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ABSTRACT
Threedifferentbutrelatedproblemsam discussedinthiscontribution,allrelatedto

theso.calledAnderson,Hubbard,and t-J Hamiltonians-- theprototypeHamiltonians
forsystemswithhighlycorrelatedelectrons:(1)The relationship-- basedon thewell
known canonical(Schrieffer-Wolff)transformation--.betweentheAndersonmodel(inthe
small.hybridization and large.Coulomb-interaction regime) and the local moment, the
Kondo, the Hubbard and the t -J models, in particular the phenomena of rare-earth magne-
tism, intermediate valence, and heavy fermions; (2) The exact solution of these Hamiltoni-
ans in the periodic small-cluster approximation and Me conditions for the existence of the
heavy-fermtoa phenomenon; (3) The metamagnetic transition in heavy-fermion systems,

1. INTRODUCTION

. Crystalline compounds that involve lanthanide or actinide ions display a rich variety
of physical phenomena: long-ranl_e-ordered local magnetic moments [1] (ferromagnets, anti-
ferromagnets, spiral or canted spm an'angemenls, etc, ); the Kondo effect (a strong interac-
tion between conduction electrons and Ioca_ moments that manifests itself in an anomalous

-- r2 ,resistivity t J and the quenching of magnetic moments everywhere [3,4]); heavy fermions
[5,6] (materials characterized by a huge "density of states at the Fermi lever'); intermediate
valence [7] (strong charge fluctuations that produce, on average, only a fraction of an elec-
tron per ion); and band theory [8] (electrons that axe approximated well by noninteracting
particles).

Lanthanide and actinide compounds possess ions with localized (atomic) f-orbitals
that do not overlap with the corresponding f .orbitals on neighboring ionS,but do hybridize
with the extended states of the conduction-band electrons. The f-electrons interact very
strongly with each other via a screened (on-site) Coulomb interaction U that acts only
between two f .electrons that are localized about the same lattice site. The Coulomb energy
is larger than any other in the problem (U > 10eV) so that at each site only two possible
occupations of the f-shell exist: (4f)", and (4f)"+'. For the sake ofdefiniteness and sim-
plicity a single f orbital site is considered here (n is taken to be 0); doubly occupied f ..
orbitals, because of the large U, axe effectively forbidden. The physics of such an elec-
tronic system is described by the latti.ce (or periodic) Anderson impurity model [9]

-- , HA = Z v4'a_'toa"_+eZfiotfio+U Z fi_firfit_fiJ,
k et i o i

+ EtVikfita_,+Vi*kaj, tfia] , (I)
ika

inthelarge-Ulimit.(Thislimit,asunderstoodhere,impliesbothU _ = ande+ U _ =,,

so that there is never more than one electron per f-orbital.) The pararne_rs and operators
in Eq. (1) include the conduction-band creation (annihilation) operators ata (ata) for a con-
duction electron in an extended state with wavevector k, spin tj, and energy ek; the

-

=

,_ o, ,,l_,, , fll ' *_ ..... ' iii ''- rl,,lr ,_,p '1'"" qlll_l'hEJlPJ' ""lll'r In'" q_'_q''l' _ '"''q_P'_0'r



-2-

localized electron creation (annihilation) operators fi t (J"ia) for loc.alized electrons in an
atomic orbital centered at tattice site i with energy e; the on-site Coulomb interaction U,
and the hybridization integral '¢a that mixes together the localized and extended states. (As
already mentioned, the degeneracy of the f-electrons is neglected here; additional f-
electron orbitals may easily be added without changing the qualitative nature of the model.)
The hybridization integral Va is a.ssvanedto be of the form

V/_ = exp(i Ri" k) V g (k)/_r_" , (2)

(k), the form factor, a dimensionless function of order one, and N the numberwit_! of lat-
tice sttes. The Fermi level Ee is defined to be the maximum energy of the filled conduction
band states, in the limit V ---_0, and the or/gin of the energy scale is chosen so th_,tE,,,= 0. "
The conduction-band density of states per site at the Fezrnilevel is then defined to be p.

