then the field would
be slowly reduced in the presence of the J;; until the system
evolved into the ground state of the Ising model with no field.
If the system is evolved too rapidly, then diabatic excitations
will occur, and their energies can be measured via different
spectroscopy techniques. Lieb-Robinson bounds [12] can be
inferred by measuring the propagation speeds of disturbances
to the spin chain, while many-body localization and time
crystals require somewhat more sophisticated arrangements
that include quasidisorder added to the system.

There also is an interest in going beyond the simple
transverse-field Ising model to more complex systems. Here,
one can imagine going to more complex spin models, like the
XY model or the Heisenberg model, or one can imagine going
to higher spin representations, like going to spin one instead
of spin one-half. Recent experiments have investigated the XY
model via its equivalence with the transverse-field Ising model
in the large field limit [6] as suggested by a recent theory
paper to examine prethermalization in the XY model [13].
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Theoretical work has also examined circumstances where the
Ising model and the XY model emerge from the more general
spin-phonon coupled model, especially in the limit of small
field [14]. This last paper examines these systems in a different
regime from where this paper is focused.

In this paper, we will focus on employing the rotating-wave
approximation to go from the transverse-field Ising model to
the XY model, which is given by the following Hamiltonian:

Hxy = % Z Jjj/(U;O';, + UJ}U/}’) 2)
i<y
While it may not seem obvious, there is a rotating-wave
approximation approach which will allow us to map the
transverse-field Ising model into the XY model. We describe
this next.

Define the spin raising and lowering operators via o
o £ io”. Inverting these relations lets us write c* = (o * +
07)/2 and 0” = (6T —07)/2i. A quick calculation then
shows that oo} + ojyajl = (afoji + aj_aj’,L)/Z. Thus, the
XY model can be represented in terms of these raising
and lowering operators. To find the relationship between the
transverse-field Ising model and the XY model, we substitute
the raising and lowering operators into the transverse-field
Ising model in Eq. (1), by replacing o* by (6t +07)/2
everywhere. This yields

i:

1
= E (oTol To ot o
Hre = 4 Jjj(oj oy +oj0; +o; 05 +0;0;)
<
= XYpiece

—BZU;. 3)
J

Note how two of the spin-exchange terms are the same as
those in the XY model, but there are two other operators which
involve either raising the spins twice or lowering them twice.
If the field B is large, there will be a large energy cost for
those double spin flips, as opposed to having no energy cost
for the XY terms which flip one spin up and the other spin
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down. This provides a hint that there should be a relationship
between these two models in a large magnetic field.

To make the mapping more precise, we will invoke the
rotating-wave approximation, which requires us to go to the
interaction representation with respect to the magnetic-field
piece of the Hamiltonian (or, equivalently, to the rotating
frame). We then transform the spin exchange part of the
Hamiltonian via H35 — expli H2q 1 1H3E exp[—iH 2 t] to
give us the interaction representation of the “perturbation.” In
this rotating frame, the magnetic-field piece of the Hamiltonian
is accounted for in the time dependence under the “unperturbed
Hamiltonian” H,, so the “interaction piece” of the transverse-
field Ising model becomes

4B
HTFI—>—E Jjj(o; a+ ”—i—a o)

i<J'

—i-aj_ajf,F +017017e_4i3’). 4)

When the magnetic field, B, is large, the rotating terms create
rapidly oscillating terms in the Hamiltonian which average to
zero and can be ignored via the rotating-wave approximation.
So, whenever the rotating-wave approximation can be applied
to the transverse-field Ising model, it should act like an XY
model. To fully understand this mapping, though, we need to
explore in detail how the energy eigenvalues relate as well
as the dynamics of the wave functions. In doing so, we will
find the mapping holds stroboscopically in time because the
frame is rotating at the Larmor frequency, and hence the wave
functions have an oscillating phase which returns to a multiple
of 2 every Larmor period. We will need to balance the
improved accuracy given from a larger field with the difficulty
in properly timing the stroboscopic measurements when the
complex phase factors oscillate too rapidly.

