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Abstract: The Falicov–Kimball model is a simple quantum lattice model that describes
light and heavy electrons interacting with an on-site repulsion; alternatively, it is a model
of itinerant electrons and fixed nuclei. It can be seen as a simplification of the Hubbard
model; by neglecting the kinetic (hopping) energy of the spin up particles, one gets the
Falicov–Kimball model.

We show that away from half-filling, i.e. if the sum of the densities of both kinds of
particles differs from 1, the particles segregate at zero temperature and for large enough
repulsion. In the language of the Hubbard model, this means creating two regions with
a positive and a negative magnetization.

Our key mathematical results are lower and upper bounds for the sum of the low-
est eigenvalues of the discrete Laplace operator in an arbitrary domain, with Dirichlet
boundary conditions. The lower bound consists of a bulk term, independent of the shape
of the domain, and of a term proportional to the boundary. Therefore, one lowers the
kinetic energy of the itinerant particles by choosing a domain with a small boundary.
For the Falicov- Kimball model, this corresponds to having a single “compact” domain
that has no heavy particles.
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1. Introduction

1.1. The Falicov–Kimball model.Introduced thirty years ago to describe the semicon-
ductor-metal transition in SmB6 and related materials [FK], the Falicov–Kimball model
is a simple lattice model with rich and interesting properties. The system consists of
two species of spinless electrons with different effective masses: one species has infinite
mass (so the particles do not move – we call them “classical particles”), while the second
species represents itinerant spinless electrons whose kinetic energy is represented by a
hopping matrix. The Hamiltonian in a finite domain� ⊂ Z

d is

HU
� ({wx}) = −

∑
x,y∈�
|x−y|=1

c†
xcy + 2d

∑
x∈�

nx + U
∑
x∈�

wxnx. (1.1)

Here,c†
x , cx , denote creation, annihilation operators of an electron at sitex; nx = c

†
xcx ;

wx = 0,1 is the number of classical particles (“heavy electrons”) atx, andU � 0 is an
on-site repulsion between the two species of particles.HU

� ({wx}) represents the energy
of the electrons under a potentialUwx . The term 2d

∑
nx in (1.1) is for convenience

only. It makesHU
� positive, and this term only adds 2d times the electron number,N . At

zero temperature, one is typically interested in the configurations of classical particles
that minimize the ground state energy of the electrons.

The model was reinvented in [KL] as a simplification of the Hubbard model, by
neglecting the hoppings of electrons of spin↑, say. This simplification changes the na-
ture of the model somewhat, mainly because the continuous SU(2) symmetry is lost.
Connections between the two models are therefore not immediate; however, the greater
knowledge obtained for the Falicov–Kimball model may help in understanding the Hub-
bard model.

Rigorous results in [KL] include a proof that equilibrium states display long-range
order of the chessboard type when both species of particles have density 1/2; this holds
for all dimensions greater than 1 and forall U 
= 0 (includingU < 0), provided the
temperature is low enough. The model is reflection positive under a suitable magnetic
field, or when the electrons are replaced by hard-core bosons; this property can be used
to establish long-range order [MP]. Perturbative methods allow for an extension of these
results for largeU and small temperature, see [LM,MM,DFF]. Absence of long-range
order when the inverse temperatureβ is small, orβU is small, was also established in
[KL].

One may increase the density of one species and decrease the density of the other
species while maintaining the half-filling condition, namely that the total density is 1.
(However, as was shown in [KL], the lowest energy is achieved when both species have
density 1/2.) The one-dimensional case was considered in [Lem]; if classical particles
and electrons have respective densitiesp

q
and 1− p

q
, the ground state is the “most

homogeneous configuration” forU large enough; this configuration is periodic with a
period no greater thanq.Away from half-filling the particles segregate: classical particles
occupy one side of the chain, leaving room for electrons on the other side. There are
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several results in 2D. Gruber et. al. [GJL] performed a 1/U expansion and found periodic
phases when the density of the classical particles is 1/3, 1/4, 1/5.This was made rigorous
by Kennedy [Ken]. These results are reviewed in [GM]. The knowledge of the 2D phase
diagram for largeU was further extended in [Ken2,Hal,HK]. New ground states for
various rational densities were uncovered; for some densities they are periodic, but
there are also densities where coexistence of configurations with different periods have
minimum energy.The results are summarized in Fig. 1 in [HK]. Finally, it was understood
in [DMN] that the 111 interface is stable, due to the effective interactions between the
particles.

1.2. Away from half-filling.The purpose of our study is to explore the situation away
from half-filling; i.e., we take the total density to differ from 1. For any density away
from half-filling we prove that the ground state is segregated forU large enough. When
U = ∞, the ground state is segregated for all densities (at half filling all configurations
have the same energy, including segregated and periodic ones). Hole-particle symmetries
for both species of particles [KL] imply that the results for positiveU and densities
(ne, nc) of electrons and heavy (classical) particles, transpose to (a) positiveU and
densities(1− ne,1− nc), and (b) negativeU and densities(ne,1− nc) or (1− ne, nc).
For simplicity, we take the total densityne+ nc to be strictly less than 1.

We start our study by taking the limitU → ∞. Electrons are described by wave
functions that vanish on sites occupied by the classical particles, and the question is to
find the arrangement of classical particles that minimizes the energy of the electrons.
This amounts to minimizing the sum of the lowest eigenvalues of the discrete Laplace
operator with Dirichlet boundary conditions. This is explained in Sect. 2, where it is
shown that the energy per site ofN electrons in a finite domain� ⊂ Z

d with volume
|�|, is bounded below by the energy per site of the electrons in the infinite lattice with
densityn = N/|�|.

One can refine this lower bound by including a term proportional to|∂�|, the volume
of the boundary∂� of � (Sect. 3). This implies that the configuration of the heavy, fixed
electrons that minimizes the ground state energy of the movable electrons has, more
or less, one large hole with relatively small perimeter. Thus the movable particles are
separated from the fixed ones. This behavior was conjectured in [FF] and is opposite to
the checkerboard configuration, in which both kinds of particles are inextricably mixed.
Segregation was shown to occur in the ground state of thed = 1 model in [Lem], and of
thed = ∞model in [FGM]. The present paper proves that this holds for all dimensions,
and in particular for the relevant physical situationsd = 2 andd = 3.

Segregation is more difficult to understand on a heuristic level than the chessboard
phase. The latter is alocal phenomenon that results from effective interactions between
nearest neighbor sites, while the former is aglobal phenomenon involving extended
wave functions. This remark should also apply to the Hubbard model, for which antifer-
romagnetism is much better understood than ferromagnetism.

The fact that the sum of the lowestN eigenvalues of the Laplacian in a domain of
volume |�| is bounded below by the infinite volume value at the same density is not
unexpected and holds also in the continuum. Indeed, the original idea, due to Li andYau
[LY] (see also [LL] Sects. 12.3 and 12.11), was demonstrated in the continuum, and we
only adapted it to the lattice context. However, the fact that the error term is proportional
to |∂�|, the area of the boundary, is a completely different story. Its proof, at least the
one given here, is complicated. More to the point, such a bounddoes not hold in the
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continuum. One can easily construct a continuum domain with finite volume|�|, but
with |∂�| = ∞, and for which all eigenvalues are finite.

TakingU large instead of infinite decreases the energy, but the gain is at most pro-
portional to|∂�|, as explained in Sect. 4. Therefore the infinite–U segregation effect
outweighs this gain and the particles are still separated (at least when the heavy particle
density is far enough from 1/2). Finally, an upper bound derived in Sect. 5 shows that
the energy of electrons in� really consists of a bulk term independent of the shape of
�, plus a term of the order of the boundary.

These results are summarized in Theorem 1.1 below. One can use them to discuss
the electronic free energy at inverse temperatureβ, for afixedconfiguration of classical
particles, see Theorem 1.2. The conclusion of this paper involves a discussion of first-
order phase transitions at finite temperature, of what happens when classical particles
have a small hopping term, and of the possible links with ferromagnetism in systems of
interacting electrons with spins.

In order to present the main result of this paper, we need a few definitions. For
k ∈ (−π, π ]d , we set

εk = 2d − 2
d∑

i=1

coski . (1.2)

The energy per sitee(n) of a densityn of free electrons in the infinite volumeZd is

e(n) = 1

(2π)d

∫
εk<εF

εk dk, (1.3)

where the Fermi levelεF = εF(n) is defined by the equation

n = 1

(2π)d

∫
εk<εF

dk. (1.4)

We can specify the configuration(wx)x∈Zd of classical particles by the domain� ⊂
Z

d consisting of those siteswithout particles (holes), that is,w(x) = 1 if x /∈ � and
w(x) = 0 if x ∈ �. Let hU

� denote the one-particle Hamiltonian whose action on a
square summable, complex functionϕ onZ

d is

[hU
�ϕ](x) = −

∑
y,|y−x|=1

ϕ(y)+ 2dϕ(x)+ Uχ�c(x)ϕ(x). (1.5)

Here,χ�c(x) is the characteristic function that is 1 ifx belongs to the complement�c

of �, and is 0 ifx /∈ �c. We defineEU
�,N to be the ground state energy ofN electrons

for the configurations defined by�, i.e.

EU
�,N = inf{ϕ1,...,ϕN }

N∑
i=1

(ϕi, h
U
� ϕi), (1.6)

where the infimum is taken overN orthonormal functions, i.e.(ϕi, ϕj ) = δij . There
exist normalized minimizers if the Fermi level is belowU ; they are not identically zero
inside�, and decay exponentially outside.

Notice thatEU
�,N is increasing inU , since(ϕ, hU

�ϕ) is increasing inU for anyϕ.
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We define the boundary by∂� = {x ∈ � : dist(x,�c) = 1}, where�c is the
complement of�, i.e., the points inZd not in�. The following theorem summarizes the
results obtained in this paper. It contains upperand lower bounds for the ground state
energy. We setn = N/|�|.

Theorem 1.1. There are functionsα(n) > 0 andγ (U) with limU→∞ Uγ (U) = 8d2,
such that for all finite domains�,

(
2dn− e(n)

)|∂�| � EU
�,N − |�|e(n) �

(
α(n)− γ (U)

)|∂�|.
Furthermore,α(n) = α(1− n), and forn � |Sd |/(4π)d , it can be chosen as

α(n) = 2d−3

πdd3|Sd |2/d n
1+ 2

d .

Here,|Sd | is the volume of the unit sphere ind dimensions.

An explicit expression forγ (U) can be found in Proposition 4.1. The lower bound
α(n) vanishes whenn = 0 (no itinerant electrons) orn = 1 (fully occupied lower
band). Theorem 1.1 is relevant only whenα(n) > γ (U), that is, sufficiently away from
half-filling (depending onU ). The theorem states that the “good” configurations� for
which electrons have low energy must have small boundaries. As a consequence, the
system displays phase separation in the ground state.