2. THE SCHRIEFFER-WOLFF TRANSFORMATION OF THE I.,ATTICE ANDER. b
SON IMPURITY MODEL: LOCAL MOMENTS_ KONDO LATrlCE, HEAVY FER-
MIONS, INTERMEDIATE VALENCE, AND BAND THEORY

The lattice Anderson impurity model can be exactly diagonal_zed in two limits: in l/_e
nonin_racttng case, (Up--> 0) the Hamiltonian is a quadratic form in the fermionic opera-
tors, i.e. an independent p_uticle problem, and can be diagonaliz_ by a change in one-
particle basis; in the zero hybridization limit (Vp _ 0) the Hamiltonian decouples into two
mdependem systems (extended elecu'ons and localized electrons), with explicitly diagonal
sub-Hamiltonians for each subsystem. The large-bateraction (Up> 1), small-hybridization
(Vp¢l) limit of the Anderson model is the physically relevant regime for studying

: lanthanide and actinide compoLmds. Exact diagonalization studies [10] (on small systems)
show that the lattice Anderson impurity model can describe ali of the physical phenomena
(local moments, Kondo effect, heavy fermions, intermediate valence, and band theory) of
lanthanide and actinide compounds simply by varying the parameter _p from large negative
values to _'ge positive values. In fact, the lattice Anderson impurity model, in the infinite-
U and Vp ¢: 1 limit, is clmracterized by live regimes depending upon the localized..electron
energy e (see Figure I):

t-d model
0.1 - .:.. .:: ._, Intermediate ,,'_N,'_'_,_"_

;>

.o

= _moments "::::::::,,_"_' \ theor "_>, // ::::::1" ,,_ Y ,,.,

0.0-
-' 0 I

Localized-orbital energy _p

Figure 1. A schematic diagram showing the regions of parameter space where
local magnetic moments, Kondo lattice [11,12] (quenched moments every-
where), t-J model, intermediate valence, and one-electron band theory are
expecled to occur in the small hybridization, large interaction strength limit of
the lattice Anderson impurity model. The horizontal axis records the localized
f-electron energy (relative to the Fermi level) and the verd_'edaxis records the

_- hybridization strength. Heavy-fermion behavior may occur in the transition
region between the Kondo lattice and intermediate valence (t-J model
regime). A line-turtinl_ of the parameters and the crystal structure of the
(effective) t-J model _srequired to produce a heavy-fermion system.
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(A) ep<:-Vp<0 -- isolated local momentst[l,8]. In this limit the f-orbitals are. occu-
pied by a single electron (<fib" fit + f,_ fi_> = 1), and (effectively) decoupled fromthe conductionelectrons. There are everywherelocal magnetic moments, The local
moments interact with each other via exchange, superexchange, and/or Ruderman-
Kitte.l-Kasuya-Yosida 0tKKY) interactions [l] with ferromagnetic or antiferromag-
netic exchange integrals. The rich magnetic structure of the rare-e,_h metals appears
in this regime.

(B) -Vp<ep_--V2p2<0 -- the regime where the Kondo effects holds for impurities
and where a Kondo lattice [11,12] maLexist. In ._.s regime there are no charge exci-
tations in the localized orbitals (</i_t fi_ + fi_,/il.>=l), but the local moments
internet strongly with conduction-electron spins at the Fermi level to quench the mad-

, netic moments everywhere.

(C) ep =-v_p 2 -- the t-J. model [gq. In this regime the, localized orbitals are almost
singly _cupied (<firtf_r+fi_f+_>=l-v ,v<l) and have broadened into a
strongly correlated narrow band in which ali electronic transport takes piace; the con-
duction band is (effectively) decoupled and acts only as a buffer that determines the
concentration of electrons in the narrow band.

(D) -V2p2,_ep ¢ V2p2 --- intermediate valence [7]. As e is increased to the Fermi level

and beyond the to_e.upation of the localized orbitals becomes nonintegral
(0 < <lift fit +fi_fi,L> < 1) and the system is in the intermediate valence
regune.