In Sec. II, we derive the formalism we employ for making
these comparisons. In Sec. III, we present results that both
illustrate the success of the mapping and also show under what
circumstances it fails. This is followed up by conclusions in
Sec. IV.

II. FORMALISM

A. Spin-exchange coefficients

In an ion trap, the internal ion states of a given atomic
species are mapped onto the spins of a two-state system.
A spin-dependent force is applied to the system, and in the
situation where the phonons are only virtually created they
can be adiabatically eliminated from the system, producing an
effective spin-spin interaction. The spin-spin couplings vary
with time, but their average values are given by [15]

bjmbjm
jj’ - szR Z J sz ) (5)

where 2 is the Rabi frequency, wg is the atomic recoil
frequency, b; ,, are the transverse phonon normal modes of the
ion chain (labeled by the mode index m and the spatial position
J), wy, are the corresponding normal mode frequencies, and
w is the detuning frequency. The normal modes b;, and
normal-mode frequencies w,, are found from a straightforward
classical mechanics calculation once the trap parameters are

known [16,17]. The highest frequency transverse normal mode
is the c.m. mode. When the detuning is larger than the c.m.
mode frequency & > w¢m., the spin-exchange coefficients J;;
are well approximated by a simple power law
T ©
where « varies from zero to three depending on the parameters
of the Paul trap and the detuning. All frequencies in this paper
that are expressed in units of hertz are regular frequencies;
the corresponding angular frequencies are 27 times larger.
We use the trapping parameters of a recent experiment [6]:
Q/OR [ Oans = 20 KHZ, Wyrans = 4.80 MHz, and 4 = wem, +
60 kHz, where w, p,. is the transverse c.m. phonon mode of the
ion chain and is equal to wy,,s. We controlled the exchange
coefficients by varying the anisotropy of the trap, that is, the
ratio of the longitudinal to the transverse trapping frequency.
We keep @yans fixed and vary wy,, from 560 to 950 kHz, which
yields an « varying between 0.63 and 1.19 with Jy ~ 500 Hz.

B. Time evolution

Both the transverse-field Ising model and the XY model
are time independent. The evolution operator is then given
by U(t) = exp(—iHt). If U(¢) is acting on a state that is not
an energy eigenstate, then it is convenient to diagonalize the
Hamiltonian in the exponential using V, a unitary matrix the
rows of which are the eigenvectors of H, so that

UMDY = Vie ViV iy ), (7)

Since we work in the same basis for both the transverse-field
Ising model and the XY model, their respective evolution
operators acting on a single initial state provide a direct
comparison between the evolved states.

C. Energy levels

Our first illustration of the mapping between these models
involves a comparison of their energy levels. The transverse-
field Ising model energy levels in a strong transverse field
are approximately Zeeman shifted by —2m B, where m is the
eigenvalue of the Sg, = }_; o7 /2 operator. The shift is approx-
imate because S, does not commute with the transverse-field
Ising Hamiltonian. We identify approximate S, blocks in
the transverse-field Ising energy levels in the limit of a large
transverse field; that is, the energy levels will split based on
the approximate value of S, acting on the corresponding
eigenstate. Figure 1 shows the extent to which this is possible
when B/Jy =10 in a six-ion chain with wj,, = 950 kHz
and o ~ 0.63. The XY Hamiltonian commutes with the Sg,
operator, so we can compare the energy states of both models
on the basis of their S{; value (approximate for the transverse-
field Ising model and exact for the XY model).

For systems with an even number of spin sites, we can
directly compare the S* = 0 energy levels of the XY model to
the $* = 0 Ising energy levels, as those levels are not Zeeman
shifted to linear order in B.

