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Abstract: The Falicov—Kimball model is a simple quantum lattice model that describes
light and heavy electrons interacting with an on-site repulsion; alternatively, itis a model
of itinerant electrons and fixed nuclei. It can be seen as a simplification of the Hubbard
model; by neglecting the kinetic (hopping) energy of the spin up particles, one gets the
Falicov—Kimball model.

We show that away from half-filling, i.e. if the sum of the densities of both kinds of
particles differs from 1, the particles segregate at zero temperature and for large enough
repulsion. In the language of the Hubbard model, this means creating two regions with
a positive and a negative magnetization.

Our key mathematical results are lower and upper bounds for the sum of the low-
est eigenvalues of the discrete Laplace operator in an arbitrary domain, with Dirichlet
boundary conditions. The lower bound consists of a bulk term, independent of the shape
of the domain, and of a term proportional to the boundary. Therefore, one lowers the
kinetic energy of the itinerant particles by choosing a domain with a small boundary.
For the Falicov- Kimball model, this corresponds to having a single “compact” domain
that has no heavy particles.
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1. Introduction

1.1. The Falicov—Kimball modellntroduced thirty years ago to describe the semicon-
ductor-metal transition in Snmand related materials [FK], the Falicov—Kimball model

is a simple lattice model with rich and interesting properties. The system consists of
two species of spinless electrons with different effective masses: one species has infinite
mass (so the particles do not move —we call them “classical particles”), while the second
species represents itinerant spinless electrons whose kinetic energy is represented by a
hopping matrix. The Hamiltonian in a finite domaihc Z¢ is

HY(wh=— > cley+2dY ne+U ) wyny. (1.1)
x.,yte xeQ xeQ
lx—yl=

Here,c:{, ¢y, denote creation, annihilation operators of an electron aksiig¢ = cch;

w, = 0, 1 is the number of classical particles (“heavy electrons¥),@&ndU > 0 is an
on-site repulsion between the two species of partidii#({wx}) represents the energy

of the electrons under a potentidh,. The term 2 > n, in (1.1) is for convenience
only. It makesH{ positive, and this term only addg 2mes the electron numbey,. At

zero temperature, one is typically interested in the configurations of classical particles
that minimize the ground state energy of the electrons.

The model was reinvented in [KL] as a simplification of the Hubbard model, by
neglecting the hoppings of electrons of spinsay. This simplification changes the na-
ture of the model somewhat, mainly because the continuous SU(2) symmetry is lost.
Connections between the two models are therefore notimmediate; however, the greater
knowledge obtained for the Falicov—Kimball model may help in understanding the Hub-
bard model.

Rigorous results in [KL] include a proof that equilibrium states display long-range
order of the chessboard type when both species of particles have density 1/2; this holds
for all dimensions greater than 1 and flt U # 0 (includingU < 0), provided the
temperature is low enough. The model is reflection positive under a suitable magnetic
field, or when the electrons are replaced by hard-core bosons; this property can be used
to establish long-range order [MP]. Perturbative methods allow for an extension of these
results for largd/ and small temperature, see [LM, MM, DFF]. Absence of long-range
order when the inverse temperatyiés small, orgU is small, was also established in
[KL].

One may increase the density of one species and decrease the density of the other
species while maintaining the half-filling condition, namely that the total density is 1.
(However, as was shown in [KL], the lowest energy is achieved when both species have
density 1/2.) The one-dimensional case was considered in [Lem]; if classical particles
and electrons have respective densi%’esmd 1- g, the ground state is the “most
homogeneous configuration” féf large enough; this configuration is periodic with a
period no greater than Away from half-filling the particles segregate: classical particles
occupy one side of the chain, leaving room for electrons on the other side. There are
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several resultsin 2D. Gruber et. al. [GJL] performed & Expansion and found periodic
phases when the density of the classical particles3s/4, 1/5. This was made rigorous

by Kennedy [Ken]. These results are reviewed in [GM]. The knowledge of the 2D phase
diagram for largel/ was further extended in [Ken2,Hal,HK]. New ground states for
various rational densities were uncovered; for some densities they are periodic, but
there are also densities where coexistence of configurations with different periods have
minimum energy. The results are summarized in Fig. 1 in [HK]. Finally, it was understood
in [DMN] that the 111 interface is stable, due to the effective interactions between the
particles.