(E) 0 < V2p2,c._p-- band theory [8]. As _ is increased well beyond the Fermi level aU
localized states are essentially unoccupied (<.fi_ fir + fi_ fiJ. >=0) and (effectively)
decoupled from the conduction electrons. The ground state is determined by one-
electron band theory for the extended electronic states, which exhibit a very small
hybridization with the f-states.
Heavy-fermionic behavior [5,61 occurs, under certain circumstances, "triregime (C),

the transition region from the Kondo-lattice [11] regime (B) to the intermediate,valence

regime (D). The many.body ground state is characterized by a huge number of low-lyingexcited states that have many different spin conligumtJons (a partial decoupling of spatial
and spin degrees of freedom) and is close to a disproportionation instability. This produces
a very large coefficient to the term linear in temperature in the specific heat, a large mag-
netic susceptibility, and poor metallic conductivity.

" The five regimes outlined above may be established by employing a Schrieffer-Wolff
[13] canonical transformation to the lattice Anderson impurity model. Since the details of

-- this transformation are well known [13,14], only an outline will be presented here.
The Anderson ttamiltonian Ha is divided into twoterms H_, = Ho+Hh_ b where Hhy b

is the last term in Eq. (1_. A canonical transformation H'-=exp(S)H,_ exp(-S) is performed
with S chosen to sausfy [He,SI =tt_b. One finds (to lowest order in V) that
H' = H o+ %[S, H_,rt,] or

: H' - H o = - E Jiae _g]i_ _g/i "_gl_J_e (3a)

1 -_ f:._-" _-_ [Wii'_ + T Jii'_ (fit f i + li" _)]Yi t f i'a (3b)
+_ ii'k

1
+ + v],rf, l vl v,. (3c)

+ "4"12[ K+aefit fi t akoae _ + h.c. ] , (3d)
+kk'oi

where the spinors are defined to Pie
I

I ':l I+'l_/k- , _Ifi-=" , (4)k iJ,

: _ denotes the Pauli s m't matrices, and the coefficients are

-- Ja'_e _ Vi_V:'e 1 l 1 1
=- e_ e-U + J , (5a)- e_, -e--U e_ .-e ev -e

+ ]Kii,kl: =_ Vi k Vi,e l 1 l ],+ -- --, , (Sb)
J
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The last term (3d) can always be neglected (in the large-U Limit)because it ordy connects
configurations that have zero electrons at site i to configurations with two elecm')ns at site
i, which are explicitly forbidden.

The canonical transformation of the lattice Anderson impurity model is approximated
weil by the lowest order term (in v) when IV p/e I< 1. In this region of pm'ameter space
the localized orbitals have an occupancy per site close to one (e < O) or close to z_em(e >0).
When the occupancy is close to one, the operator _h _gl_ may be replaced by unity and
both the term (3c) and the diagonal (i = i') l_rms in (3b) may be absorbed into a renormal-
ized He. The remaining terms in Eq. (3) describe spin scattering of the conduction electrons .
at the Fermi level by the localized moments (3a), _nd direct hopping terms within the (nar-

row) f-band. (3b). W_henthe occupancy is close to _m R the band-theory regime -- the
operators "qJi_ft, _iet_Ii, and ft f_ may ali be replaced by zero. The only important
terms remaining in Eq. (3) are the changes in the one.particle band.structure arising f_orn
(3c).

The local-moment regime corresponds to the case where ep,_-Vp<0 so that
IJ_,,_,I _ 1 for k and k' at the Fermi surface. To lowest order, the ground state consists of
one f-electron per site and a conduction band filled up to energy El,. The spin flipping of
the local moments by the conduction-band electrons at the Fermi surface (3a) is weak and
•ali other tetTnsin Eq. (3) can be neglected. The interaction (3a) between localized spins and
conduction electrons then leads, through H0, to a variety of localized-spin exchange interac-
tions [15]. These, in turn, determine, at low enough temperatures, the long-range magnetic
order.