The upper bound is symmetric under the transformationn �→ 1−ndue to a symmetry
of the Hamiltonian, and it is saturated forU = ∞ by configurations with isolated holes.
Indeed, in this case the eigenstates consist ofδ functions on the holes, with eigenvalues
equal to 2d, and∂� = �.

The lower bound is first explained in Sect. 2 forU = ∞and without the term involving
the boundary. The latter requires more effort and is derived using Lemmas 3.2–3.5 in
Sect. 3. Proposition 4.1 then extends it to the case of finiteU . The upper bound is proved
in Sect. 5.

Theorem 1.1 is described in [FLU], which also reviews the rigorous results obtained
so far for the Falicov–Kimball model.

1.3. Electrons at low temperature.It is natural to consider the situation at positive
temperature. The relevant object is the Gibbs state obtained by averaging over the
configurations of classical particles, and by taking the trace of the Gibbs operator
exp

{−βHU
� ({wx})

}
. We expect the system to display a first-order phase transition in

the grand-canonical ensemble; densities of both types of particles should have discon-
tinuities as functions of the chemical potentials. But a rigorous treatment of this phase
transition is beyond reach at present. However, we do obtain some properties of the
system when the configuration of the classical particles is fixed, and the electrons are at
positive temperature. Namely, one can extend the estimates of the ground state energy
to estimates of the electronic free energy. The results are described in this section, and
their derivation can be found in Sect. 6.

Let us consider a box� with periodic boundary conditions. The configuration of
classical particles is specified by the set of holes� ⊂ � (later, in Corollary 1.3, we shall
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average over�). With µ being the chemical potential, the grand-canonicalelectronic
free energy (equal to−|�|/β times the pressure) is

FU
�,�(β, µ) = − 1

β
log Tr exp

{−βHU
�,� + βµN�

}
. (1.7)

Here,HU
�,� = HU

� ({wx}) as defined in (1.1),N� =∑
x∈� nx is the number of electrons

in �, and the trace is in the Fock space of antisymmetric wave functions on�.
A simple “guess” forFU

�,� is obtained by considering independent electrons, which
are either in� or else in�c. In the latter case the effective chemical potential isµ−U .
Our “guess” would then be

FU
�,�(β, µ) ≈ |�|f (β, µ)+ (|�| − |�|)f (β, µ− U), (1.8)

wheref (β, µ) is the free energy per site for free electrons:

f (β, µ) = − 1

β

1

(2π)d

∫
[−π,π ]d

dk log
(
1+ e−β(εk−µ)

)
. (1.9)

Formula (1.8) is, indeed, correct whenU is large – in the sense that the error is
proportional only to|∂�|. More precisely,

Theorem 1.2. There are functions̄α(β, µ) > 0 with limβ→∞ ᾱ(β, µ) > 0 if 0 < µ <

4d, andγ̄ (U) with limU→∞ Uγ̄ (U) = 16d2+ 2d+3d4, such that for all finite domains
� and� ⊂ �,

Cd,µ|∂�| + C′d,µ|�|1−
1
d � FU

�,�(β, µ)− {|�|f (β, µ)+ (|�| − |�|)f (β, µ− U)
}

�
(
ᾱ(β, µ)− γ̄ (U)

)|∂�|,
with

Cd,µ =
(

4π
√
d

|Sd |1/d + 2d(2d + 1)

)
1

1+ e−βµ
,

C′d,µ =
4π
√
d

|Sd |1/d
1

1+ e−β(µ−U)
.

The term|�|1− 1
d on the left side is not exactly proportional to|∂�|. However, we

have in mind that|�| and|�| are comparable, in which case|�|1− 1
d is no greater than

|∂�| (up to a factor).
Notice that the upper bound vanishes asµ→−∞, i.e. when the density tends to 0.

In the limit U →∞, Theorem 1.2 takes a simpler form, namely

Cd,µ|∂�| � FU=∞
�,� (β, µ)− |�|f (β, µ) � ᾱ(β, µ)|∂�|. (1.10)

This extension of Theorem 1.1 to the case of positive (electronic) temperatures is
explained in Sect. 6. The lower bound follows from Propositions 6.1 and 6.2, while the
upper bound is stated in Proposition 6.3.
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Our next step is to find upper and lower bounds for the total grand-canonical “free
energy” by averaging over� (i.e., averaging over the positions of the classical particles).
This can be done with the aid of the Ising model free energyfIsing(β, h),

fIsing(β, h) = − 1

β
lim|�|→∞

1

|�|
∑

{sx=±1}
exp

{
−β

∑
{x,y}⊂�
|x−y|=1

sxsy − βh
∑
x∈�

sx

}
, (1.11)

where the sum is over configurations of classical spins on�.

Corollary 1.3. If U is large enough (so that̄α(β, µ)− γ̄ (U) > 0), we have Ising bounds
for the full free energy,

1
2[f (β, µ)+ f (β, µ− U)] + 1

4ᾱ + ᾱ
4d fIsing

( 1
4d ᾱβ,

2d
ᾱ
[f (β, µ)− f (β, µ− U)])

� − 1

β
lim|�|→∞

1

|�| log
∑
�⊂�

e−βFU
�,�(β,µ)

� 1
2[f (β, µ)+ f (β, µ− U)] + 1

2dCd,µ

+ 1
2Cd,µfIsing

(1
2Cd,µβ,

1
Cd,µ

[f (β, µ)− f (β, µ− U)]),
whereᾱ = ᾱ(β, µ)− γ̄ (U).

The proof can be found at the end of Sect. 6.
Another consequence ofTheorem 1.2 concerns the equilibrium state; namely, it allows

for a precise meaning of segregation. We consider the probability that sitesx andy are
bothoccupied by classical particles, or both are unoccupied. Namely, we consider

〈δwx,wy 〉� =
∑

�⊂�:wx=wy
exp

{−βFU
�,�(β, µ)

}
∑

�⊂� exp
{−βFU

�,�(β, µ)
} , (1.12)

where the sums are over subsets� of � such that|�| = [(1− nc)|�|] ([z] denotes the
integer part ofz ∈ R). The restrictionwx = wy means that either bothx andy belong
to �, or both belong to the complement of�.

Segregation means that up to a small fraction of sites that are close to the boundary
between classical particles and empty sites, any two sites at finite distance are either
both hosts of a classical particle, or are both empty. The fraction of sites close to the
boundary vanishes in the thermodynamic limit. Hence weexpectthat

lim
β→∞ lim|x−y|→∞ lim|�|→∞〈δwx,wy 〉� = 1, (1.13)

but we are unable to prove it. Notice that using Theorem 1.1, one can conclude that

lim|x−y|→∞ lim|�|→∞ lim
β→∞〈δwx,wy 〉� = 1. (1.14)

Indeed, taking the limit of zero temperature at finite volume, the sum over� becomes
restricted to the ground state configuration(s), whose boundary fraction|∂�|/|�| tends
to zero in the thermodynamic limit.

We can however take advantage of Theorem 1.2 to obtain a result that is better than
(1.14):



250 J.K. Freericks, E.H. Lieb, D. Ueltschi

Corollary 1.4. If U is large enough (depending onµ andd only), the ground state of
the Falicov–Kimball model displays segregation, in the sense that

lim|x−y|→∞ lim
β→∞ lim|�|→∞〈δwx,wy 〉� = 1.

The proof of this corollary can be found at the end of Sect. 6.

2. The Discrete Laplace Operator in a Finite Domain

2.1. Basic properties.We start our investigations by taking the limitU → ∞. Let us
denoteh� ≡ hU=∞

� , the corresponding Hamiltonian, which acts on functionsϕ ∈ L2(�)

as follows: ifx ∈ �,

[h�ϕ](x) = −
∑

y∈�,|x−y|=1

ϕ(y)+ 2d ϕ(x). (2.1)

Some observations can readily be made that will be useful in the sequel. Forϕ ∈
L2(�), one has the following formula,

(ϕ, h�ϕ) =
∑

{x,y}:|x−y|=1

∣∣ϕ(x)− ϕ(y)
∣∣2, (2.2)

where the sum is overall x, y ∈ Z
d , with the understanding thatϕ(x) = 0 for x /∈ �.

Equation (2.2) takes a simple form because of the diagonal term inh�. The effect of
the Dirichlet boundary conditions appears through a term

∑
x∈∂� |ϕ(x)|2, that is due to

pairs{x, y} with x ∈ � andy /∈ �.
The matrixh� is self-adjoint, and (2.2) shows thath� � 0. Its spectrum has a

symmetry. Letϕ be an eigenvector with eigenvaluee, andϕ̄ be the functionϕ̄(x) =
(−1)|x|ϕ(x); one easily checks that̄ϕ is also an eigenvector, with eigenvalue(4d − e).
The spectrum is therefore contained in the interval[0,4d], and is symmetric around 2d.
Furthermore, one has

E�,|�|−N = 2d |�| (1− 2n)+ E�,N,

e(1− n) = 2d (1− 2n)+ e(n). (2.3)

This allows to restrict ourselves to the casen � 1
2; indeed, existence of a lower bound

for a densityn implies a lower bound for the density 1− n. This symmetry holds only
for U = ∞.

2.2. The bulk term.We are looking for a lower bound for the sumE�,N of the firstN
eigenvalues ofh�. This problem was considered by Li and Yau [LY] for the Laplace
operator in the continuum. Let� ⊂ R

d be a bounded domain. They prove that the sum
SN of the firstN eigenvalues of the Laplace operator with Dirichlet boundary conditions
is bounded below,

SN > (2π)2 d

d + 2
|Sd |− 2

d N1+ 2
d |�|− 2

d , (2.4)

where|Sd | and|�| are the volumes of respectively thed-dimensional sphere and of�.
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The corresponding inequality in the discrete case – our Theorem 1.1 without the
boundary correction – constitutes the heart of this paper, and we explain below the proof
of Li and Yau; see also [LL], Theorem 12.3.

It is useful to introduce the Fourier transform for functions inL2(Zd), that is, on the
whole lattice. A functionϕ ∈ L2(�) can be considered an element ofL2(Zd) by setting
ϕ(x) = 0 outside�. This Fourier transform will lead to the electronic energy density
for the infinite lattice, which is the bulk term for the energy of electrons in�.