1.2. Away from half-filling. The purpose of our study is to explore the situation away
from half-filling; i.e., we take the total density to differ from 1. For any density away
from half-filling we prove that the ground state is segregated/ftarge enough. When

U = oo, the ground state is segregated for all densities (at half filling all configurations
have the same energy, including segregated and periodic ones). Hole-particle symmetries
for both species of particles [KL] imply that the results for posittveand densities

(ne, n¢) of electrons and heavy (classical) particles, transpose to (a) poéitiaed
densitieq1 — ne, 1 —n¢), and (b) negativé/ and densitie$ne, 1 — n¢) or (1 — ne, ne).

For simplicity, we take the total density + n to be strictly less than 1.

We start our study by taking the limif — oo. Electrons are described by wave
functions that vanish on sites occupied by the classical particles, and the question is to
find the arrangement of classical particles that minimizes the energy of the electrons.
This amounts to minimizing the sum of the lowest eigenvalues of the discrete Laplace
operator with Dirichlet boundary conditions. This is explained in Sect. 2, where it is
shown that the energy per site &felectrons in a finite domain ¢ Z¢ with volume
|Al, is bounded below by the energy per site of the electrons in the infinite lattice with
densityn = N/|A].

One can refine this lower bound by including a term proportiongl A4, the volume
of the boundary A of A (Sect. 3). This implies that the configuration of the heavy, fixed
electrons that minimizes the ground state energy of the movable electrons has, more
or less, one large hole with relatively small perimeter. Thus the movable particles are
separated from the fixed ones. This behavior was conjectured in [FF] and is opposite to
the checkerboard configuration, in which both kinds of particles are inextricably mixed.
Segregation was shown to occur in the ground state af thel model in [Lem], and of
thed = co model in [FGM]. The present paper proves that this holds for all dimensions,
and in particular for the relevant physical situatiahs- 2 andd = 3.

Segregation is more difficult to understand on a heuristic level than the chessboard
phase. The latter islacal phenomenon that results from effective interactions between
nearest neighbor sites, while the former iglabal phenomenon involving extended
wave functions. This remark should also apply to the Hubbard model, for which antifer-
romagnetism is much better understood than ferromagnetism.

The fact that the sum of the loweat eigenvalues of the Laplacian in a domain of
volume|A| is bounded below by the infinite volume value at the same density is not
unexpected and holds also in the continuum. Indeed, the original idea, due to Li and Yau
[LY] (see also [LL] Sects. 12.3 and 12.11), was demonstrated in the continuum, and we
only adapted it to the lattice context. However, the fact that the error term is proportional
to |dAl, the area of the boundary, is a completely different story. Its proof, at least the
one given here, is complicated. More to the point, such a balaes not hold in the
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continuum One can easily construct a continuum domain with finite volyre but
with |0 A| = oo, and for which all eigenvalues are finite.

Taking U large instead of infinite decreases the energy, but the gain is at most pro-
portional to|d A |, as explained in Sect. 4. Therefore the infinltesegregation effect
outweighs this gain and the particles are still separated (at least when the heavy particle
density is far enough from 1/2). Finally, an upper bound derived in Sect. 5 shows that
the energy of electrons in really consists of a bulk term independent of the shape of
A, plus a term of the order of the boundary.

These results are summarized in Theorem 1.1 below. One can use them to discuss
the electronic free energy at inverse temperagyrfer afixedconfiguration of classical
particles, see Theorem 1.2. The conclusion of this paper involves a discussion of first-
order phase transitions at finite temperature, of what happens when classical particles
have a small hopping term, and of the possible links with ferromagnetism in systems of
interacting electrons with spins.