The Kondo-lattice model [11,I2] corresponds to the case where
-Vp,_ep_-VZpZ<0, the f-orbitals are singly occupied {so that the hopping term (3b)
ntay be neglected}, and the density of states of the conauction electrons is not negligible rt
the Fermi level, so that the spin scattering term (3a) is the most important correction tenn.
"Ilaelocal.moment spins strongly interact with the conduction electrons (at the Fermi s_tr-
face) which quench the magnetic moments everywhere.

"[1_ t-J model occurs in the region where ep=-V2p2<0. The localized states
bro_en into a aarrow band with an occupancy of nearly one electron per site; the density
of states of the conduction electrons at the Fermi level is negligible, so that the spin-
scattering term (3a) may be neglected. In this case, the hopping term (3b) is the most
important correction te.nr_.The conduction electrons are decoupled from the f -band and act
only as a buffer that determines the filling of the.f.band. The hole density v reAuired for
the hopping tc.rra (3b) to be more important lhan the spin-scat_ring term (3a) is

,_s g2(kye
,c v ,c I , (6)

_..a)zg2"(k ) exp(i k'%)/(ek-'e)

where x is a nearest-neighbor translation vector, FS denotes a summation over wavevectors
: that lie on the Fern,i surface only, and BZ denotes a summation over ali wavevectors in the

Brillouin zone.

This narrow f-band is described by the large-U limit of the Hubbard model [16],
which in turn becomes the t--J model [17]

: H,=s = - _ :,7 (1 -fit__ li _) fi t fie (1-fit._ f).._) + _a Jo Si "Si , (71
ija tj .

with
=

tu = Woe "7" e_- s (8) ,k

" and J,j = 4 Itij 12IU. Note that the hopping mauix elements t_) in Eq. (8) are short-ranged,
i.e., strongly peaked functions of the separation IR_- R i I between lattice sites i and j, as

: expected.
A necessary condition for heavy-fermion behavior is that the parameters of the

Anderson model fall into the range where the mapping onto the t-J model is valid, but this
condition is not sufficient. The solutions of the t--J model must also possess a very large
number of low-lying excitations with many different spin configurations. This latter
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conditionrequiresa fine-tuningoftheparametersinthet-J modelanddependsstrongly

upon the geometry and connectivity of the lattice. For example, exact-diagonalization calcu-lations on small clusters [18,19] -- _ below m indicate that strongly frustrated lattic..s,
for occupancy close to one electron per site, are the best candidates for heavy-fermionic
behavior (e.g., the system with 7 eleclrons inan eight-site face-centered-cubic cluster
possesses solutions w_th strongly enhanced low-temperature specific heat, quasielastic spin
excitations, and poor metallic conductivity; the pound state may be magnedc or nonmag-
netic).

The intermediate-v_ence regime occurs when the Schrieffer-Wolff transformation
may not be truncated to lowest order, !ep l ,_ V pZ, or its expansion may not be valid at all.
In this case, ali parameters are equally important m_d the full many-body problem must be
solved. The average occupation Ber site) of an/-orbital decreases from 1 to 0 as el:) is

" increased. This regime has been studied by mapping onto a Fermi liquid [7] _d by exact-
diagonalization on small clusters [10).

Finally ha the region where ep _ V2p2, the Schrieffer-Wolff transformation is once
again valid to lowest order and one finds that the/'-orbitals are completely empty and
(effectively) decoupled from the conduction, band. The system is described by one-electron

: theory [8] for the conduction-band electrons alone, This is the regime where ordinary
density-functional theory is an excellent tool for calculating the electronic properties.