The Fourier transform of a functionϕ is defined by

ϕ̂(k) =
∑
x∈Zd

ϕ(x)eikx, k ∈ [−π, π ]d , (2.5)

and the inverse transform is

ϕ(x) = 1

(2π)d

∫
[−π,π ]d

dk ϕ̂(k)e−ikx. (2.6)

Using the Fourier transform, a little thought shows that the energy of a particle in a state
ϕ in L2(�) is

(ϕ, h� ϕ) = 1

(2π)d

∫
[−π,π ]d

dk |ϕ̂(k)|2εk, (2.7)

with εk defined in (1.2) and withϕ(x) = 0 if x /∈ � in (2.5).
Let us considerN orthonormal functionsϕ1, . . . , ϕN , and letE�(ϕ1, . . . , ϕN) be

their energy. We have

E�(ϕ1, . . . , ϕN) = 1

(2π)d

∫
[−π,π ]d

dk ρ(k)εk, (2.8)

with

ρ(k) =
N∑

j=1

|ϕ̂j (k)|2. (2.9)

The functionρ(k) satisfies the following equations:

0 � ρ(k) � |�|, (2.10a)

1

(2π)d

∫
[−π,π ]d

dk ρ(k) = N. (2.10b)

Indeed, positivity ofρ is immediate and the last equation is Plancherel’s identity. The
upper bound (2.10a) forρ(k) can be seen by writing

ρ(k) = (f, P f ), (2.11)

whereP is the projector onto{ϕj }Nj=1,

Px,y =
N∑

j=1

ϕj (x)ϕ
∗
j (y), (2.12)
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andf is the vector

fx = e−ikxχ�(x). (2.13)

Then, sinceP � 1l, we haveρ(k) � ‖f ‖2 = |�|.
Clearly, we have the lower bound

E�,N � inf
ρ: 0�ρ�|�|

(2π)−d
∫
ρ=N

1

(2π)d

∫
[−π,π ]d

dk ρ(k) εk. (2.14)

We can use the bathtub principle ([LL], Theorem 1.14) to find the infimum: it is given
by the function

ρmin(k) =
{|�| if εk � εF

0 otherwise,
(2.15)

where the Fermi levelεF is given by the relation 1
(2π)d

∫
εk<εF

dk = N/|�|. Thus the
right side of (2.14) is precisely equal to|�| e(N/|�|).

3. Lower Bound Involving the Boundary

In the previous section, we showed thatE�,N is bounded below by its bulk term. Now
we strengthen this inequality and prove thatE�,N also includes a term proportional to
the boundary of�. This can be checked ford = 1 by explicit computation, but higher
dimensions require more elaborate treatment.

We start with a lemma that applies when the densityn is small enough (or, by the
symmetry forh�, when it is close to 1).

Lemma 3.1. If n � |Sd |/(4π)d , we have

E�,N � |�|e(n)+ 2d−3n1+ 2
d

πdd3|Sd |2/d |∂�|.

Proof. Recall that

E�,N = 1

(2π)d

∫
[−π,π ]d

dk ρ(k)εk (3.1)

with ρ(k) = ∑N
j=1 |ϕ̂(k)|2. We want to show thatρ(k) cannot be too close toρmin(k)

in (2.15). By completeness of the set of eigenvectors{ϕj }, we have

ρ(k) = |�| −
|�|∑

j=N+1

|ϕ̂(k)|2. (3.2)

We now use the Schrödinger equation. We haveh�ϕj (x) = ejϕj (x) for x ∈ �. Let
us takeϕj (x) = 0 for x /∈ �; then the following equation holds true for allx ∈ Z

d :

−
∑
e

ϕj (x + e)+ χ�c(x)
∑

e:x+e∈�
ϕj (x + e)+ 2dϕj (x) = ejϕj (x). (3.3)
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The middle term of the left side is necessary for the equation to hold at sites outside�,
that are neighbors of sites in�. Taking the Fourier transform, we get

εkϕ̂j (k)+ (bk, ϕj ) = ej ϕ̂j (k), (3.4)

wherebk is a “boundary vector”,

bk(x) = χ∂�(x)e−ikx
∑

e:x+e/∈�
e−ike. (3.5)

Notice that|∂�| � ‖bk‖2 � (2d)2|∂�| if |k|∞ � π
3 . From (3.4), we have

|ϕ̂j (k)|2 = |(bk, ϕj )|2
(εk − ej )2 � 1

(4d)2 |(bk, ϕj )|2. (3.6)

The electronic energy in� is given by
∫
ρ(k)εk. We saw in Sect. 2 that 0� ρ(k) �

|�|. By (3.5) and (3.6), this can be strengthened to

const‖P−bk‖2 � ρ(k) � |�| − const‖P+bk‖2, (3.7)

whereP− (resp.P+) is the projector onto the subspace spanned by(ϕ1, . . . , ϕN) (resp.
(ϕN+1, . . . , ϕ|�|)). See Fig. 3.1 for intuition. We show below that

‖P+bk‖2 � const|∂�|, (3.8)

and this will straightforwardly lead to the lower bound.

−π 0 π k

|�|

ρmin(k)

ρ(k)

εk

εF

const‖P−bk‖2

const‖P+bk‖2

Fig. 3.1. Illustration of the expression (2.8) forE�,N ; ρ(k) satisfies more stringent estimates than those stated
in (2.10a), and this plays an important role in deriving the lower bound

In order to see that the boundary vector has a projection in the subspace of the
eigenvectors with large eigenvalues, we first remark that

(bk, h�bk) =
∑

{x,y}:|x−y|=1

|bk(x)− bk(y)|2 � ‖bk‖2. (3.9)
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We used the fact that each sitex of ∂� has at least one neighbory outside of�, and we
obtained an inequality by restricting the sum over such pairs. Let us introduceN ′ such
thateN ′ � 1

2 andeN ′+1 > 1
2. We first consider the situation whereN � N ′. Using first

ej � 4d and then the previous inequality, we have

4d
|�|∑

j=N ′+1

|(bk, ϕj )|2 �
|�|∑

j=N ′+1

|(bk, ϕj )|2ej

� ‖bk‖2−
N ′∑
j=1

|(bk, ϕj )|2ej � 1
2‖bk‖2. (3.10)

For |k|∞ � π
3 , (3.6) and (3.10) imply

ρ(k) � |�| − |∂�|
2(4d)3 . (3.11)

We can write a lower bound by proceeding as in Sect. 2, but using the bound (3.11)
for ρ(k), instead of|�|. The bathtub principle then gives

E�,N − |�|e(n) � 1

(2π)d

∫
εF<εk<ε′F

dk εk

(
|�| − |∂�|

2(4d)3

)

− 1

(2π)d

∫
εk<εF

dk εk
|∂�|

2(4d)3 , (3.12)

where we introduceε′F such that

N = 1

(2π)d

(
|�| − |∂�|

2(4d)3

) ∫
εk<ε′F

dk. (3.13)

Notice that forn � |Sd |/(4π)d , we haveε′F < 1
2, so thatεk < ε′F implies |k|∞ < π

3 .
This justifies the use of (3.11). We bound the first integral of (3.12) usingεk > εF, and
we obtain

E�,N − |�|e(n) � |∂�|
2(4d)3

1

(2π)d

∫
εk<εF

dk(εF − εk). (3.14)

One can derive a more explicit expression for the lower bound. First,∫
εk<εF

dk(εF − εk) � 1
2εF

∫
εk� 1

2εF

dk. (3.15)

Second we use 1− θ2

2 � cosθ � 1− 4
π2 θ

2, to get

8

π2 |k|2 � εk � |k|2. (3.16)

One can use the upper bound of (3.16) to get∫
εk<

1
2εF

dk � |Sd |(1
2εF)

d/2. (3.17)
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Recall that|Sd | is the volume of the unit sphere ind dimensions. The lower bound of
(3.16) allows to write

εF � 25n2/d

|Sd |2/d . (3.18)

Then one gets the bound∫
εk<εF

dk(εF − εk) � 24+2dn1+ 2
d

|Sd |2/d . (3.19)

Hence the boundary correction toE�,N is bounded below byα(n)|∂�| with

α(n) = 2d−3

πdd3|Sd |2/d n
1+ 2

d . (3.20)

Recall that we supposedN � N ′, whereN ′ is the index of the largest eigenvalue
that is smaller than12. Were it not the case, we can write, withn′ = N ′/|�|,

E�,N =
N ′∑
j=1

ej +
N∑

j=N ′+1

ej � |�|e(n′)+ α(n′)|∂�| + 1
2|�|(n− n′). (3.21)

We used the previous inequality to bound the first sum, andej � 1
2 for the second sum.

This is greater than|�|e(n)+ α(n)|∂�| provided

e(n′)+ α(n′) |∂�||�| +
1
2(n− n′) � e(n)+ α(n)

|∂�|
|�| . (3.22)

A sufficient condition is that12n−e(n)−α(n) is an increasing function ofn. Computing
the derivative (the derivative ofe(n) is εF(n), that is smaller than(2π)2n2/d/|Sd |2/d
using (3.16)), and requiring it to be positive leads to the condition

n � |Sd |
{2(2π)2+ 2d−2

πdd3 (1+ 2
d
)}d/2

. (3.23)

The right side is greater than|Sd |/(4π)d . ��
It may seem obvious that the extra energy due to the presence of the boundary

increases asn increases, until it reaches1
2. But we can provide no proof for this, and hence

we need a new derivation for the lower bound with higher densities. We proceed in two
steps. First we give a lemma that works when the boundary has few nearest neighbors;
the proof is similar to that of the previous lemma. Then we give three lemmas, with
more intricate demonstrations, and that establish the lower bound for boundaries where
at least a density of sites have nearest neighbors. We need some notation to characterize
the configuration around a sitex of the boundary.

Let e, e′ be unit vectors inZd ; the notatione ‖ i means thate is parallel to the
ith direction; equivalently, the components ofe are given byek = ±δik. We introduce
integersqx,i andqx,ij ; for x ∈ ∂�, we set

qx,i = #{e ‖ i : x + e /∈ �},
qx,ij = #{(e, e′) : e ‖ i, e′ ‖ j, x + e ∈ ∂�, x + e + e′ /∈ �}. (3.24)
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Notice that 0� qx,i � 2 and 0� qx,ij � 4. Also,qx,ii = #{e ‖ i, x+e ∈ ∂�, x+2e /∈
�}, and 0� qx,ii � 2. We also defineqx =∑

i qx,i .
The following lemma applies to domains where most boundary sitesx satisfyqx,ij ≡

0, in which casex has no neighbors that belong to the boundary. Here,qx,ij ≡ 0 means
that, atx, qx,ij = 0 for all 1 � i, j � d.

Lemma 3.2. For all � ⊂ Z
d with

#{x ∈ ∂� : qx,ij 
≡ 0} � 1

32d4 |∂�|,

there existsα(n) > 0 such that

E�,N � |�|e(n)+ α(n)|∂�|.
Remark. limn→0 α(n) = 0 andα(1− n) = α(n) by the symmetry forh�.