The Ising energy levels in the limit of a large transverse
field can be treated perturbatively, where the zero-field Ising
Hamiltonian perturbs the transverse-field Hamiltonian. In a
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FIG. 1. Energy levels of the transverse-field Ising Hamiltonian in
a field of B/Jy = 10 and of the XY Hamiltonian for a chain of six
ions and a longitudinal trapping frequency of 950 kHz and o ~ 0.63.
The organization of the transverse-field Ising levels into approximate
St blocks is evident. The S5, &~ 0 Ising levels and the S5, = 0 XY
levels are colored in red.

simultaneous eigenbasis of the S2, and S, operators, the

magnetic-field-only Hamiltonian is highly degenerate. Fortu-
nately, the zero-field Ising perturbation completely lifts the de-
generacy. We diagonalize the S5, blocks of the full transverse-
field Ising Hamiltonian, and then sum over the contribution of
other S{, blocks to calculate the perturbative corrections. The
second-order perturbative correction is given by

E® — Z {m|Hig ) (n| Hig m) @®)
n EO _ EO ’

m;ﬁn n m

where E? is the unperturbed energy of the eigenstate |n) of
HE.. Second-order corrections to the energies of the S5, &~ 0
block are all equal to zero. This indicates that the energies
of the transverse-field Ising Hamiltonian are even functions
of B, as the energies in the denominator are linear in B. The
third-order correction is then given by

=YY

m#n m'#n

<m|%%§l|n><nm%%l|m>
HiE 9
—(n|Hiy >mZ# (E) 1)

and is nonzero, which indicates that the S5, &~ 0 Ising levels
and S, = 0 XY levels should approach each other as 1/B?.
Figure 2 shows the calculated energy differences at various
field strengths, as well as a fit from the third-order perturbative
correction, for a six-ion chain with wj,, = 950kHz (o =~ 0.63).

For systems with an odd number of lattice sites, we need
to shift the energy scales before comparing energy levels to
account for the approximate Zeeman shift of a spin-one-half
state. Noting that S5, commutes with the XY Hamiltonian,
adding a transverse magnetic field to the XY model will result

n|HTFI|m Ym | HIE Im') (m' | Hig n)
— Eg)(EY — EB)
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FIG. 2. (a) Transverse-field Ising model energy levels for B/Jy, =
10 and XY model energy levels for a chain of six ions in a longitudinal
trapping frequency of 950 kHz (« ~ 0.63). Levels in the Si, ~ 0
block of the Ising model and the S, = 0 block of the XY model
are colored in red. (b) Difference between the corresponding XY and
transverse-field Ising model energy levels is plotted as a function of
field strength for B/ Jy = 7, 10, 20, 30, 50, 70, and 100. The particular
levels used to measure the difference are shown in the inset with the
rOWS.

in Zeeman shifts that are exactly linear in the field strength. We
therefore compare the transverse-field Ising energy levels with
Hyy =Y, Jip(oiol +0)02)/2— BY. ;o when both
models have an equal field strength. This comparison is shown
visually in Fig. 3 for a seven-ion chain with wj,, = 650 kHz,
where the fit in panels (c) and (d) goes as 1/B. Second-order
perturbative corrections to transverse-field Ising blocks with
S&, # 0 are nonzero, which explains why the correction for
SZ, # 0 blocks no longer go as 1/B2.

D. Wave-function overlap

A numerical evaluation of the modulus squared of the
overlap between the XY and Ising wave functions as a function
of time is shown in Fig. 4 for a five-ion chain, w),, = 950 kHz
(¢ &~ 0.63), and field strengths of B/Jy =5, 10, 15, and 20.
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FIG. 3. (a) XY and transverse-field Ising model energy levels for
Sy = —% in an external field of B/Jy, = 10 on a chain of seven ions
with alongitudinal trapping frequency of 650 kHz (« =~ 1). The S, =
% energy levels are plotted in panel (b). Panels (c) and (d) plot the
field dependence of the difference between S;,, = —% and % energy
levels, respectively. The levels used to calculate the differences are
identified in the inset by the arrows.
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FIG. 4. Plot of the modulus squared of the overlap of the time-evolved XY and transverse-field Ising state vectors, (Wine(1)|Wxy(2)), for
a five-ion chain with a longitudinal trapping frequency of 950kHz (« ~ 0.63) and various transverse-field strengths. Panels (a)—(d) plot the
squared overlap between ¢ Jo = 0 and 2 for B/ J, = 5, 10, 15, and 20, respectively. The black dots are plotted at the Larmor frequency, w; = 4.
The red dots are plotted at a numerically optimized frequency, given by wey = 4w/ B2 + (1.67Jy)%.