In order to present the main result of this paper, we need a few definitions. For
ke (—m, 7%, we set

d

e = 2d — ZZcoski. (1.2)
i=1

The energy per site(n) of a densityn of free electrons in the infinite volun#& is

1
= — E dk, 13
e(n) 2 Jo e k (1.3)

where the Fermi levelr = er(n) is defined by the equation

1

n=-—— dk. 14
(2m)d £ <EF (1.4)

We can specify the configuratiqw, ), .7« of classical particles by the domain C
7% consisting of those sitasithout particles (holes), that isp(x) = 1 if x ¢ A and
wx) = 0if x € A. Lethf{ denote the one-particle Hamiltonian whose action on a
square summable, complex functipron Z4 is

Rl == > 0 +2dex) + Ux pc(x)g(x). (1.5)
yoly—xl=1

Here, x Aoc(x) is the characteristic function that is Lifbelongs to the complement®
of A, and is O ifx ¢ A°. We defineEf{’N to be the ground state energy @felectrons
for the configurations defined hy, i.e.

N
EV = inf (@i, hY @), 1.6
AN {¢1,~-~»¢N};(pl AP ( )

where the infimum is taken ove¥ orthonormal functions, i.&g;, ¢;) = §;;. There
exist normalized minimizers if the Fermi level is beldly they are not identically zero
inside A, and decay exponentially outside.

Notice thatEf\],N is increasing if/, since(y, hf{w) is increasing inJ for any ¢.
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We define the boundary byA = {x € A : dist(x, A®) = 1}, whereAC is the
complement ofy, i.e., the points irZ.¢ not in A. The following theorem summarizes the
results obtained in this paper. It contains upaed lower bounds for the ground state
energy. We set = N/|A|.

Theorem 1.1. There are functions(n) > 0 andy (U) with limy_, ., Uy (U) = 842,
such that for all finite domain4,

(Zdn — e(n))|8A| > EE\],N — |Ale(n) > ((x(n) — y(U))|8A|.

Furthermore(n) = a(1 — n), and forn < |S4|/(47)?, it can be chosen as

2a'—3

2
nl—i—g
Tl’dd3|Sd|2/d

a(n) =

Here,|S,| is the volume of the unit spheredndimensions.

An explicit expression fol (U) can be found in Proposition 4.1. The lower bound
a(n) vanishes whem = 0 (no itinerant electrons) or = 1 (fully occupied lower
band). Theorem 1.1 is relevant only whet) > v (U), that is, sufficiently away from
half-filling (depending orV). The theorem states that the “good” configurationfor
which electrons have low energy must have small boundaries. As a consequence, the
system displays phase separation in the ground state.

The upper bound is symmetric under the transformaties 1—n due to a symmetry
of the Hamiltonian, and it is saturated fdr= co by configurations with isolated holes.
Indeed, in this case the eigenstates consigtfofctions on the holes, with eigenvalues
equal to 2, anddA = A.

The lower bound isfirstexplainedin Sect. 2{or= co and without the term involving
the boundary. The latter requires more effort and is derived using Lemmas 3.2-3.5 in
Sect. 3. Proposition 4.1 then extends it to the case of fihifEhe upper bound is proved
in Sect. 5.

Theorem 1.1 is described in [FLU], which also reviews the rigorous results obtained
so far for the Falicov—Kimball model.

1.3. Electrons at low temperaturdt is natural to consider the situation at positive
temperature. The relevant object is the Gibbs state obtained by averaging over the
configurations of classical particles, and by taking the trace of the Gibbs operator
exp{—ﬁHg({wx})}. We expect the system to display a first-order phase transition in
the grand-canonical ensemble; densities of both types of particles should have discon-
tinuities as functions of the chemical potentials. But a rigorous treatment of this phase
transition is beyond reach at present. However, we do obtain some properties of the
system when the configuration of the classical particles is fixed, and the electrons are at
positive temperature. Namely, one can extend the estimates of the ground state energy
to estimates of the electronic free energy. The results are described in this section, and
their derivation can be found in Sect. 6.