Proof. We can supposeN � |�|
2 . The definition ofρ(k) involves a sum over the first

N eigenvectors (more precisely, of their Fourier transforms). In case of degenerate
eigenvalues one is free to choose any eigenvectors. For the proof of Lemma 3.2 it turns
out that the possible degeneracy of 2d brings some burden, and it is useful to redefine
ρ(k) by averaging over eigenvectors with eigenvalue 2d:

ρ(k) =



∑N
j=1 |ϕ̂j (k)|2 if N � Ñ∑Ñ
j=1 |ϕ̂j (k)|2+ N−Ñ

|�|−2Ñ

∑
j :ej=2d |ϕ̂j (k)|2 if N > Ñ;

(3.25)

here,Ñ is such thate
Ñ

< 2d ande
Ñ+1 � 2d. The degeneracy of 2d is |�|−2Ñ (which

may be zero). Of course,E�,N is still given as the integral ofρ(k) multiplied byεk.
The goal is to prove thatρ(k) cannot approachρmin in (2.15). Since

∑|�|
j=1 |ϕ̂j (k)|2 =

|�|, we have

ρ(k) � |�| −
{ |�|∑
j=|�|−Ñ+1

|ϕ̂j (k)|2+ 1

2

∑
j :ej=2d

|ϕ̂j (k)|2
}
. (3.26)

We introduce

S(k) =
|�|∑

j=|�|−Ñ+1

|(bk, ϕj )|2+ 1

2

∑
j :ej=2d

|(bk, ϕj )|2, (3.27)

with bk the boundary vector defined in (3.5). By the inequality (3.6), it is enough to show
thatS(k) is bounded below by a quantity of the order of|∂�|. We have

S(k) = (
bk, P+ bk

)+ 1
2(bk, P0 bk), (3.28)

whereP+ is the projector onto the subspace spanned by allϕj with ej > 2d, andP0 is
the projector corresponding to the eigenvalue 2d.

We want to show thatS(k) � const|∂�| for small|k|. This amounts to prove that the
vectorbk cannot lie entirely in the subspace spanned by{ϕj }1�j�N .
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Notice that ifx ∈ ∂� andqx,ij ≡ 0, thenx has no neighbors in∂�. Using the
assumption of Lemma 3.2, as well as|bk(x)| � 2d and|∂�| � ‖bk‖2, we get

(bk, h�bk) =
∑

{x,y}:|x−y|=1

|bk(x)− bk(y)|2

� 2d
∑
x∈∂�

|bk(x)|2− 2d
∑
x∈∂�
qx,ij 
≡0

|bk(x)|2 (3.29)

�
(
2d − 1

4d

)‖bk‖2.

The last inequality uses the assumption of Lemma 3.2, and the fact that|bk(x)| is at most
2d and at least 1.

Next we consider‖(h� − 2d)bk‖2. We have, forx ∈ �,[
(h� − 2d)bk

]
(x) = −

∑
e

bk(x + e), (3.30)

and therefore, if|k|∞ � π
3 ,

‖(h� − 2d)bk‖2 �
∑
x∈�

∑
e

|bk(x + e)|2 =
∑
x

(2d − qx)|bk(x)|2. (3.31)

We writebk = b′ + b′′, with b′′(x) = bk(x) if qx = 2d, 0 otherwise. Notice that
b′ ⊥ b′′. Clearly,P0b

′′ = b′′, and therefore

S(k) = (b′, P+ b′)+ 1
2(b

′, P0 b′)+ 1
2‖b′′‖2. (3.32)

Furthermore, from (3.29) and (3.31),b′ satisfies

(b′, (h� − 2d)b′) � − 1

4d
‖bk‖2, (b′, (h� − 2d)2b′) � ‖b′‖2. (3.33)

Because|ej − 2d| � 2d, the last inequality implies

−
∑
j

|(ϕj , b
′)|2(ej − 2d)+ 2

∑
j :ej>2d

|(ϕj , b
′)|2(ej − 2d)

=
∑
j

|(ϕj , b
′)|2|ej − 2d| � ‖b′‖2

2d
. (3.34)

With the first inequality in (3.33), this yields

∑
j :ej>2d

|(ϕj , b
′)|2(ej − 2d) � ‖b′‖2

4d
− ‖bk‖

2

8d
, (3.35)

hence

∑
j :ej>2d

|(ϕj , b
′)|2 � ‖b′‖2

8d2 − ‖bk‖
2

16d2 . (3.36)
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Back to (3.32), we obtain

S(k) � ‖b′‖2

8d2 + 1
2‖b′′‖2− ‖bk‖

2

16d2 � ‖bk‖2

16d2 . (3.37)

We can combine this bound with (3.26) and (3.6); we have then for all|k|∞ < π
3 ,

ρ(k) � |�| − |∂�|
(4d)4 . (3.38)

We introducẽεF such that

1

(2π)d

(
|�| − |∂�|

(4d)4

) ∫
εk<ε̃F,|k|∞<π

3

dk + |�|
(2π)d

∫
εk<ε̃F,|k|∞>π

3

dk = N, (3.39)

and we have

E�,N − |�|e( N
|�| )

� 1

(2π)d

(
|�| − |∂�|

(4d)4

) ∫
εF<εk<ε̃F,|k|∞<π

3

dk εk

+ |�|
(2π)d

∫
εF<εk<ε̃F,|k|∞>π

3

dk εk − 1

(2π)d

|∂�|
(4d)4

∫
εk<εF,|k|∞<π

3

dk εk. (3.40)

We bound the first two integrals usingεk > εF; from the definitions ofεF and ε̃F we
have

|∂�|
(2π)d

∫
εk<ε̃F,|k|∞<π

3

dk = |�|
(2π)d

∫
εF<εk<ε̃F

dk. (3.41)

As a result, we obtain the bound we were looking for,

E�,N − |�|e( N
|�| ) � |∂�|

(4d)4

1

(2π)d

∫
εk<εF,|k|∞<π

3

dk
(
εF− εk

)
. (3.42)

��
We present now another lemma that claims the lower bound forE�,N , and that

involves a new assumption. We shall see below in Lemmas 3.4 and 3.5 that for all
volumes, at least one of these lemmas applies.

Lemma 3.3. Let δ > 0 andn � |Sd |/(4π)d . We assume that

‖(h� − eN)bk0‖2 � δ|∂�|,
for somek0 belonging to the Fermi surface, i.e.εk0 = εF, whereεF is the Fermi energy
for densityn = N

|�| . Then we have

E�,N − |�|e(n) � η |∂�|
with η = |Sd |5δ30d+2/(2271d+23π10d+2d130d+9).
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The constantη that appears as a lower bound seems ridiculously small, but we cannot
do better. Notice that this lower bound is much smaller than the one obtained in Lemma
3.1 at low density, withn = |Sd |/(4π)2. We expect however that the lower bound is an
increasing function ofn for 0 � n � 1

2, although we cannot prove it.

Proof. We have

E�,N − |�|e(n) = 1

(2π)d

∫
[−π,π ]d

dk
[
2−(k)εk −2+(k)εk

]
, (3.43)

where

2+(k) =
(|�| − ρ(k)

)
χ

[
εk < εF

]
,

2−(k) = ρ(k) χ
[
εk > εF

]
.

We used here another convention for the characteristic function, namelyχ
[·] is 1 if · is

true, and is 0 otherwise. Notice that
∫

dk 2−(k) =
∫

dk 2+(k). Then we both have

E�,N − |�|e(n) �




1
(2π)d

∫
dk 2−(k)(εk − εF)

1
(2π)d

∫
dk 2+(k)(εF − εk).

(3.44)

And by Hölder, this implies

E�,N − |�|e(n) �
( 1

(2π)d

∫
dk [2±(k)]1/5

)5/( 1

(2π)d

∫
dk |εk − εF|− 1

4

)4
.

(3.45)

One shows in Lemma A.1 (a) that the integral of|εk − εF|− 1
4 is bounded by 2.

Recall that{ϕj }1�j�|�| are the eigenvectors ofh�. LetP−, resp.P+, be the projectors
onto the firstN eigenvectors, resp. the last|�| − N eigenvectors. By (3.6), one has
inequalities

2+(k) � 1

(4d)2‖P+bk‖2 if εk < εF,

2−(k) � 1

(4d)2‖P−bk‖2 if εk > εF. (3.46)

Let us introduce setsA andA′ by

A = {
k : εk < εF and|k − k0| < δ3

225d25/2

}
,

A′ = {
k : εk > εF and|k − k0| < δ3

225d25/2

}
. (3.47)

We obtain a lower bound by substituting (3.46) into (3.45), and restricting the integrals
to A andA′. Namely,

E�,N − |�|e(n) � 1

28d2

( 1

(2π)d

∫
A

dk‖P+bk‖2/5
)5

,

E�,N − |�|e(n) � 1

28d2

( 1

(2π)d

∫
A′

dk‖P−bk‖2/5
)5

.
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Let b̃k = bk/‖bk‖. From the assumption of the lemma, and using‖h� − ε‖ � 4d
and Lemma A.1 (d), we have that for allk ∈ A ∪ A′,

‖bk‖2

|∂�| � δ

25d2
. (3.48)

Extracting a factor|∂�|, and using the above inequality, we can write

E�,N − |�|e(n) � |∂�| δ

213d4(2π)5d

(∫
A

dk ‖P+b̃k‖2/5
)5

,

E�,N − |�|e(n) � |∂�| δ

213d4(2π)5d

(∫
A′

dk ‖P−b̃k‖2/5
)5

. (3.49)

Considerk ∈ A. The assumption of the lemma fork0, together with the bound for
the gradient in Lemma A.1 (e), implies

(bk, (h� − eN)2bk)

|∂�| � δ

2
. (3.50)

Therefore

(b̃k, (h� − eN)2b̃k) � δ

8d2 . (3.51)

This can be rewritten as

|�|∑
j=1

|(ϕj , b̃k)|2(ej − eN)2 � δ

8d2 , (3.52)

that is,

|�|∑
j=1

|(ϕj , b̃k)|2(e2
j + e2

N) � δ

8d2 + 2eN(b̃k, h� b̃k). (3.53)

Hence

(b̃k, h� b̃k) � eN +
|�|∑
j=1

|(ϕj , b̃k)|2
( e2

j

2eN
− eN

2

)− δ

25d3
. (3.54)

The quantity in the brackets is negative forj � N . Observing thateN � e(|Sd |/(4π)d )

|Sd |/(4π)d
�

1/2d+1π2 (becausen � |Sd |/(4π)d and using Lemma A.1 (c)), the bracket is bounded
by 2d+4π2d2. Therefore,

(b̃k, h� b̃k) � eN + 2d+4π2d2 ‖P+b̃k‖2− δ

25d3
. (3.55)

On the other hand, fork′ ∈ A′,

(b̃k′ , h� b̃k′) �
|�|∑

j=N+1

|(ϕj , b̃k′)|2ej � eN+1− 4d‖P−b̃k′ ‖2. (3.56)
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Since|k − k′| � δ3/224d25/2, we have from Lemma A.1 (g) and (3.48),

(b̃k′ , h� b̃k′)− (b̃k, h� b̃k) � δ

26d3 . (3.57)

Therefore

eN+1− 4d‖P−b̃k′ ‖2 � eN + 2d+4π2d2‖P+b̃k‖2− δ

25d3
+ δ

26d3 . (3.58)

Clearly,eN � eN+1; then

‖P+b̃k‖2+ 1
2d+2π2d

‖P−b̃k′ ‖2 � δ

2d+10π2d5
. (3.59)

We use now (3.49). The worst situation happens when‖P+b̃k‖2 is equal to the right
side of the previous equation. Using Lemma A.1 (b) we finally get the lower bound of
Lemma 3.3. ��

Now we show that we can use Lemma 3.3 for all� such that Lemma 3.2 does not
apply.

