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ABSTRACT

Three different but related probiems are discussed in this contribution, ali related to
the so-called Anderson, Hubbard , and ¢ -/ Hamiltonians — the prototype Hamiltonians
for systems with highly correlated electrons: (1) The relationship — based on the well
known canonical (Schrieffer-Wolff) transformation —- between the Anderson model (in the
small-hybridization and large-Coulomb-interaction regime) and the local moment, the
Kondo, the Hubbard and the ¢ —J models, in particular the phenomena of rare-carth magne-
lism, intermediate valence, and heavy fermions; (2) The exact solution of these Hamiltoni-
ans in the periodic small-cluster approximation and the conditions for the existence of the
heavy-fermion phenomenon; (3) The metaragnetic transition in heavy-fermion systems.

1. INTRODUCTION

Crysualline compounds that involve lanthanide or actinide ions display a rich variety
of physical phenomena: long-range-ordered local magnetic moments (1] (ferromagnets, anti-
ferromagnets, spiral or canted spin arrangements, ezc.); the Kondo effect (a strong interac-
tion between conduction electrons and locai moments that manifests itself in an anomalous
resistivity [Z] and the quenching of magnetic moments everywhere {3,4]); heavy fermions
(5,6) (materials characterized by a huge "density of states at the Fermi level"); intermediate
valence {7] (strong charge fluctuations that produce, on average, only a fraction of an elec-

tron per ion); and band theory [8)] (electrons that are approximated well by noninteracting
particles).

Lanthanide and actinide compounds possess ions with localized (atomic) f -orbitals
that do not overlap with the corresponding f -orbitals on neighboring ions, but do hybridize
with the extended states of the conduction-band electrons. The f -electrons interact very
strongly with each other via a screened (on-site) Coulomb interaction U that acts only
between two f -electrons that are localized about the same lattice site. The Coulomb energy
is larger than any other in the problem (U >10 e\q so that at each site only two possible
occupations of the f -shell exist: (4f )", and (4f )**'. For the sake of definiteness and sim-
plicity a single f orbital site is considered here (n is taken to be 0); doubly occupied f -
orbitals, because of the large U, are effectively forbidden, The physics of such an elec-
tronic system is described by the lattice (or periodic) Anderson impurity model [9]

Hy = ZEkak'aako+€2fscrfic+uZfiﬁfnf.'flf;l
xo io i

+ 3, Va fib o + Vil fio) . (1)

ika
in the large-U limit. (This limit, as understood here, implies bath U — e and e+ U — oo,
so that there is never more than one electron per f -orbital.) The parame}ers and operators
in Eq. (1) include the conduction-band creation (annihilation) operators a,y (axq) for a con-
duction electron in an extended state with wavevector &, spin ¢, and energy €;; the
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Iocalized electron creation (annihilation) operators f,-f, (fiq) for localized electrons in an
atomic orbital centered at lattice site { with energy €, the on-site Coulomb interaction U,
~ and the hybridization integral v, that mixes together the localized and extended states. (As

already mentioned, the degeneracy of the f -electrons is neglecied here; additional f-
electron orbitals may easily be added without changing the qualitative nature of the model.)
The hybridization integral V;, is assumed to be of the form

Vi =exp(iR; "K)V g (k\)NN 2)

with g (k), the form factor, a dimensionless function of order one, and N the number of lat-
tice sites. The Fermi level Ep is defined to be the maximum energy of the filled conduction
band states, in the limit V - 0, and the origin of the energy scale is chosen so that Eg =0,
The conduction-band density of states per site at the Fermi level is then defined to be p.

2. THE SCHRIEFFER-WOLFF TRANSFORMATION OF THE LATTICE ANDER-
SON IMPURITY MODEL: LOCAL MOMENTS, KONDO LATTICE, HEAVY FER-
MIONS, INTERMEDIATE VALENCE, AND BAND THEORY