Let us consider a bo with periodic boundary conditions. The configuration of
classical particles is specified by the set of hales < (later, in Corollary 1.3, we shall
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average oven). With u being the chemical potential, the grand-canonéattronic
free energy (equal te-|2|/8 times the pressure) is

1
F§ A(Bow) = 3 log Tr exp{—BHY A + BuNa}. (1.7)

Here,HY , = HY ({w,}) as definedin (1.1Nq = Y, . 1 is the number of electrons
in ©, and the trace is in the Fock space of antisymmetric wave functiogs on
A simple “guess” forFS‘{A is obtained by considering independent electrons, which
are either inA or else inA°. In the latter case the effective chemical potential is U.
Our “guess” would then be

FSAB ) = IAIF(B, ) + (191 = [AD f(B, 1 — V), (1.8)

where f (8, 1) is the free energy per site for free electrons:

F(B, ) = — 1 dk log(1 + e PE—m), (1.9)

i1 /
,3 (Zn)d [—m,m]d

Formula (1.8) is, indeed, correct whénis large — in the sense that the error is
proportional only tgd A |. More precisely,

Theorem 1.2. There are function&(8, i) > Owithlimg_.oc a(B, n) > 0if 0 < u <
4d, andy (U) with limy_ o U7 (U) = 1642 4 241344, such that for all finite domains
QandA cC @,

Ca Al +C) Q18 > FY y (B w) — [IAIF B, 10) + (121 = [AD f(B. 1 — U))
> (@(B. ) — 7(U))19A],

with
Az /d 1
Cipn=—=+2d2d+1) | ———,
d,p (|Sa'|1/d +2d(2d + )>1+el3ﬂ

o A /d 1
i 5,01d 1 4 e Bu=U)"

The term|Q|1‘% on the left side is not exactly proportional @A |. However, we

have in mind thatA| and|2| are comparable, in which ca@|1_% is no greater than
[0 A] (up to a factor).

Notice that the upper bound vanishesias> —oo, i.e. when the density tends to 0.
In the limit U — oo, Theorem 1.2 takes a simpler form, namely

CauldA| = FI3°(B, ) — [AIf (B, w) = a(B, wIdAl. (1.10)

This extension of Theorem 1.1 to the case of positive (electronic) temperatures is
explained in Sect. 6. The lower bound follows from Propositions 6.1 and 6.2, while the
upper bound is stated in Proposition 6.3.
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Our next step is to find upper and lower bounds for the total grand-canonical “free
energy” by averaging ovex (i.e., averaging over the positions of the classical particles).
This can be done with the aid of the Ising model free engigyy(8, ),

1
ﬂwm oo 192 2 eXp{_ﬂ > SxSy—ﬂthx}, (1.12)

{sx==%1} {x,y}cQ xeQ
lx—yl=1

Jfising(B, h) =

where the sum is over configurations of classical spinon

Corollary 1.3. If U is large enough (so that(8, u) —y (U) > 0), we have Ising bounds
for the full free energy,

B+ FB =+ 2 + £ fising(ZEB. Z1f (B, 1) — f(B, u—U)])

1
<-2im Lo e PFanBm)
B il 2

<3FB W+ FBp— U>]+ 3dCa
+ 5Caufising(3Canb e Lf (B ) = f (B — D)),

wherea = &(8, ) — 7 (U).

The proof can be found at the end of Sect. 6.

Another consequence of Theorem 1.2 concerns the equilibrium state; namely, it allows
for a precise meaning of segregation. We consider the probability thak satedy are
bothoccupied by classical particles, or both are unoccupied. Namely, we consider

ZACQ:w,\-:wy exp{—,BFg’A(,B, m}
> aca expf _IBFSIZ],A(ﬂ’ m}

where the sums are over subsatef Q such thatA| = [(1 — n¢)|2|] ([z] denotes the
integer part ok e R). The restrictionw, = w, means that either bothandy belong
to A, or both belong to the complement &f

Segregation means that up to a small fraction of sites that are close to the boundary
between classical particles and empty sites, any two sites at finite distance are either
both hosts of a classical particle, or are both empty. The fraction of sites close to the
boundary vanishes in the thermodynamic limit. Henceswgecthat