Letax =
(
(2d−ε)qx,i

)
1�i�d

andQx =
(
(1+δij )qx,ij

)
1�i,j�d

. More generally, we
let a denote a vector with entries(2d − ε)qx,i , andQ a matrix with entries 2qx,ii in the
diagonal andqx,ij off the diagonal, that correspond to a possible configuration around
x. With c = (coski)1�i�d , we introduce

F(c; a,Q) = (a, c)+ 1
2Tr Q− (c,Qc). (3.60)

This function appears when establishing a lower bound for‖(h� − ε)bk‖2.
Let Q be the set of all matricesQ (for which there exists some compatible configu-

ration); we introduce

Q′′ = {Q ∈ Q : Qii ≡ 2 andQij +Qji = 4 for all i 
= j} (3.61)

and

Q′ = {Q /∈ Q′′ : Qij 
≡ 0}. (3.62)

The reason behind the definition ofQ′ is that we can provide a lower bound only
if F(c; a,Q) is not uniformly zero whenk moves along the Fermi surface (i.e. with
εk = εF); and we can show thatF(c; a,Q) is not uniformly zero only forQ ∈ Q′, see
Lemma 3.5 below.

For givenεF, we define

µ(εF) = min
a,Q∈Q′ min

ε∈[0,2d] max
c:εk=εF

|F(c; a,Q)|. (3.63)

We state a lower bound involvingµ(εF), and check below in Lemma 3.5 thatµ(εF) is
strictly positive forεF > 0.

Lemma 3.4. Letd � 2. For all finite� satisfying

#{x ∈ ∂� : qx,ij 
≡ 0} � 1

32d4 |∂�|,
we have

max
k:εk=εF

‖(h� − ε)bk‖2 � µ(εF)

26d55d2 |∂�|.
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The factor 1
32d4 is arbitrary here, and has been taken such in order to complement the

condition of Lemma 3.2.

Proof. Let us introduce

qk(x) = χ∂�(x)
∑

e:x+e/∈�
e−ike. (3.64)

By the definition of the discrete Laplacian,

[
(h� − ε)bk

]
(x) = e−ikx

{
(2d − ε)qk(x)−

∑
e

e−ikeqk(x + e)
}
. (3.65)

Let us denote byrk(x) the quantity inside the brackets above. Clearly,‖(h�− ε)bk‖2 =
‖rk‖2. LetRa , a = 1, . . . ,2d , represent all combinations of inversions of some coordi-
nates. We have the following inequality:

1

2d

2d∑
a=1

‖rRak‖2 �
∥∥∥ 1

2d

2d∑
a=1

rRak

∥∥∥2
. (3.66)

Indeed, starting from the RHS, we have in essence (with 0� ai � 1 and
∑

i ai = 1)

(∑
i

aivi ,
∑
i

aivi

) =∑
i,j

aiaj (vi , vj )

�
(∑

i

√
ai
√
ai‖vi‖

)2 (3.67)

�
[(∑

i

ai

)1/2(∑
i

ai‖vi‖2
)1/2]2

which is the LHS of (3.66).
The RHS of (3.66) is clearly smaller than maxk:εk=εF ‖(h� − ε)bk‖2. One computes

now
∑2d

a=1 rRak(x) for x ∈ ∂�. First,

1

2d

2d∑
a=1

(2d − ε)qRak(x) = (2d − ε)

d∑
i=1

qx,i coski . (3.68)

Second,

− 1

2d

2d∑
a=1

∑
e:x+e∈∂�

e−iRak e
∑

e′:x+e+e′ /∈�
e−iRak e′

= −
d∑

i=1

qx,ii cos(2ki)− 1

2

∑
i,j :i 
=j

qx,ij
[
cos(ki + kj )+ cos(ki − kj )

]

= −2
d∑

i=1

qx,ii cos2 ki +
d∑

i=1

qx,ii −
∑

i,j :i 
=j

qx,ij coski coskj . (3.69)
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We used cos(2ki) = 2 cos2 ki−1, and the bracket in the second line is[·] = 2 coski coskj .
Gathering (3.68) and (3.69), we obtain

1

2d

2d∑
a=1

rRak(x) = F(c; ax,Qx). (3.70)

One can check that wheneverQx /∈ Q′ and differs from 0, there exists a neighbory

that belongs toQ′. Then the condition of the lemma implies that

#{x ∈ ∂� : Qx ∈ Q′} � 1

26d5
|∂�|. (3.71)

Furthermore,Q′ has less than 5d
2

elements since 0� Qij � 4; then for any� that
satisfies the assumption of the lemma there existsQ ∈ Q′ such that

#{x ∈ ∂� : Qx = Q} � 1

26d55d2 |∂�|. (3.72)

We get a lower bound for‖(h� − ε)bk‖2 by considering only those sites, i.e.

max
k:εk=εF

‖(h� − ε)bk‖2 �
∑

x∈∂�:Qx=Q

max
c:εk=εF

|F(c; ax,Qx)| � µ(εF)

26d55d2 |∂�| (3.73)

uniformly in ε ∈ [0,2d]. ��
There remains to be checked thatµ(εF) differs from 0.

Lemma 3.5. For all εF > 0, we haveµ(εF) 
= 0.

Proof. We proceedab absurdoand explore ways whereF(c; a,Q) could be uniformly
zero. Letu be the vector such thatui ≡ 1.

The constraintεk = εF takes a simple form, namely(u, c) = d − 1
2εF. Furthermore,

c satisfies|c|∞ � 1; if εF 
= 0, we can findδc such that|c+δc|∞ � 1 and(u, c+δc) =
d− 1

2εF – in which caseδc must be perpendicular tou. The conditionF(c+δc; a,Q) =
F(c; a,Q) for all δc ⊥ u implies thata − 2Qc ‖ u. This should also be true whenc is
replaced withc + δc, henceQδc ‖ u for all δc ⊥ u. Now take(δc)8 = δi8 − δj8. We
have

(Qδc)i = Qii −Qij ,

(Qδc)j = −Qjj +Qji, (3.74)

and these two components must be equal, sinceQδc is parallel tou. HenceQii+Qjj =
Qij +Qji , or

2qx,ii + 2qx,jj = qx,ij + qx,ji . (3.75)

In this caseF(c; a,Q) takes the form

F(c; a,Q) = (2d − ε)

d∑
i=1

qx,ici − (2d − εF)

d∑
i=1

qx,iici +
d∑

i=1

qx,ii . (3.76)
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SinceQ ∈ Q′ we haveqx,ij 
≡ 0; if (u, c) = 0, one can takec = 0, andF(c; a,Q)

is strictly positive, so we can suppose(u, c) 
= 0.
Let s =∑

i qx,ii/(u, c), andv be the vector with components

vi = (2d − ε)qx,i − (2d − εF)qx,ii + s. (3.77)

ThenF(c; a,Q) = (v, c). If we require this to be zero forc ‖ u, then we needv ⊥ u.
But we also require(v, c+ δc) = (v, c) for all δc ⊥ u, hencev ‖ u. Sov must be zero,
i.e.

(2d − ε)qx,i − (2d − εF)qx,ii + s = 0 (3.78)

for all 1 � i � d.
We also haveqx,i + qx,ii � 2, andqx,ii cannot be always equal to 2. Ifs 
= 0,

one checks that necessarilyqx,ii ≡ 1, which is impossible becauseQ ∈ Q′. Hence
F(c; a,Q) cannot be uniformly zero when moving along the Fermi surface.��

4. Finite U

We consider now the Falicov–Kimball model with finite repulsionU , and establish a
lower bound for the ground state energy ofN electrons in a configuration specified by
�. More precisely, we show that when decreasing the repulsionU , one does not lower
the energy more than const· |∂�|/U .

For any�, the spectrum ofhU
�,� is included in[0,4d]∪[U,U+4d]. WhenU > 4d,

eigenstates with energy in[0,4d] show exponential decay outside of�; and eigenstates
with energy in[U,U + 4d] show exponential decay inside�. Hence� and� \� are
essentially decorrelated, and the situation is close to that withU = ∞.

The following proposition compares the energies of electrons with finite and infinite
U . It is useful to introduceη(U),

η(U) =
( 2d

U − 2d

)2 d∑
j=1

[ (U − 2d)2

U(U − 4d)

]j = (U − 2d)2d

(U(U − 4d))d
− 1. (4.1)

Notice that limU→∞ U2η(U) = 4d3, as it easily comes out from the middle expression.

Proposition 4.1. If U > 4d, we have

EU
�,N � E�,N − γ (U)|∂�|,

with

γ (U) = 8d2

U − 2d
+ d 2d+2η(U).

Proof. First, we remark that eigenvectors ofhU
�,� with eigenvalue smaller than 4d have

exponential decay outside of�. Indeed, forx /∈ � the Schrödinger equation can be
written

ϕj (x) =
∑

e ϕj (x + e)

U + 2d − ej
. (4.2)
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If ej � 4d, we have

|�|∑
j=1

|ϕj (x)|2 �
∑|�|

j=1 2d
∑

e |ϕj (x + e)|2
(U − 2d)2 . (4.3)

Using this inequality, we can proceed by induction on the distance betweenx and�.
The induction hypothesis is that the following holds true:

|�|∑
j=1

|ϕj (x)|2 �
( 2d

U − 2d

)2n
(4.4)

for anyx such that dist(x,�) � n. As a result, we have

|�|∑
j=1

|ϕj (x)|2 �
( 2d

U − 2d

)2 dist(x,�)

. (4.5)

Let us introduce

ρ̃xy =
N∑

j=1

χ�(x) ϕ∗j (x) ϕj (y) χ�(y). (4.6)

We show thatEU
�,N is bounded below by Tr̃ρh�, up to a contribution no greater than

const|∂�|/U . Recall thath� is the Hamiltonian with infinite repulsions. IfP� is the
projector onto the domain�, let ϕ̃j = P�ϕj ,

EU
�,N =

N∑
j=1

( ∑
{x,y}:|x−y|=1

|ϕj (x)− ϕj (y)|2+ U
∑
x /∈�

|ϕj (x)|2
)

�
N∑

j=1

( ∑
{x,y}:|x−y|=1

|ϕ̃j (x)− ϕ̃j (y)|2

+
∑

{x,y}
⊂�
|x−y|=1

|ϕj (x)− ϕj (y)|2−
∑

x∈�,y /∈�
|x−y|=1

|ϕj (x)|2
)