The lattice Anderson impurity model can be exactly diagonalized in two limits: in the
noninteracting case (Up—» 0) the Hamiltonian is a quadratic form in the fermionic opera-
tors, i.¢. an independent particle problem, and can be diagonalized by a change in one-
particle basis; in the zero hybridization limit (V p— 0) the Hamiltonian decouples into two
independent systems (extended electrons and localized electrons), with explicitly diagonal
sub-Hamiltonians for each subsystem. The large-interaction (Up = 1), small-hybridization
(Vpax1) limit of the Anderson model is the physically relevant regime for studying
lanthanide and actinide compounds. Exact diagonalization studies {10] (on small systems)
show that the lattice Anderson impurity model can describe all of the physical phenomena
(local moments, Kondo effect, heavy fermions, intermediate valence, and band theory) of
lanthanide and actinide compounds simply by varying the parameter ep from large negative
values to large positive values. In fact, the lattice Anderson impurity model, in the infinite-
U and Vp <1 limit, is characterized by five regimes depending upon the localized-electron
energy € (see Figure 1):

t-J model
S Intermediate
valence

Q
-
-

77/
"/ Local /%';

0

Hybridization strength Vp

o
o

Localized-orbital energy ¢p

Figure 1. A schematic diagram showing the regions of parameter space where
local magnetic moments, Kondo lattice [11,12] (quenched moments every-
where), t-/ model, intermediate valence, and one-electron band theory are
expected to occur in the small hybridization, large interaction strength limit of
the lattice Anderson impurity model. The horizontal axis records the localized
[ -electron energy (relative to the Fermi level) and the vertical axis records the
hybridization strength. Heavy-fermion behavior may occur in the transition
region between the Kondo lattice and intermediale valence (1~/ model
regime). A fine-tuning of the paramelers and the crystal structure of the
(effective) t—J model is required to produce a heavy-fermion system.
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(A) ep<«-Vp<0 -~ isolated local moments (1,8]. In this limit the f -orbitals are occu-
pied by a single electron (< f Ao fit+f M fir>=1), and (effectively) decoupled from
the conduction electrons. There are everywhere local magnetic moments. The local
moments interact with each other via exchange, superexchange, and/or Ruderman-
Kittel-Kasuya-Yosida (RKKY) interactions [1} with ferromagnetic or antiferromag-
netic exchange integrals. The rich magnetic structure of the rare-earth metals appears
in this regime.

(B) -Vp<ep<«-Vip?<0 — the regime where the Kondo effects holds for impurities
and where a Kondo lattice [11,12] may, exist. In this regime there are no charge exci-

- tations in the localized orbitals (< f’,'tr Fir+ fiL fir>=1), but the local moments

interact strongly with conduction-electron spins at the Fermi level to quench the mag-
netic moments everywhere.

© ep =-V2p? — the 1~/ model [6). In this regime the localized orbitals are almost
singly occupied (<fi% fit+ fil fii>=1-v ,v«1) and have broadened into a
strongly correlated narrow band in which all electronic transport takes place; the con-

duction band is (effectively) decoupled and acts only as a buffer that determines the
concentration of electrons in the narrow band.

(D) -VPp?<ep«V?p? — intermediate valence [7). As € is increased o the Fermi level
and beyond the occupation of the localized orbitals becomes nonintegral

(0 < <fitfir+fl fiy> < 1) and the sysiem is in the intermediate valence
regime.

(E) 0<V?%?«ep — band theory [8]. As € is increased well beyond the Fermi level all
localized states are essentially unoccupied (<fi% fit + fil fi1>=0) and (effectively)
decoupled from the conduction electrons, The ground state is determined by one-

electron band theory for the extended electronic states, which exhibit a very small
hybridization with the f -states,

Heavy-fermionic behavior {5,6] occurs, under certain circumstances, in regime (C),
the transition region from the Kondo-lattice (11] regime (B) to the intermediate-valence
regime (D). The many-body ground state is characterized by a huge rumber of low-lying
excited states that have many different spin configurations (a partial decoupling of spatial
and spin degrees of freedom) and is close to a disproportionation instability. This produces
a very large coefficient to the term linear in temperature in the specific heat, a large mag-
netic susceptibility, and poor metallic conductivity.

The five regimes outlined above may be established by employing a Schrieffer-Wolff
[13] canonical wansformation to the Iattice Anderson impurity model, Since the details of
this transformation are well known [13,14], only an outline will be presented here.