3. PERIODIC SMALL.CLUSTER APPROACH TO MANY-BODY PROBLEMS IN
GENERAL, AND HEAVY-FERMION SYSTEMS IN PARTICULAR

lt is known from the basi:-duality between real and reciprocal spaces [8] that a
microcrystal of N sites with periodic boundary conditions has eigenstates that can be

classified by N k-vectors, d_,_tributedperiodically throughout the Brillouin zone. Con-
_ersely, the sampling of N points, periodically distributed in the Brillouin zone is
equivalent to solving a problem in real space, in a microcrystal of N sites with periodic
boundary conditions. This me.thod has been extensively used by t_ authors, their collabora-
tors, and others [10, 18-21] to solve a variety of problems, bolh model Hamiltonians and
realistic situations [22-24].

The cluster is chosen to be small enough that the many-body Hamiltonian may be
exactly diagonalized but (hopefully) large enough that the physics of the infinite lattice is
captured. For the heavy-fermion case discussed below, the mapping of the Anderson model
(1) onto a t-J model reduces the size of the Hidbert space by a factor of (3/16)" which
allows larger clusters to be studied.

An understanding of exactly how to extrapolate the results for a small-cluster calcula-
tion to the thermodynamic limit (N --_ ,,_) has not yet been achieved. It is nonetheless ob,,_-
ous that sonde very interesting effects are observed in these small clusters (small k-space
sampling), and one such effect is the appearance of heavy-fermion behavior.

3(a). A Heavy-Fermion Case in a Small-Cluster t.J Model

The small-cluster approach has been applied to thet-J model [18-19). A very good
example of a heavy-fermion system lies in an eight.site face-centered cubic-lattice cluster
with seven electrons [18-19]. When the hopping parameters and antiferromagnetic su_rex-
change patarneters are chosen to be

t > 0, i, j = first-nearest neighbors ,
t#/= t" = 0.lt , i,j = second-nearest neighbors,

0 , otherwise,

J , i ,j = first-nearest neighbors,J_'J= 0 , otherwise, (9)

(out of a total of 1024 state.s) that is split-of[ from the higher-energy excitations and which
" include many different spin configurations (see Table 1). These many-body states are

degenerate at J =0 but the degeneracy is partially lifted for finite J, with low-spin
__ configurations favored (energetically) over high-spin configurations. It is worth remarking

that even with the antiferromagr|etic interaction included, the spin 1/2 ground state remains
accidentally degenerate, with a degeneracy of 14, i.e., 14% of the available states remain in
the ground-state manifold.

=
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-__' Total Sp'.m. Dezenerac_¢ __Spatial Symmetry I.Abel

-6t + 6t' - 3J _A 14 I"2_X t _X2
-6t + 6( -2,/ tA 16 L3

--6t +6t' - 1.5J 1 tA 32 Ft2(gXt _X2
--6r +6t' -0.5J 1 tA 16 L2

---6t+6( +J 2 tA 18 X2
........

-- ,,1,1 z?-? ........ _'

Table 1. Low-energy manifold of many-body eigenstates, at zero magnetic
field, for the model heavy.fermion system discussed in the text. The notation
is that of References [18,19].

4. HEAVY-FERMIONS IN MAGNETIC FIELDS: THE METAMAGNETIC TRAN-
SITION

Heavy-fermion systems have been an active area of reseaxch for both experimentalists
[5] and theorists [6] since their discovery in the mid-1970's. Heavy-fermion systems are
characterized by huge coefficients (_) to the term linear in T in the specific heat, quasi-
elastic spin excitations (large magnetic susceptibility), and poor metallic conductivity.
These feature,s may be qualitatively described by a Fermi liquid with a very large density of
states at the Fermi level [6], Heavy-fermion systems may become superconductors (UPt 3,
UBet3, CeCu2Si2, URu2Si2, etc.), possess long-range magnetic order (UPt3, URu2Si2,
NpBet3, U2ZnlT, etc.), or remain paramagnetic metals (CeRu_Si2, CeAl3, CeCu6, etc. ) at
low temperattu'es,

Recent experimental work has concentrated on the properties of heavy+fermion sys-
tems in high magnetic fields [25-28]. A "transition" is observed (the so-called metamagnetic

transition) at a characteristic magnetic field Bc in CeRu2Si2 (Be=7.8T), UPt?. (B,:.y21T)_,and URuzSi2 (Be = 36T). The transition is characterized by a magnetic-held depenoence o
the coefficient y, the elastic coefficients, and the magnetic properties. At the critical field
Be, the coefficient "yhas a single peak, the elastic coefficients are softened, and tlm mag-
netic fluctuations change character. The magnetization shows a steplike structure as a func-
tion of magnetic field strength. This contribution presents a many-body theory (without the

),a_,,,umptionsof Fermi-liquid theory) that describes ali of the above electronic properties ofheavy-fermion systems (except+superconductivity) and their field dependence.