� Tr ρ̃h� − 2
N∑

j=1

∑
x∈�,y /∈�
|x−y|=1

|ϕj (x)| |ϕj (y)|. (4.7)

By the Schwarz inequality, the last term is smaller than

2
( ∑
x∈�,y /∈�
|x−y|=1

N∑
j=1

|ϕj (x)|2
)1/2( ∑

x∈�,y /∈�
|x−y|=1

N∑
j=1

|ϕj (y)|2
)1/2

� 8d2

U − 2d
|∂�|. (4.8)

We used (4.5) with dist(x,�)being respectively 0 and 1, in order to control the quantities
in both brackets.
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Recall thatej denotes thej th eigenvalue of the Hamiltonianh�; that is, with infinite
repulsions. Let us introduce the projectorPj onto the corresponding eigenstate. Then

Tr ρ̃h� =
|�|∑
j=1

ej Tr ρ̃Pj ≡
|�|∑
j=1

ej nj , (4.9)

where thenj satisfy 0� nj � 1, and
∑

j nj = Tr ρ̃. By the bathtub principle [LL], we
obtain the lower bound

Tr ρ̃h� �
Tr ρ̃∑
j=1

ej . (4.10)

There remains to show that Trρ̃ is close toN . We have

N − Tr ρ̃ =
∑
x /∈�

N∑
j=1

|ϕj (x)|2 �
∞∑
n=1

#{x : dist(x,�) = n}
( 2d

U − 2d

)2n

� |∂�|
∞∑
n=1

2d
(
n+d−1
d−1

)( 2d

U − 2d

)2n = 2dη(U)|∂�|. (4.11)

We bounded #{·} � 2d
(
n+d−1
d−1

)|∂�|. Sinceej � 4d, we obtain the proposition.��

5. Upper Bound

We establish now an upper bound for the sum of the firstN eigenvalues in a finite domain
�, for the case of infinite repulsion. The bound carries over to finiteU , sinceEU

�,N is
increasing inU .

The strategy is to averageh� over a huge box. The “strength” of the averaged Hamil-
tonian depends on the number of bonds in�, which is roughly 2d|�| − |∂�|. The
averaged Hamiltonian is, up to a factor, the hopping matrix in the huge box, and its
ground state energy is easy to compute in the thermodynamic limit. This can be com-
pared toE�,N by concavity of the sum of lowest eigenvalues of self-adjoint operators.
The result is

Proposition 5.1. The sum of the firstN eigenvalues of the Laplace operator in a domain
� with Dirichlet boundary conditions, satisfies the upper bound

E�,N � |�|e(n)+ |∂�|(2dn− e(n)).

Proof. Let L be a multiple of|�|, andNL be such thatNL/L
d = N/|�|. We consider

a box{1, . . . , L}d . We introducẽε = 1
2(eN + eN+1). Let Ra , a = 1, . . . , Ldd!, rep-

resent a translation possibly followed by an axis permutation. We define the averaged
Hamiltonian

h̄L,� = 1

Ldd!
Ldd!∑
a=1

(
hRa� − ε̃1lRa�

)
. (5.1)
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Then

SNL
(h̄L,�) � 1

Ldd!
Ldd!∑
a=1

SNL

(
hRa� − ε̃1lRa�

)
= SN(h� − ε̃1l�). (5.2)

Indeed, all summands in the above equation are equal, and the Hamiltonianh� − ε̃1l�
has no more thanN negative eigenvalues, and at leastLd − |�| zero eigenvalues. The
RHS is equal toE�,N −Nε̃.

LetKi be the number of sites in� that havei neighbors in�.We have|�| =∑2d
i=0 Ki

and|∂�| =∑2d−1
i=0 Ki ; and the number of bonds in� is 1

2

∑2d
i=0 iKi . Then the averaged

Hamiltonian is

(
h̄L,�

)
xy
= − t

Ld
δ|x−y|=1+ (2d − ε̃)

|�|
Ld

δxy, (5.3)

with

t = 1

2d

2d∑
i=0

iKi. (5.4)

Let K =∑2d
i=0

2d−i
2d Ki ; thent = |�| −K andK � |∂�|. One easily checks that

h̄L,� = |�|
Ld

h{1,...,L}d +
K

Ld

(
2d1l{1,...,L}d − h{1,...,L}d

)− ε̃
|�|
Ld

1l{1,...,L}d . (5.5)

Notice that all operators commute. In (5.2), the terms involvingε̃ cancel, since
SNL

(1l{1,...,L}d ) = NL, andNL
|�|
Ld = N . Now, asL→∞,

1

Ld
SNL

(h{1,...,L}d )→ e(n). (5.6)

Therefore (5.2) implies

|�|e(n)+K(2dn− e(n)) � E�,N . (5.7)

��

6. Positive Electronic Temperature

This section considers the electronic free energy at positive temperature, for a fixed
configuration of classical particles. We will see that the inequalities satisfied by the
sums over lowest eigenvalues have an extension to free energies.



268 J.K. Freericks, E.H. Lieb, D. Ueltschi

6.1. Lower bound forU = ∞. We start withU → ∞. Let F�(β,µ) = − 1
β

log Tr e−βH� , where the trace is taken in the Fock space of antisymmetric wave functions
on�, andH� ≡ HU=∞

�,� is the second quantized form of the one-particle Hamiltonian
h� defined by (2.1).

Proposition 6.1. For all finite �, one has the lower bound

F�(β,µ)− |�|f (β, µ) � ᾱ(β, µ)|∂�|,
whereᾱ(β, µ) > 0 satisfieslimβ→∞ ᾱ(β, µ) > 0 if 0 < µ < 4d.

Proof. The fermionic free energyF�(β,µ) can be expressed in terms of the eigenvalues
of h�,

F�(β,µ) = − 1

β

|�|∑
j=1

log
(
1+ e−β(ej−µ)

)
. (6.1)

In order to compare this with the corresponding infinite-volume expression (1.9), we
partition the Brillouin zone[−π, π ]d according to the level sets of the functionεk; more
precisely, we define measuresµj , 1 � j � |�|, by

dµj (k) = |�|
(2π)d

χ
[
εF(

j−1
|�| ) < ε(k) < εF(

j
|�| )

]
dk. (6.2)

Notice that
∫

dµj (k) = 1 and 1
|�|

∑|�|
j=1 dµj (k) = dk

(2π)d
. Next we introducee∗j , that

are equal toεk averaged overµj :

e∗j =
∫

dµj (k) εk. (6.3)

The ground state energy (1.3) of a densityN/|�| of electrons inZd can then be written
as

e(N/|�|) = 1

|�|
N∑

j=1

e∗j . (6.4)

From the lower bound without a boundary term, we have

N∑
j=1

ej >

N∑
j=1

e∗j , (6.5)

for all N < |�|, and equality whenN = |�|.
Actually, inequality (6.5) can be strengthened by introducing a term depending on the

boundary of�. In Theorem 1.1,α(n) can be taken to be increasing inn for n � 1
2. Also,

α(1−n) = α(n). Therefore there exists a functiona(ε), with a(ε) > 0 for 0< ε < 2d,
a(4d − ε) = −a(ε), and

α(n) = 1

(2π)d

∫
εk<εF

dk a(εk). (6.6)
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Next we define

e′j =
∫

dµj (k)
(
εk + |∂�|

|�| a(εk)
); (6.7)

then the following is stronger than (6.5) and holds true,

N∑
j=1

ej �
N∑

j=1

e′j . (6.8)

With a(ε) chosen appropriately both sequences(ej ) and (e′j ) are increasing, and the
inequality above is an equality whenN = |�|. The sequence(ej ) is said to ‘majorize’
(e′j ). We can apply an inequality due to Hardy, Littlewood and Pólya (and independently
found by Karamata); see [Mit] p. 164. For any concave functiong, we have

|�|∑
j=1

g(ej ) �
|�|∑
j=1

g(e′j ). (6.9)

(Conversely, if (6.9) holds for all concaveg, then (ej ) majorizes(e′j ).) We use this
inequality with

g(e) = − 1

β
log(1+ e−β(e−µ)), (6.10)

which is concave. We get

F�(β,µ) �
|�|∑
j=1

g(e′j ) � |�|
(2π)d

∫
[−π,π ]d

dk g
(
εk + |∂�|

|�| a(εk)
)
, (6.11)

where the last step is Jensen’s inequality. Then

1

|�|F�(β,µ)− f (β, µ) � 1

(2π)d

∫
dk

{
g
(
εk + |∂�|

|�| a(εk)
)− g(εk)

}
. (6.12)

In the limit β →∞, we have

g(e) =
{
e − µ if e < µ

0 if e � µ.
(6.13)

As a result, for all 0< µ < 4d we get a lower bound for largeβ that is uniform in the
limit β →∞.

One also gets a lower bound by using concavity ofg, that holds for all temperatures,
but that is not uniform inβ:

1

|�|F�(β,µ)− f (β, µ) � 1

(2π)d

∫
dk

∫ εk+|∂�||�| a(εk)

εk

de g′(e)

= 1

(2π)d

∫
dk

{ |∂�|
|�| a(εk)g

′(εk)−O(a(εk)
2)

}

= |∂�|
|�|

1

(2π)d

∫
εk<2d

dka(εk)

×
{
g′(εk)− g′(4d − εk)−O(a(εk))

}
. (6.14)
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The integrand in the last line is strictly positive ifa(εk) is small enough, and chosen to
vanish appropriately asεk → 2d. ��

6.2. Lower bound with finiteU . We extend now the results of the previous section to
the case of finite repulsionU . As we noted in Sect. 4, whenU > 4d all eigenstates have
exponential decay, either in� or in � \ �. We show that the total free energy in� is
equal to a term involving� \ � only, plus a term involving� only, up to a correction
of order|∂�|/U .

Proposition 6.2.

FU
�,�(β, µ) � F�(β,µ)+ F�\�(β,µ− U)− γ̄ (U)|∂�|

with

γ̄ (U) = (2dU + 4d + 8d2)2dη(U)+ (4d)2

U − 2d
,

andη(U) is defined in(4.1). Notice thatlimU→∞ Uγ̄ (U) = 16d2+ 8d42d .