The Anderson Hamiltonian H, is divided into two terms H, = Ho+H,y, where Hy,
is the last term in Eq. (1). A canonical transformation H' =exp(S) Ha exp(——Si is performed

with § chosen 1o sausfy [H,8] = Hyy,. One finds (0 lowest order in V) that
H' = Ho+"% (8 Hyp] or

H -Ho = - 2;,, Juw Vfiovsi - wlowe (32)
- ; Wiine + “i‘fa'u Flofiotflafe-Nfibfra (3b)
ko
+ 2;, [Wie + %/uw whiowsl vl we (3¢)
+ ';}' ,-g":,[ K fils fils aroay - + hc. ] ' (3d)

where the spinors are defined to be

at = Mit
[a:l] . w,.-=£f‘,l} . @

o denotes the Pauli spin matrices, and the coefficients are

fa'wEVth;k'[ RS SNSRI S —— } . (5a)
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The last term (3d) can always be neglected (in the large-U limit) because it only connects
configurations that have zero electrons at site i to configurations with two electrons at site
i, which are explicitly forbidden.

The canonical transformation of the lattice Anderson impurity model is approximated
well by the lowest order term (in V) when IV2p/el < 1. In this region of parameter space
the localized orbitals have an occupancy per site close 1o one (<0) or close 1o zero (€>0).
When the occupancy is close to one, the operator W Wy may be replaced by unity and
both the term (3c) and the diagonal (i =i') terms in (3b) may be absorbed into a renormal-
ized H,. The remaining terms in Eq. (3) describe spin scattering of the conduction electrons
at the Fermi level by the localized moments (3a), and direct hopping terms within the (nar-
row) f -band (3b). When the occupancy is close to zero — the band-theory regime — - the
operators V7 Wi, ¥ .-O\VS,-, and f;'fr may all be replaced by zero. The only important

8rr;is remaining in Eq. (3) are the changes in the one-particle band-structure arising from
c).

The local-moment regime corresponds to the case where ep<«-Vp<O so that
Iy | €1 for k and k&’ at the Fermi surface. To lowest order, the ground state consists of
one S -electron per site and a conduction band filled up to energy Ez. The spin flipping of
the local moments by the conduction-band electrons at the Fermi surface (3a) is weak and
all other terms in Eq. (3) can be neglected. The interaction (3a) between localized spins and
conduction electrons then leads, through Ho, to a variety of localized-spin exchange interac-

tions [15]. These, in turn, determine, at low enough temperatures, the long-range magneiic
order.

The Kondo-lattice mode!l [11,12]) comesponds to the case where
~Vp<ep«-V?p2<0, the f-orbitals are singly occupied (so that the hopping term (3b)
may be neglected}, and the density of states of the conduction electrons is not negligible 7t
the Fermi level, so that the spin scattering term (3a) is the most important correction term.
The local-moment spins strongly interact with the conduction electrons (at the Fermi sur-
face) which quench the magnetic moments everywhere.

The t~J model occurs in the region where ep=-V2p?<0, The localized states
broaden into a narrow band with an occupancy of nearly one electron per site; the density
of states of the conduction electrons at the Fermi level is negligible, so that the spin-
scattering term (3a) may be neglected. In this case, the hopping term (3b) is the most
important correction term. The conduction electrons are decoupled from the f -band and act
only as a buffer that determines the filling of the f -band. The hole density v required for
the hopping term (3b) to be more important than the spin-scattering term (3a) is

‘ s 82k Ye
| oz 8%(k) exp(i kr)(es~e)

where 1 is a nearest-neighbor translation vector, FS denotes a summation over wavevectors

that lie on the Fermii surface only, and BZ denotes a summation over all wavevectors in the
Brillouin zone.

v « 1 . 6)

This narrow f -band is described by the large-U limit of the Hubbard model [16],
which in turn becomes the ¢--J model [17]

Hoy== 3 i (U=flafid fibfia(flafio) + 20588, (D
ijo if
with
Vi Vi
lij = Ek Wl'jkk = ké -—e-;-:e"' ’ (8)

and J,; = 41y; 12/U. Note that the hopping matrix elements ; in Eq. (8) are short-ranged,
ie., sté?jngly peaked functions of the separation I|R; ~R; | between lattice sites i and j, as
expected.

A necessary condition for heavy-fermion behavior is that the parameters of the
Anderson model fall into the range where the mapping onto the ¢~/ model is valid, but this
condition is not sufficient. The solutions of the ¢--/ model must also possess a very large
number of low-lying exciwations with many different spin configurations. This latter
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condition requires a fine -tuning of the parameters in the t~J model and depends strongly
upon the geometry and connectivity of the lattice. For example, exact-diagonalization calcu-
lations on small clusters [18,19] -~ sez below — indicate that strongly frustrated latticss,
for occupancy close to one electron per site, are the best candidates for heavy-fermionic
behavior (e.g., the system with 7 electrons in an eight-site face-centered-cubic cluster
possesses sofutions with strongly enhanced low-temperature specific heat, quasielastic spin

excitations, and poor metallic conductivity; the ground state may be magnetic or nonmag-
netic).