The initial state for these calculations is the state with all spins
oriented in the —3 direction, which is represented in the z
basis as the direct-product state | W) = (|1) — i[{ )1 Q1) —
N2 Q- Q1) —il)))n. The black dots are placed at
2nn/wy, for integer n with w; = 47 B, which corresponds
to multiples of the Larmor period. The red dots are placed
according to an optimized frequency, which is found by modi-
fying the Larmor frequency from 47 B to4w+/ B? + (a Jy)? and
varying a until the combined sum of all modulus squares of the
overlaps for a given range of times reaches a local maximum
at integer multiples of the modified period. The form of the
correction assumes that the spin-exchange interaction can be
treated as a mean field in the & direction and that the frequency
of the oscillations depends on the resultant magnitude of the
total field. The corrected frequency in Fig. 4 corresponds to
a = 1.67, which was determined by optimizing the sum of all
plotted points between tJy = 0 and 1. In general, we found
that a depends on the lattice size and on the initial state of
the system, so it is not easy to know what it would be without
solving the problem a priori. We went through this exercise
to try to extend the period in time where the two models
had wave functions that could be identified with each other
stroboscopically. In general, however, if we do not have more
accurate information available to us, we simply have to use
the Larmor period, which breaks down a bit sooner than the
corrected period.

The squared overlap oscillates between one and zero at
the Larmor frequency, while the envelope of the amplitude
decays with time. The importance of the mean-field correction
to the measurement frequency is shown clearly by the rapid
rate of decay of the black dots relative to the red dots. Even for
B/Jy = 20, measurements taken with w; = 47 B will fall so

far out of phase by tJy = 1 that |(d>lsing|d>xy)|2 ~ (0.5, even
though the state vectors are still coming into a maximum align-
ment of [(Wiging [Wxy) |?~ 0.9at slightly different stroboscopic
times.

E. Green’s function

We define the “pure-wave-function” retarded spin-spin
Green’s function via

GE i (t10) = i0(t — 1) (Wo|[0(1).0% (10)] W)

where crj‘?‘ H=U T(t)aj‘?‘ U (t)is aPauli matrix in the Heisenberg
picture. The equilibrium Green’s function (which would have
a trace over all states rather than the pure-wave-function
definition above) can be easily shown to be invariant to trans-

lations in time, so that G5 . (t,t)) = Gy'a . (1 + 1,10 +
t"). In the wave-function form, this is only the case when
|Wy) is an eigenstate of the Hamiltonian. Since we cannot
choose an initial state which is an eigenstate of both the XY
and transverse-field Ising Hamiltonians, this definition of the
pure-wave-function retarded Green’s function is not always
time-translation invariant. For transverse-field strengths on
the order of 10J, and times on the order of Jln, however,
deviations of this Green’s function from a time-translation-
invariant one are negligible, so we ignore them. We choose
to compare the Gf,x, ;.;~ components of the Green’s function
because they can be measured experimentally with Ramsey
spectroscopy [18-20].