Proof. Let us introduce

ϕ̃j (x) =
{
ϕj (x) if 1 � j � |�| andx ∈ �, or if |�| < j � |�| andx /∈ �

0 otherwise.
(6.15)

We assumeN > |�| (otherwise, replace|�| by N in the next expressions, and ignore
the sums whose initial number is greater than the final one). Then

N∑
j=1

eUj =
|�|∑
j=1

( ∑
{x,y}

|x−y|=1

|ϕ̃j (x)− ϕ̃j (y)|2+
∑

{x,y}
⊂�
|x−y|=1

|ϕj (x)− ϕj (y)|2

−
∑

x∈�,y /∈�
|x−y|=1

|ϕj (x)|2+ U
∑
x /∈�

|ϕj (x)|2
)

+
N∑

j=|�|+1

( ∑
{x,y}

|x−y|=1

|ϕ̃j (x)− ϕ̃j (y)|2+
∑

{x,y}
⊂�c

|x−y|=1

|ϕj (x)− ϕj (y)|2 (6.16)

−
∑

x /∈�,y∈�
|x−y|=1

|ϕj (x)|2+ U
∑
x /∈�

|ϕj (x)|2
)
.

We proceed as in Sect. 4 and define

ρ̃xy =
|�|∑
j=1

χ�(x)ϕ∗j (x)ϕj (y)χ�(y),

ρ̃′xy =
N∑

j=|�|+1

χ�c(x)ϕ∗j (x)ϕj (y)χ�c(y). (6.17)
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Then

N∑
j=1

eUj � Tr ρ̃h� + Tr ρ̃′[h�\� + U ] − 2
N∑

j=1

∑
x∈�,y /∈�
|x−y|=1

|ϕj (x)| |ϕj (y)|. (6.18)

The inequality (4.10) is still valid, for both̃ρ andρ̃′. Hence

N∑
j=1

eUj �
Tr ρ̃∑
j=1

ej +
|�|+1+Tr ρ̃′∑
j=|�|+1

(ēj + U)− 2
N∑

j=1

∑
x∈�,y /∈�
|x−y|=1

|ϕj (x)| |ϕj (y)|. (6.19)

Here,ēj , |�| < j � |�| are the eigenvalues of the operatorh�\�.
We define

δj =




4d
∑

x /∈� |ϕj (x)|2+ 2
∑

x∈�,y /∈�
|x−y|=1

|ϕj (x)| |ϕj (y)| if 1 � j � |�|
(4d + U)

∑
x∈� |ϕj (x)|2+ 2

∑
x∈�,y /∈�
|x−y|=1

|ϕj (x)| |ϕj (y)| if |�| < j � |�|.
(6.20)

Then (6.19) takes the simpler form

N∑
j=1

eUj �
|�|∑
j=1

(ej − δj )+
N∑

j=|�|+1

(ēj + U − δj ). (6.21)

The sequence in the RHS is not necessarily increasing, but one gets a lower bound by
rearranging the terms. Hence one can apply Hardy, Littlewood, Pólya inequality. Indeed,
it also works when the total sum over elements of the sequences are not equal, provided
the concave function is increasing – which is the case withg(e). One obtains

|�|∑
j=1

g(eUj ) �
|�|∑
j=1

g(ej − δj )+
|�|∑

j=|�|+1

g(ēj + U − δj ). (6.22)

We use nowg(e − δ) � g(e)− δ, and we find

FU
�,�(β, µ) � F�(β,µ)+ F�\�(β,µ− U)−

|�|∑
j=1

δj . (6.23)

The remaining effort consists in estimating the sum ofδj , using exponential decay
of eigenfunctionsϕj either in� or in � \�. Retracing (4.11) and (4.8), we get

|�|∑
j=1

δj � 4d 2dη(U)|∂�| + 8d2

U − 2d
|∂�|,

|�|∑
j=|�|+1

δj � (U + 4d)2dη(U)|∂(� \�)| + 8d2

U − 2d
|∂�|. (6.24)
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Notice that the last term can be written with|∂�| instead of|∂(� \�)|, as can be seen
from (4.8). We use∂(� \�)| � 2d|∂�|, and we finally obtain

|�|∑
j=1

δj � (2dU + 4d + 8d2)2dη(U)|∂�| + (4d)2

U − 2d
|∂�|. (6.25)

��

6.3. Upper bound.We turn to the upper bound for the electronic free energy. We first
notice that the free energy is raised when one decorrelates the domain occupied by the
classical particles, from the empty domain. The following proposition applies to all finite
subsets ofZd , and it also applies when� is a finited-dimensional torus.

Proposition 6.3. We have the upper bounds

• FU
�,�(β, µ) � F�(β,µ)+ F�\�(β,µ− U).

• F�(β,µ) � |�|f (β, µ)+ 1
1+e−βµ

( 4π
√
d

|Sd |1/d |�|
d−1
d + 2d|∂�|).

Notice that the isoperimetric inequality implies that for all finite� ⊂ Z
d , |�| d−1

d �
|∂�|. This does not hold, however, when� is e.g. a box with periodic boundary condi-
tions.

Proof. The Peierls inequality allows us to write

Tr e−β(HU
�,�−µN�) �

∑
j

e−β(ψj ,[HU
�,�−µN�]ψj ), (6.26)

for any set of orthonormal functions{ψj } (in the Fock space of antisymmetric wave
functions on�). We can choose theψj to be eigenfunctions ofH� and H�\� —
decorrelating� and� \�. In � \�, the free electrons experience a uniform potential
U ; the energy levels are given by the spectrum ofh�\� plusU . This only shifts the
chemical potential, so that we obtain the first claim of the proposition.

Now we estimateF�(β,µ). Let us introduce

ẽj = (1− |∂�|
|�| )e

∗
j + 2d |∂�||�| =

∫
dµj (k)

[
εk + (2d − εk)

|∂�|
|�|

]; (6.27)

thenẽj � ẽj+1,
∑|�|

j=1 ẽj =∑|�|
j=1 e∗j , and the upper bound for the ground state energy

can be cast in the form

N∑
j=1

ej �
N∑

j=1

ẽj . (6.28)

This allows us to summon again the Hardy, Littlewood, Pólya inequality, and we get

F�(β,µ) �
|�|∑
j=1

g
(∫

dµj (k)
[
εk + (2d − εk)

|∂�|
|�|

])
. (6.29)
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The derivative ofg(e) satisfies

0 < g′(e) � 1

1+ e−βµ
(6.30)

(recall thate � 0). Since the measureµj is concentrated on thosek whereεk lies
betweenεF(

j−1
|�| ) andεF(

j
|�| ), we can bound (6.29) by

F�(β,µ) � |�|
(2π)d

∫
[−π,π ]d

dk g(εk)+ 1

1+ e−βµ

( |�|∑
j=1

[
εF(

j
|�| )−εF(

j−1
|�| )

]+ 2d|∂�|
)
.

(6.31)

We need a bound forεF(
j
|�| ) − εF(

j−1
|�| ); since∇εk = 2(sink1, . . . , sinkd), we

have‖∇εk‖ � 2
√
d. Let us takek such thatεk = εF(

j−1
|�| ), andδk ‖ k such that

εk+δk = εF(
j
|�| ). Then

εF(
j
|�| )− εF(

j−1
|�| ) � 2

√
d ‖δk‖. (6.32)

If δkmin is chosen so as to minimize the norm of suchδk, we have

1

|�| =
1

(2π)d

∫
εF(

j−1
|�| )<εk<εF(

j
|�| )

dk � 1

(2π)d
‖δmin‖d |Sd |. (6.33)

Combining this inequality with (6.32), we get

εF(
j
|�| )− εF(

j−1
|�| ) � 4π

√
d

|Sd |1/d |�|
−1/d . (6.34)

This leads to the upper bound of Proposition 6.3.��

6.4. Proofs of the corollaries.

Proof of Corollary 1.3.Let e− = −d + h ande+ = −d − h be the energies per site
of the all− and all+ Ising configurations. A configuration can be specified by the
set� of − spins. LetB(�) be the set of bonds connecting� and� \ �. Notice that
1

2d |B(�)| � |∂�| � |B(�)|. The partition function of the Ising model can be written as

ZI,� =
∑
�⊂�

e−β[|�|e−+|�\�|e+]e−2β|B(�)|. (6.35)

Now the upper bound forFU
�,�(β, µ) implies that the partition function of the Falicov–

Kimball model is bounded below by

Z� �
∑
�⊂�

e−β[|�|f (β,µ)+|�\�|f (β,µ−U)]e−βCd,µ|∂�|e−βC′d,µ|�|
d−1
d

. (6.36)

The last factor vanishes in the thermodynamic limit. One then makes the connection
with Ising by multiplyingZ� by

exp
{
β|�|

(
d
2Cd,µ + 1

2

[
f (β, µ)+ f (β, µ− U)

])}
,
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and by choosing the temperature to be1
2Cd,µβ, and the magnetic field to be

h = 1

Cd,µ

[f (β, µ)− f (β, µ− U)] (6.37)

(the magnetic field is negative). The other bound is similar, simply replaceCd,µ by ᾱ/2d.
��

Proof of Corollary 1.4.Because� was assigned periodic boundary conditions, we have

〈δwx,wy 〉� =
1

|�|
〈∑
z∈�

δwx+z,wy+z

〉
�
. (6.38)

It is not hard to check that for any configurationw specified by� ⊂ �, one has∑
z∈�

δwx+z,wy+z � |�| − |∂�| |x − y|1. (6.39)

Then

〈δwx,wy 〉� � 1− |x − y|1
〈 |∂�|
|�|

〉
�
. (6.40)

We need a bound for the last term. The fact is that typical configurations of classical
particles cannot have too much boundary:|∂�|

|�| is smaller thanr = 2 log 2
βᾱ(β,µ)

. Indeed,

∑
�⊂�

χ
[|∂�| > r|�|]e−βFU

�,�(β,µ)

∑
�⊂� e−βFU

�,�(β,µ)

� 2|�|e−β|�|f (β,µ)−β(|�|−|�|)f (β,µ−U)e−(2 log 2)|�|

e−β|�|f (β,µ)−β(|�|−|�|)f (β,µ−U)e−βCd,µ(nc|�|)
d−1
d e−βC′d,µ|�|

d−1
d

(6.41)

� 2−|�|eβ(Cd,µ+C′d,µ)|�|
d−1
d

.

Therefore

〈δwx,wy 〉� � 1− 2 log 2

βᾱ(β, µ)
|x − y|1− 2−|�|eβ(Cd,µ+C′d,µ)|�|

d−1
d

. (6.42)

The last term vanishes in the limit� ↗ Z
d , and the term involving|x − y|1 vanishes

whenβ →∞. ��

7. Conclusion

Our analysis of the Falicov–Kimball model away from half-filling allows some extrap-
olations. We expect segregation to survive at small temperature, when both the classical
particles and the electrons are described by the grand-canonical ensemble, at inverse
temperatureβ and with chemical potentialsµc andµe. Segregation is a manifestation
of coexistence between a phase with many classical particles and few electrons, and a
phase with many electrons and few classical particles. It is therefore natural to conjecture
the following, ford � 2:
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A first order phase transition occurs at low temperature, when varying the chem-
ical potentials.

The transition from the chessboard state at half-filling for the itinerant and heavy
electrons (and largeU ) to the segregated state is still not clear. A heuristic analysis
suggests that these states could coexist, hence there could be another first-order phase
transition. Alternate possibilities include mixtures between other periodic phases and
the empty or full lattice before the segregation sets in.