The intermediate-valence regime occurs when the Schrieffer-Wolff transformation
may not be truncated to lowest order, 'ep| « V?p?, or ils expansion may not be valid at all.
In this case, all parameters are equally important and the full many-body problem must be
solved, The average occupation (per site) of an f -orbital decreases from 1 to O as ep is
increased. This regime has been studied by mapping onto a Fermi liquid {7] and by exact-
diagonalization on small clusters [10).

Finally in the region where ep»V?p?, the Schrieffer-Wolff transformation is once
again valid 1o lowest order and one finds that the f-orbitals are completely empty and
(effectively) decoupled from the condnctiot. band. The system is described by one-electron
theory [8] for the conduction-band electrons alone. This is the regime where ordinary
density-functional theory is an excellent tool for calculating the electronic properties.

3. PERIODIC SMALL-CLUSTER APPROACH TO MANY-BODY PROBLEMS IN
GENERAL, AND HEAVY-FERMION SYSTEMS IN PARTICULAR

It is known from the basit duality between real and reciprocal spaces [8) that a
microcrystal of N sites with periodic boundary conditions has eigenstates that can be
classified by N k-vectors, distributed periodically throughout the Brillouin zone, Con-
versely, the sampling of N points, periodically distributed in the Brillouin zone is
equivalent to solving a problem in real space, in a microcrystal of N sites with periodic
boundary conditions, This method has been extensively used by the authors, their collabora-

tors, and others [10, 18-21] to solve a variety of problems, both model Hamiltonians and
realistic sitnations {22-24].

The cluster is chosen to be small enough that the many-body Hamiltonian may be
exactly diagonalized but (hopefully) large enough that the physics of the infinite lattice is
captured. For the heavy-fermion case discussed below, the mapping of the Anderson model

(1) onto a t-J model reduces the size of the Hilbert space by a factor of (3/16)" which
allows larger clusters to be studied.

Ar understanding of exactly how to extrapolate the resuits for a small-cluster calcula-
tion to the thermodynamic limit (N — o) has not yet been achieved. It is nonetheless obyi-
ous that some very interesting effects are observed in these small clusters (small & -space
sampling), and one such effect is the appearance of heavy-fermion behavior.

3(a). A Heavy-Fermisn Case in a Small-Ciuster t-J Model

The small-cluster approach has been applied to the -/ model [18-19). A very good
example of a heavy-fermion system lies in an eight-site face-centered cubic-laitice cluster

with seven electrons {18-19]. When the hopping parameters and antiferromagnetic superex-
change parameters are chosen to be

t >0, i,J = first-nearest neighbors ,
= | ¥ =0, i,j =second-nearest neighbors,
, otherwise ,
7= [ J, i,j = first-nearest neighbors , ©)
K 0, otherwise ,

(out of a total of 1024 states) that is split-off from the higher-energy excitations and which
include many different spin configurations (see Table 1). These many-body states are
degenerate at J =0 but the degeneracy is partially lifted for finite J, with low-spin
configurations favored (energetically) over high-spin configurations. It is worth remarking
that even with the antiferromagretic interaction included, the spin 1/2 ground state remains

accidentally degenerate, with a degeneracy of 14, i.e., 14% of the available states remain in
the ground-state manifold.
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Energy Total Spin Degeneracy Spatial Symmetry Label
~6t + 61 -3J 1A 14 NLeX,eX,
~6t + 61 ~2J Y4 16 L,
-6t +6¢ -1.5J7 1% 32 I'28X,8X,
61 +61" —05J 1% 16 1
51+ 68 +J 2% 18 X

Table 1. Low-energy manifold of many-body eigenstates, at zero magnetic

field, for the mode!l heavy-fermion system discussed in the text. The notation
is that of References [18,19].