Every heavy-fermion system is composed of ions with localized f-orbitals
(lanthanides and actinides) that do not overlap with the corresponding f-orbitals on neigh-
boring ions, but do hybridize with the extended states of the conduction-band electrons. The
f-electrons interact very strongly with each other via a screened (on-site) Coulomb interac-
tion U that.acts only between two f-electrons that are localized about the same lattice site.
Doubly occupied f-orbitals are effectively forbidden, since the Coulomb energy is larger
tlmn any other energy in the problem (U > 10 eV). The physics of such an electronic system
is therefore described by the periodic Anderson impurity model [9] in the large-U (U _ _)
limit, Eq. (1).

Heavy.fermionic behavior may occur in the restricted region [13,14] of parameter

: space where _Vp_ep,_--V2p2<0. The localized orbitals are almos_ singly occupied
(<litr fi'f + fit li J.>= 1-v ;v,c 1) and the conduction electron aensity ot states at me

+ Fermi level is small. In this case, the kinetic energy of the holes that hop within a narrow
"effective" band dominates over the magnetic spin-spin interactions and the spin-flipping
terms of the Kondo effect.

The renormalized Schrieffer.Wolff transformation of the lattice Anderson model is
then well described by a t-J model in the limit IV2p/el <1. When pe_-Vp<0, the
renormalized magnetic interactions J between the local moments of the f-electrons dom-
inate. The local moments intzract with each other via ali forms of exchange interactions, _,
which determine, at low enough temperatures, the long-range magnetic order. As pe
increases, two effects occur:.

(i) the kinetic energy of the holes in the narrow f-band become important; and

(ii) a residual Ko_d0 effect begins to quench the local magnetic moments.
In this regime,

: -,Vp <::81)_ -V2P 2 , (8)

: the Anderson model is approximated well by the full t-J model. The conduction electrons
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am de,coupled from the f-band and act only as a buffer that determines the filling of the
f-band. This picture is supported by numai-cal evidence found in exact solutions {19-21)
of the lattice Anderson model on four-site clusters (see the next section).

4(a). Heavy-Fermionie Behavior in the t-J Model

A heavy-fermion system is characterized by a many-body ground state with very
large number of low-lying excited states that have many different spin configurations (a
partialdecouplingofspatialanaspindegreesoffreedom).Thelocalizedstate,sbroadeninto

. a strongly correlated narrow band in which all electronic transport takes piace; the conduc-
tion band is (effectively) decoupled and acts only as a buffer that determines the concentra-
tion of electrons in the narrow band. The formation of a heavy-fermion ground state (and
its low-lying excCxtations)require a fine-tuning of the parameters in the (effective) t-J

" model and depends strongly upon the geometry and connectivity of the lattice.

4(b).The Metamagnetic Transition

As seen in the example of the previous section (Table I), the ground-stat_ manifold of
a heavy.fermion system contains a very large number of almost degenerate state. In that
example there are 96 many-body states -- out of a total of 1024 -- which are degenerate
for J =0. A finite J value partially lifts that degeneracy y, with low-spin configurations
energetically favored over high-spin configurations.

A magnetic field (in the z-direction) partially lifts the degeneracy even more, since
the many-body eigenstates with z-component of spin mz have an energy

E(B) = E(0) - mzgl.tsB _ E(O)--rnzbJ , (10)

in a magnetic field B. The symbols g, lIB, and b denote the Land6 g-factor, Bollr magne-
ton, and dimensionless magnetic field, respectively. The high-spin eigenstates are energeti-
cally favored in a strong magnetic field and level crossings occur as a function of b.