One interest of the Falicov–Kimball model is its possible relevance in understanding
the Hubbard model, a notoriously difficult task. See e.g. [Lieb2] and [Tas2] for reviews
of rigorous results on the Hubbard model. The relationship between the Falicov–Kimball
model and the Hubbard model is like the one between the Ising and Heisenberg models
for magnetism. The former does not possess the continuous symmetry of the latter, and
therefore the approximation is a crude one. Still, the two models share many similarities;
for instance, the Falicov–Kimball model displays long-range order of the chessboard type
at half-filling and at low temperature [KL], and the ground state of the Hubbard model
is a spin singlet [Lieb].

Ferromagnetism in the Hubbard model depends on the dimension, on the filling, and
on the geometry: it has been shown to occur on special lattices such as “line-graphs”
[MT,Tas,Mie,Tas2]. Does ferromagnetism take place in the Hubbard model onZ

3, for
large repulsions and away from half-filling?

Returning to Falicov–Kimball, let us walk on the road that leads to Hubbard. We
consider theasymmetric Hubbard modelthat describes spin12 electrons with hoppings
depending on the spins (this interpretation is more convenient than physical). Its Hamil-
tonian is

Ht = −
∑

x,y:|x−y|=1

c
†
x↑cy↑ − t

∑
x,y:|x−y|=1

c
†
x↓cy↓ + U

∑
x

nx↑nx↓. (7.1)

Notice thatH0 is the Falicov–Kimball model, whileH1 is the usual Hubbard model.
Although we did not prove it, it is rather clear that segregation still takes place for very
small t . Furthermore, the density of the phase with classical particles, in the ground
state, should still be exactly 1 – indeed, the electrons exert a sort of “pressure” that packs
the classical particles together, and the tendency of the latter to delocalize is not strong
enough to overcome this pressure. This is summarized in the following conjecture:

For t � t0, segregation occurs in the ground state, at largeU and away from
half-filling, in the form of a coexistence between a phase of classical particles
with density 1, and a phase of electrons with smaller density.

This should also hold at positive temperature, although the density of the phase of
the classical particles will be reduced, due to the presence of some holes.

If we increaset , assuming that segregation remains, we should reach a critical value
tc < 1 where the region of classical particles starts to grow. The density of the phase of
particles with smaller hoppings is now strictly less than 1. A major question is whether
segregation survives all the way to the point wheret reaches 1 – this would imply the
existence of a ferromagnetic phase in the Hubbard model. We note, however, that while
it is conceivable that there is a segregated (i.e., ferromagnetic) ground state att = 1,
it cannot be true thateveryground state (for equal number of up and down spins) is
segregated. This follows from the SU(2) symmetry. If@ is a saturated ferromagnetic
ground state with 2N up electrons, we can constructA = (S−)N@, which is also



276 J.K. Freericks, E.H. Lieb, D. Ueltschi

a ground state, withN up andN down electrons. However,A has the up and down
electrons inextricably mixed, which is the opposite of a segregated state. Indeed, the
SU(2) symmetry is restored precisely at t=1, and the ground states have at least the
degeneracy due to this symmetry.

The Hubbard model is a rich and complicated model that poses difficult challenges.
The Falicov–Kimball model can be of some help, for instance in checking scenarios that
should apply to both models. This discussion of ferromagnetism illustrates however that
the links between them are subtle.

A. Appendix

We derive in the sequel various expressions that are too intricate to appear in the main
body of this paper.

Lemma A.1.

(a) 1
(2π)d

∫
dk|εk − εF|−1/4 < 2.

(b) Assume thatα2 � 16
√

2πd
|Sd |1/d n1/d ; then for allk such thatεk = εF,

∫
εk′<εF

dk′ χ
[|k′ − k| < α

]
� |Sd |

( α2

8πd

)d
.

(c) e(n) � 12( 9
10)

dn1+ 2
d /|Sd | 2

d .

(d) ‖∇ ‖bk‖2

|∂�| ‖ � 8d5/2.

(e) ‖∇ ‖(h�−ε)bk‖2

|∂�| ‖ � 29d11/2.

(f) ‖∇ (bk,h�bk)|∂�| ‖ � 32d7/2.

(g) Assume that‖bk‖2/|∂�| � η. Then ifη � 1, ‖∇ (bk,h�bk)

‖bk‖2 ‖ � η−228d11/2.

Proof of Lemma A.1(a). SettingY = 2d − εF − 2
∑d

i=2 coski , and making the change
of variablesξ = cosk1, one gets∫

dk|εk − εF|−1/4

= 2
∫
[−π,π ]d−1

dk2 · · ·dkd
∫ π

0
dk1

1

|Y − 2 cosk1|1/4

= 2
∫
[−π,π ]d−1

dk2 · · ·dkd
∫ 1

−1
dξ

1√
1− ξ2

1

|Y − 2ξ |1/4

� 2
∫
[−π,π ]d−1

dk2 · · ·dkd
(
2

∫ 1

0
dξ

1

(1− ξ2)3/4

)2/3(∫ 1

−1
dξ |Y − 2ξ |−3/4

)1/3

� 2
∫
[−π,π ]d−1

dk2 · · ·dkd
(
2

∫ 1

0
dζ

1√
ζ (1− ζ )3/4

)2/3(
2−3/4

∫ 1

−1
dξ |ξ |−3/4

)1/3
.

The integral overζ can be split into one running from 0 to12, and one running from1
2

to 1. For the first part we bound 1√
ζ (1−ζ )3/4 � 23/4 1√

ζ
, while the bound for the second
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part can be chosen to be
√

2 1
(1−ζ )3/4 . Everything can now be computed explicitly, and

we find 231/1232/3(2π)d−1 < 2(2π)d . ��

Proof of Lemma A.1(b). Let us introduce a mapγ (ξ) such that 1− 1
2γ

2(ξ) = cosξ ;
precisely,

γ (ξ) =
{ √

2(1− cosξ) if ξ ∈ [0, π ]
−√2(1− cosξ) if ξ ∈ [−π,0].

(A.1)

The conditionεk < εF becomes
∑d

i=1 |γ (ki)|2 < εF. The derivative ofγ is

dγ

dξ
= | sinξ |√

2(1− cosξ)
. (A.2)

We check now that|γ (ξ ′)−γ (ξ)| > |ξ ′ − ξ |2/4π . Let us assume thatγ (ξ ′) > γ (ξ).
Then

γ (ξ ′)− γ (ξ) =
∫ ξ ′

ξ

dλ
| sinλ|√

2(1− cosλ)
� 1

2

∫ ξ ′

ξ

dλ| sinλ| (A.3)

� 1

π

∫ ξ ′

ξ

dλ|λ| � |ξ ′ − ξ |2/4π. (A.4)

Then we can write∫
εk′<εF

dk′ χ
[|k′ − k| < α

]
�

∫
εk′<εF

dk′ χ
[|k′i − ki | < α√

d
∀i]

�
∫

dγ ′1 . . .dγ ′d χ
[ d∑
i=1

|γ ′i |2 < εF
]
χ

[|γ ′i − γi | < α2

4πd

]
.

One gets a lower bound by replacing the last characteristic function by the condition∑d
i=1 |γ ′i − γi |2 < α2

4πd
. Recall thatεF � 32

|Sd |2/d n
2/d ; the assumption of the lemma

implies that
√
εF > α2

4πd
; as a consequence, a lower bound is the volume of the sphere

of radius α2

8πd
. ��

Proof of Lemma A.1(c). By (3.16),

e(n) � 8

π2(2π)d

∫
|k|2<εF

dk|k|2 = 8d|Sd |
π2(2π)d(d + 2)

ε
d
2+1
F . (A.5)

The lower bound then follows from

εF � 32

|Sd |2/d n
2/d . (A.6)

��
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Proof of Lemma A.1(d)–(g). Since

‖bk‖ =
∑
x∈∂�

∑
e:x+e/∈�
e′:x+e′ /∈�

eik(e−e′), (A.7)

we have (
∇ ‖bk‖|∂�|

)
j
= 1

|∂�|
∑
x∈∂�

∑
e,e′

i(ej − e′j )eik(e−e′). (A.8)

This is less than 2(2d)2, and we obtain the bound (d).
We consider now‖(h� − ε)bk‖2,

eikx[(h� − ε)bk](x) = (2d − ε)
∑

e′:x+e′ /∈�
e−ike′ −

∑
e:x+e∈∂�

e′:x+e+e′ /∈�

e−ik(e+e′)

=
∑

e:x+e∈∂�,|e|=0,1
e′:x+e+e′ /∈�

e−ik(e+e′)((2d − ε) χ
[|e| = 0

]− χ
[|e| = 1

])
.

(A.9)

In the last line,e is allowed to be 0. Letξ(e) = (
(2d − ε) χ

[|e| = 0
] − χ

[|e| = 1
])

.
Then∣∣[(h� − ε)bk

]
(x)

∣∣2 = ∑
e:x+e∈∂�,|e|=0,1

e′:x+e+e′ /∈�

∑
e′′:x+e′′∈∂�,|e′′|=0,1

e′′′:x+e′′+e′′′ /∈�

eik(e+e′−e′′−e′′′)ξ(e)ξ(e′′).

(A.10)

One computes now thej th component of the gradient; it involves a termej+e′j−e′′j−e′′′j
that is smaller than 4; there are sums overe′, e′′′, with less than(2d)2 terms; the sum∑

e |ξ(e)| is bounded by 4d; finally, the number of sites where(h� − ε)bk differs from
0 is bounded by 2d|∂�|. As a result, thej th component of the gradient is bounded by
1
2(4d)

5, and we obtain (e).
We estimate now the gradient of(bk, h�bk). One easily checks that

(bk, h�bk) = ‖bk‖2−
∑
x∈∂�

∑
e:x+e/∈�

∑
e′:x+e′∈∂�

∑
e′′:x+e′+e′′ /∈�

eik(e−e′−e′′). (A.11)

We can use the bound (d) for the gradient of‖bk‖2. The gradient of the last term is less
than 3(2d)3|∂�|, so we can write∥∥∥∇ (bk, h�bk)

|∂�|
∥∥∥ � 8d5/2+ 24d7/2 � 32d7/2. (A.12)

Finally, one easily checks that∥∥∥∇ (bk, h�bk)

‖bk‖2

∥∥∥2
� 2

( |∂�|
‖bk‖2

)2∥∥∥∇ (bk, h�bk)

|∂�|
∥∥∥2

+ 2
( (bk, h�bk)

|∂�|
)2( |∂�|

‖bk‖2

)4∥∥∥∇ ‖bk‖2

|∂�|
∥∥∥2

. (A.13)

Using (d) and (f), as well as(bk, h�bk)/|∂�| � 2(2d)3, one gets (g). ��
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