(awx,w)-)g = (1-12)

im lim M (8w = 1, (1.13)

B—00 [x—y|—>00 |2]—>00
but we are unable to prove it. Notice that using Theorem 1.1, one can conclude that

im lim M (S, 0,)q = L. (1.14)

[x—y|]—00 |Q]—>00 B—>00

Indeed, taking the limit of zero temperature at finite volume, the sum aveecomes
restricted to the ground state configuration(s), whose boundary fragthdri| A | tends
to zero in the thermodynamic limit.

We can however take advantage of Theorem 1.2 to obtain a result that is better than
(1.14):
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Corollary 1.4. If U is large enough (depending gnandd only), the ground state of
the Falicov—Kimball model displays segregation, in the sense that

lim lim lim (6w, w,)q =1

|[x—y|]—>00 B—00 |Q2]|—>00

The proof of this corollary can be found at the end of Sect. 6.

2. The Discrete Laplace Operator in a Finite Domain

2.1. Basic propertiesWe start our investigations by taking the lindit — oco. Let us
denoter, = hY=, the corresponding Hamiltonian, which acts on functiprs L2(A)
as follows: ifx € A,

[hagl) == > () +2dp(x). (2.1)
yeA,|lx—y|=1

Some observations can readily be made that will be useful in the sequep. Eor
L?(A), one has the following formula,

2

@ hap) = Y |p(x)— o)

{x.ykhlx—yl=1

(2.2)

where the sum is ovall x, y € Z¢, with the understanding that(x) = 0 for x ¢ A.
Equation (2.2) takes a simple form because of the diagonal term .iThe effect of
the Dirichlet boundary conditions appears through a tfm, , lp(x)|2, that is due to
pairs{x, y} with x € A andy ¢ A.

The matrixh, is self-adjoint, and (2.2) shows that, > 0. Its spectrum has a
symmetry. Letp be an eigenvector with eigenvaléeandg be the functionp(x) =
(—D)™lgp(x); one easily checks thatis also an eigenvector, with eigenval(e! — ¢).
The spectrum is therefore contained in the intef@afld], and is symmetric aroundi2
Furthermore, one has

Enjal-n =2d |A| (1 —2n) + Ep N,
e(Ll—n) = 2d (1—2n) + e(n). (2.3)

This allows to restrict ourselves to the casec %; indeed, existence of a lower bound
for a densityn implies a lower bound for the density-1n. This symmetry holds only
for U = oo.

2.2. The bulk termWe are looking for a lower bound for the sufip y of the firstv
eigenvalues of 5. This problem was considered by Li and Yau [LY] for the Laplace
operator in the continuum. Let ¢ R? be a bounded domain. They prove that the sum
Sy of the firstN eigenvalues of the Laplace operator with Dirichlet boundary conditions
is bounded below,

Sy > (2m)2—— |8, NYFE A7 (2.4)

d+2
where|S;| and|A| are the volumes of respectively thedimensional sphere and of.
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The corresponding inequality in the discrete case — our Theorem 1.1 without the
boundary correction — constitutes the heart of this paper, and we explain below the proof
of Li and Yau, see also [LL], Theorem 12.3.

It is useful to introduce the Fourier transform for functiond.#(Z4), that is, on the
whole lattice. A functiorp € L2(A) can be considered an element8{Z¢) by setting
¢(x) = 0 outsideA. This Fourier transform will lead to the electronic energy density
for the infinite lattice, which is the bulk term for the energy of electrona in

The Fourier transform of a functianis defined by

o)=Y owe", kel-mnl’, (2.5)

xeZd

and the inverse transform is
1 .
= dk ¢ (k)e"kx. 2.6
p(x) @) f[_m]d ¢ (k) (2.6)

Using the Fourier transform, a little thought shows that the energy of a particle in a state
@in L2(A)is

1
h — 0 2 2.7
CNIND @0y /[m]d dk | (k)| “ex, 2.7)
with ¢ defined in (1.2) and witkp(x) = 0if x ¢ A in (2.5).