4. HEAVY-FERMIONS IN MAGNETIC FIELDS: THE METAMAGNETIC TRAN-
SITION

Heavy-fermion systems have been an active area of research for both experimentalists
(5] and theorists (6] since their discovery in the mid-1970s. Heavy-fermion systems are
characterized by huge coefficients (y) to the term linear in T in the specific heat, quasi-
elastic spin excitations (large magnetic susceptibility), and poor metallic conductvity,
These features may be qualitatively described by a Fermi liquid with a very large density of
states at the Fermi level [6). Heavy-fermion systems may become superconductors (UPts,
UBe 3, CeCuaSi; URusSia, etc.), possess long-range magnetic order (UPi3, URu3Sis,

NpBe 3, UasZnyq, eftc.), or remain paramagnetic metals (CeRuSiy, CeAls, CeCug, elc.) at
low temperatures.

Recent experimental work has concentrated on the properties of heavy-fermion sys-
tems in high magnetic fields [25-28). A "wransition" is observed (the so-called metamagnetic
transition) at a characteristic magnetic field B, in CeRu,Siy (B, =7.8T), UPt3 (B, =21T),
and URu,Si, (B, =36T). The transition is characterized by a magnetic-field dependence of
the coefficient ¥, the elastic coefficients, and the magnetic properties. At the critical field
B., the coefficient v has a single peak, the elastic coefficients are softened, and the mag-
netic fluctuations change characier. The magnetization shows a steplike structure as a func-
tion of magnetic field strength. This contribution presents a many-body theory (without the
assumptions of Fermi-liquid theory) that describes all of the above electronic properties of
heavy-fermion systems (except superconductivity) and their field dependence.

Every heavy-fermion system is composed of ions with localized f -orbitals
(lanthanides and actinides) that do not overlap with the corresponding f -orbitals on neigh-
boring ions, but do hybridize with the extended states of the conduction-band electrons. The
f -electrons interact very strongly with each other via a screened (on-site) Coulomb interac-
tion U that acts only between two f -electrons that are localized about the same lattice site.
Doubly occupied f -orbitals are effectively forbidden, since the Coulomb energy is larger
than any other energy in the problem (U > 10 eV). The physics of such an electronic system
is therefore described by the periodic Anderson impurity model (9] in the large-U (U — o)
limit, Eq. (1).

Heavy-fermionic behavior may occur in the restricted region {13,14] of parameter
space where ~Vp<ep<«-Vipt<0. The localized orbitals are almosi singly occupied
(<fh fir+ fi fiv>=1-v ;v 1) and the conduction electron density of states at the
Fermi level is small. In this case, the kinetic energy of the holes that hop within a narrow

"effective” band dominates over the magnetic spin-spin interactions and the spin-flipping
terms of the Kondo effect.

The renormalized Schrieffer-Wolff transformation of the latiice Anderson model is
then well described by a ¢-/ model in the limit |V?p/el «1. When pe«~Vp<O0, the
renormalized magnetic interactions J between the local moments of the f -electrons dom-
inate. The local moments interact with each other via all forms of exchange interactions,
which determine, at low enough temperatures, the long-range magnetic order. As pe
increases, two effects occur:

(iy the kinetic energy of the holes in the narrow f -band become important; and

(i) a residual Kondo effect begins to quench the local magnetic moments,
In this regime,

-Vpeepe-Vip?t | )
the Anderson model is approximaied well by the full 1~/ model. The conduction electrons
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are decoupled from the f -band and act only as a buffer that determines the filling of the
f -band. This picture is supported by numerical evidence found in exact solutions (19-21}
of the lattice Anderson model on four-site clusters (see the next section),

4(a). Heavy-Fermionic Behavior in the t-J Model

A heavy-fermion system is characterized by a many-body ground state with very
large number of low-lying excited states that have many different spin configurations (a
partial decoupling of spatial and spin degrees of freedom). The localized states broaden into
a strongly correlated narrow band in which all electronic transport takes place; the conduc-
tion band is (effectively) decoupled and acts only as a buffer that determines the concentra-
tion of electrons in the narrow band. The formation of a heavy-fermion ground state (and
its low-lying excitations) require a fine-tuning of the parameters in the (effective) ¢—J
model and depends strongly upon the geometry and connectivity of the lattice.

4(b). The Metamagnetic Transition

As seen in the example of the previous section (Table I), the ground-state manifold of
a heavy-fermion system contains a very large number of almost degenerate state. In that
example there are 96 many-body states — out of a total of 1024 — which are degenerate

for J =0. A finite J value partially lifts that degeneracy y, with low-spin configurations
energetically favored over high-spin configurations.