In Fig. 5, we show the numerical evaluation of the
G¥ . 0.1(,0) for a seven-ion chain in the XY model and
the transverse-field Ising model with B/Jy =35, 10, 15,
and 20 and wj,, = 650kHz (@ &~ 1). The pure state used

(10)
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FIG. 5. Plot of the pure-wave-function retarded Green’s function of the transverse-field Ising Hamiltonian, in blue, and of the XY
Hamiltonian, in green, for a chain of seven ions in a longitudinal trapping frequency of 650 kHz (« &~ 1) and various transverse-field strengths.
Panels (a)—(d) plot the Green’s functions between #J, = 0 and 2 for B/Jy, = 5, 10, 15, and 20, respectively. The black dots are plotted at the
Larmor frequency, w; = 4, and the red dots are plotted at wop = 477/ B2% +(0.84Jy)%.

in the Green’s-function calculation is defined by |®7) =
> . exp[—BE,1/Z|n),where Z = ) exp[—BE,]and B =
2/ Jy. Note that this wave function is not a thermal state, but it is
a linear combination of the eigenstates with the amplitudes of
each state chosen to have the same probability as in a thermal
state [21]. Dots indicate measurements of the transverse-field
Ising model Green’s function at the particular times which
correspond to the simulation of the XY model Green’s
function. The red dots correspond to a mean-field correction
of 0.84Jy (a = 0.84) to the Larmor frequency (as discussed
above), which was determined by optimizing the modulus
squared of the overlap between XY and the transverse-field
Ising evolutions of |Wr) between ¢t Jy = 0 and 1.

The XY Green’s function initially traces the envelope of
the fast-oscillating Ising Green’s function, but this relationship
breaks down at around tJy = 0.9. The dots do not reliably
track the XY Green’s function until B/Jy = 15, but even for
B/ Jy = 20 the mapping falls off around 7 Jy = 1. Further, it is
important to note that the gradient of the transverse-field Ising
model Green’s function at measurement times increases with B
because the XY curve does not simply follow its envelope. This
means that experimental error will be amplified considerably
in the presence of a large transverse field due to timing-jitter
errors.

III. RESULTS

The plots of the Green’s function and of the wave-function
overlap indicate that there is an experimentally optimal field
strength that would produce the most accurate simulation
of the XY model for a given experimental error in data

collection times. This optimal value is important because the
slope of the oscillations of the transverse-field Ising model data
at the times where data are collected can be huge. If we assume
that an observable oscillates with v & v ymor = 2B, and that
Jo &~ 400 Hz, then the period of oscillation is 1.25Jy/B ms. A
rough calculation of the optimal field strength can be made if
we maintain that the experimental error in time measurements
must be less than a tenth of the period of the observable. For
experimental error of 1 us, then, B/Jy < 125, for example.

For fields of equal or lower magnitude than the optimal field
strength, there are also maximum dephasing times, after which
the overlap of the transverse-field Ising model evolved state and
the XY evolved state will be too small to say that the two results
are equivalent. Note also that the value of the overlap will differ
depending on whether a simple Larmor frequency is used or
whether a correction factor is included. Table I summarizes
this dephasing time for the modulus squared of the overlap,
defining the dephasing time as the time after which the squared
overlap is less than 0.7.

This method of simulating an XY model evolution via the
rotating-wave approximation has been used in an evaluation
of Lieb-Robinson bounds for propagation speeds in systems
with long-range correlations [6]. Their experiment used a
Paul trap with Jy &~ 400 Hz and a transverse field of B/Jy =
10. They evaluate a static correlation function, C; ;(t) =
(aj.y(t)o}l(t)) — (cr]tv(t)) (ajy,(t)), between a spin on one end of
an 11-site ion chain (i = 0) and all other spins in the chain.
They also plot the evolution of this functionup to t Jo = 0.3.In
Fig. 6, we show a numerical evaluation of the same function for
alongitudinal trapping frequency of 560 kHz corresponding to
o ~ 1.19. Their best fit Lieb-Robinson bound is also overlaid
on those plots.
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TABLE I. Dephasing time of the modulus squared of the overlap
of the evolved XY and transverse-field Ising states, defined as the
time at which |(<I>Xy(t)|QDISmg(t))|z < 0.7 compared to the strength
of the transverse field. The data used to determine these values are
the same as those presented in Fig. 4. The Larmor dephasing time
corresponds to the black dots in Fig. 4, which are placed at a frequency
of w; = 4 B, and the corrected dephasing time corresponds to the

red dots, placed at woy = 47 +/B? + (1.67Jy)>.