The phenomena described above are ali of the necessary ingredients for a metamag-
netic transition. The heavy-fermion system is described by a ground state with nearly
degenerate low-lying excitations of many different spin configurations. The antiferromag-
netic superexchange pushes high-spin states up in energy with splittings on the order of J.
The magnetic field pulls down these high-spin states (with maximal m,) and generates level
crossings ha the ground state. In the region near the level crossings, there is an increase in
the density of low-lying excitations that produces a peak in the specific heat as a function
of b. The magnetization and spin-spin correlation functions both change abruptly at the
level crossings.

To illustrate the metamagnetic transition for the simple model above, the specific heat
and magnel_ation are calculated as a function of the magnetic field (at a fixed low tern-
perature). The specific heat ,satisfies

k--_ _,,exp(-_3E,.) - _ exp(-l_E.) . (Il)

whereks isBoltzmann'sconstant.[3istheinversetemperature([5=-I/knT) andEn isthe
energyof thenth many-bodyeigenstateina magneticfieldb (thesummationsareres-
trictcdtothe96 eigenstatesinTableI).Similarlythemagnetizationisexpressedby

M(b)= , (12)
Z. exp(-..13E.)

where m, is the z-component of spin for the nth many-body eigenstate. The results for the
specific heat and magnet_.ation are given ha Figures 2 and 3, respectively, at the tempera-
tare waere [3,/= 1. Results for the magnetization at a lower temperature, _/= 5 are given in
Figure 4.

The specific heat at the higher temperature has a single broad peak as a function of
magnetic field with the center of the peak moving to larger values of b and the zero-field
intercept becoming smaller as the temperature increases. The magnetization smoothly
changes from a value of zero to a value of 5/2 as a function of magnetic field, showing lit-
de structure.
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Figure 2. Calculated specific heat as a function of magnetic field for the
heavy-fermion model. The temperature is T =J/kB. The horizontal axis con-
tains the dimensionless magnetic field and the vertical axis contains the dimen-
sionless specific heat Cv/ka. Note the single peak in the specific heat, charac-
teristic of the high-temperature regime (temperature larger than the energy-
level spacings).
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0 1 2 3 4 5 6 7 8 9 10

b

Figure 3. Calculated magnetization as a function of magnetic field at a tem-
perature T =J/ks. Note the smooth u'ansition irl the magnetization, characteris-
tic of the high-temperature regime.

At lower temperatures the magnetization shows steps at the various values of the field
where there are ground-state level crossings.
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The results fit the experimental data[25-28] extremely weil. The specific-heat meas-
urements resemble the result of Figure 2 with a single-peak structure and the magnetization
measurements resemble the 'low-temperature" result (Figure 4) with noticeable steps. This
is to be expected since magnetization measurements take piace at a constant low tempera-
ture while specific-heat measurements require measurements over a temperature range.

Note that the low-field region (b < 1) is not faithfully represented by a small-cluster
calculation, since the discreteness of the energy levels will always produce a linear magnet-
ization.

3-

4

2

1

0 ' i - i
0 1 2 3 4 5

b

Figure 4. Calculated magnetization as a function of magnetic field at a tem-
perature T =J/5kn. Note the steplike transitions in the magnetization at each
level crossing, characteristic of the low-temperature regime.

4(c). Discussion
The physics of the metamagnetic transition can be described as follows: a heavy-

fermion system is composed of a ground-state with nearly degenerate low-lying excitations
of many different spin configurations; the weak antiferromagnetic superexchange interaction
slightly favors low.spin arrangements over high-spins (at zero magnetic field); a magnetic
field pulls down the high-spin configurations causing (multiple) level crossing(s) in the
_ound state and producing a peak in the many-body density of states. The result is a peak
m the specific heat (and possibly a richer structure at lower temperatures), steplike transi-
tions in the magnetization, and abrupt changes in ground-state correlation functions.
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