A magnetic field (in the z-direction) partially lifts the degeneracy even more, since
the many-body eigenstates with z-component of spin m, have an energy

EB)=E@Q) - mgugB = E0)~-m,bJ , (10

in a magnetic field B. The symbols g, pp, and b denote the Landé g-factor, Bohr magne-
ton, and dimensionless magnetic field, respectively. The high-spin eigenstates are energeti-
cally favored in a strong magnetic field and level crossings occur as a function of b.

The phenomena described above are all of the necessary ingredients for a metamag-
netic transition. The heavy-fermion systern is described by a ground state with nearly
degenerate low-lying excitations of many different spin configurations. The antiferromag-
netic superexchange pushes high-spin states up in energy with splittings on the order of J.
The magnetic field pulls down these high-spin states (with maximal m,) and generates level
crossings in the ground state. In the region near the level crossings, there is an increase in
the density of low-lying excitations that produces a in the specific heat as a function

of b. The magnetization and spin-spin correlation functions both change abruptly at the
level crossings.

To illustrate the metamagaelic transition for the simple model above, the specific heat

and magnetization are calculated as a function of the magnetic field (at a fixed low tem-
perature). The specific heat satisfies

Crb) _ g | Za ERpCBE) (3, EncxpC-BE,) ! an
ks 2 €Xp(-BE,) 3. exp(-BE,) '

where kp is Boltzmann’s constant, § is the inverse temperature (B=1/kp T) and E, is the
energy of the nth many-body eigenstate in a magnetic field b (the summations are res-
tricted to the 96 eigenstates in Table 1), Similarly the magnetization is expressea by

3., m, exp(-BE,)
Zu exp(“"BEn) '

where m, is the z-component of spin for the nth many-body cigenstate. The results for the
specific heat and magnetization are given in Figures 2 and 3, respectively, at the tempera-
;gre wnfre 7 = 1. Results for the magnetization at a lower temperature, 3/ =5 are given in
igure 4.
The specific heat at the higher temperature has a single broad peak as a function of
magnetic field with the center of the peak moving to larger values of b and the zero-field
intercept becoming smaller as the temperature increases, The magnetization smoothly

changes from a value of zero to a value of 5/2 as a function of magneltic field, showing lit-
tle structure,

M@®b)=

(12)
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Figure 2. Calculated specific heat as a function of magnetic field for the
heavy-fermion model. The temperature is T =J/kg. The horizontal axis con-
tains the dimensionless magnetic field and the vertical axis contains the dimen-
sionless specific heat Cy/kg. Note the single peak in the specific heat, charac-

teristic of the high-temperature regime (temperature larger than the energy-
level spacings).

3~

T
o 1t 2 3 4 5 6 7 8 9 10

Figure 3. Calculated magnetization as a function of magnetic field at a tem-
perature T =J/ky. Note the smooth transition in the magnetization, characteris-
tic of the high-temperature regime,

At lower temperatures the magnetization shows steps at the various values of the field
where there are ground-state level crossings.
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The results fit the experimental data [25-28] extremely well, The specific-heat meas-
urements resemble the result of Figure 2 with a single-peak structure and the magnetization
measurements resemble the "low-temperature” result (Figure 4) with noticeable steps. This
is to be expected since magnetization measurements take place at a constant low tempera-
ture while specific-heat measurements require measurements over a temperature range.

Note that the low-field region (b <1) is not faithfully represented by a small-cCluster

calculation, since the discreteness of the energy levels will always produce a linear magnet-
ization,

M

Figure 4. Calculated magnetization as a function of magnetic field at a tem-
perature T =J/5kp. Note the steplike transitions in the magnetization at each
level crossing, characteristic of the low-temperature regime.

4(c). Discussion

The physics of the metamagnetic transition can be described as follows: a heavy-
fermion system is composed of a ground-state with nearly degenerate low-lying excitations
of many different spin configurations; the weak aniiferromagnetic superexchange interaction
slightly favors low-spin arrangements over high-spins (at zero magnetic field); a magnetic
field pulls down the high-spin configurations causing (multiple) level crossing(s) in the
ground state and producing a peak in the many-body density of states. The result is a peak
in_the specific heat (and possibly a richer structure at lower temperatures), steplike transi-
tions in the magnetization, and abrupt changes in ground-state correlation functions.
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