Field strength Larmor dephasing Optimal dephasing
(B/Jo) time (1/Jp) time (1/Jp)

5 0.20 0.28

10 0.35 0.79

15 0.50 1.29

20 0.63 1.79

Panel (a) gives a numerical evolution of the correlation
function for the XY model, while panels (b) and (c) show
the transverse-field Ising simulation of the XY model. Panel
(b) measures the transverse-field Ising model at twice the
Larmor frequency, which corresponds to the values for which
this mapping occurs, while panel (c) measures the Ising model
at a frequency eight times greater than the Larmor frequency
(four times more frequent than the stroboscopic mapping, as
detailed below). Note that the transverse-field Ising model,
measured at the appropriate times, provides a good simulation
of the XY model over this short time scale. This is not
surprising for a field strength of B/Jy = 10, given that the
coherence time of the modulus squared of the overlap is
0.35/Jy, or about 9 ms for Jy =~ 400 Hz. The white curve is the
power-law fit from the experiment. Note that imprecise timing
would result in both a qualitatively different color map and an
incorrect light cone measurement because the transverse-field
Ising oscillations are non-negligible compared to the features
of C; j:(t), even at short time scales.
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o
-
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0.10 0.10
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0.00 "3 256 78910200 2345678 910002345678 910
Ion Number, j

Ton Number, j'

Note that the frequency used for the mapping of the
correlation function C; () is 87 B, which is twice that which
is used for the overlap and the Green’s function. This is
because C; j() is dependent upon the operator (o7 (1)o7}, (1)).
When the spins of the jth and j’th ions have made one
half rotation in the transverse field, which is oriented in
the 2 direction, o7 (1) = —0 (o) and 07;,(11) = —0 (1), 0
a}'(tl)ojy, ) = ojy (to)aj};(to). Thus, the mapping frequency for
C;, y(¢) is twice that of a quantity that depends on only one o“.

IV. CONCLUSIONS

We examined the mapping between the transverse-field
Ising model in a large magnetic field to the XY model in
zero field via the rotating-wave approximation. We compared
the overlap of the wave functions for the two models, the
time traces of a pure-state Green’s function, and a static
spin-spin correlation function. As the field in the Ising model
is made larger, the mapping becomes more precise, but the
oscillation frequency increases, so the measurement become
more susceptible to timing jitter. In addition, objects like
Green’s functions map to each other only at the precise
stroboscopic times, not at the envelope of their values, as
occurs in other similar mappings. Finally, if one tries to
follow this mapping for too long, it breaks down due to
the imprecise mapping period (caused by a finite B field)
and due to timing jitter in the measurements. Nevertheless,
this mapping can be employed to perform simulations of
the more complex XY model for short to intermediate times
and is much simpler than directly simulating the full XY
model. This approach has already been employed in quantum
simulations. We hope our paper helps quantify how far one
can push this mapping and, more importantly, shows where it
fails.

0.30 0.59

0.25

0.20 0.39

0.15

0.10 0.20

0.05

0.00

Ion Number, j'

FIG. 6. Color map for the spatiotemporal evolution of Cy j/(¢) on an 11-ion chain with a longitudinal trapping frequency of 560 kHz
(¢ ~ 1.19) and a field strength of B/Jy, = 10. Panel (a) plots the evolution of the XY model correlation function between ¢Jy = 0 and 0.3.
The white curve is a power-law fit for the light cone of the correlations, reproduced from Ref. [6]. Panels (b) and (c) plot the evolution of the
transverse-field Ising model, but panel (b) plots only the stroboscopic points with a sampling rate of twice the Larmor frequency, 2w; = 87 B.
Panel (c) samples the system too frequently, so it does not produce the XY model accurately.
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