Let us consideV orthonormal functionss, ..., ¢n, and letEx (¢1, ..., ¢n) be
their energy. We have

1
E = —— dk p(k)e, 2.8
NIRRT 20 /[_n’n]d p(k)ek (2.8)

with

N
pk) = 1g; (k)% (2.9)

j=1

The functionp (k) satisfies the following equations:
0< pk) <A (2.10a)
1

—_— dk p(k) = N. 2.10b
e /[_M]d p(k) (2.10b)

Indeed, positivity ofp is immediate and the last equation is Plancherel's identity. The
upper bound (2.10a) fgr(k) can be seen by writing

pk) = (f, P f), (2.11)
whereP is the projector ontq)(p,-}?’:l,

N
Pry =Y ¢ix)e}y), (2.12)
j=1
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and f is the vector
fr =€ XA ). (2.13)
Then, sinceP < 1, we havep (k) < || f112 = |A].
Clearly, we have the lower bound

Exn 2 dk p (k) &. (2.14)

inf i /
p: 0<p<|Al (2m) [, 7]
@0y [ p=N

We can use the bathtub principle ([LL], Theorem 1.14) to find the infimum: it is given
by the function

IA] if e < eF

pmin(k) = . (2.15)
0 otherwise,

where the Fermi levedr is given by the relation(#)d f8k<£F dk = N/|A|. Thus the
right side of (2.14) is precisely equal ta| e(N /|A}).

3. Lower Bound Involving the Boundary

In the previous section, we showed ttgt v is bounded below by its bulk term. Now
we strengthen this inequality and prove ttiat v also includes a term proportional to
the boundary ofA. This can be checked far = 1 by explicit computation, but higher
dimensions require more elaborate treatment.

We start with a lemma that applies when the densitg small enough (or, by the
symmetry fori 5, when it is close to 1).

Lemma3.1. If n < |Sg]/(4n)%, we have

0d—3,1+5

E > |A ————|0A|.
AN | |e(n) + T[dd3|Sd|2/d| |

Proof. Recall that

Exn / dk p (k)& (3.1)
[—m,7]d

~ @2n)

with p (k) = Zj.\’zl | (k)|2. We want to show thab (k) cannot be too close tomin(k)
in (2.15). By completeness of the set of eigenvecters, we have
[A
pl) =|Al— Y oM. (3.2)

j=N+1

We now use the Schrddinger equation. We Waye; (x) = ¢;¢;(x) forx € A. Let
us takep; (x) = 0 forx ¢ A; then the following equation holds true for alle 74:

—Z(pj(x +e) + Xac(x) Z pi(x+e)+2do;(x) =ejp;(x). (3.3)

e:x+eeA
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The middle term of the left side is necessary for the equation to hold at sites ontside
that are neighbors of sites k. Taking the Fourier transform, we get

ex@j k) + (b, 9j) = e;@j(k), (3.4)
whereb; is a “boundary vector”,
br(x) = XaA(x)e_ikx Z e‘ike. (35)
e:x+e¢ A
Notice thatld A| < [[bxl1? < (2d)2[0A] if [kl < %. From (3.4), we have
R (b o2 1 2
(k)2 = > b, 9% 3.6
|‘Pj( ) (er — ej)z (4d)2|( k ‘Pj)l ( )

The electronic energy iA is given byf p(k)er. We saw in Sect. 2 thatg p (k) <
|A|. By (3.5) and (3.6), this can be strengthened to

const| P_bi |12 < p(k) < |A| — const| Py 1%, (3.7)

whereP_ (resp.P;) is the projector onto the subspace spanneddy. . ., ¢n) (resp.
(ON+1. ---» @|A)]))- See Fig. 3.1 for intuition. We show below that

| P+bi||? > consid Al (3.8)

and this will straightforwardly lead to the lower bound.

7777777777777777777 [A] i const| Py by |2
Pmin(k)
pk)
&k
eF
””””””””””””””””””””””””””””””” i const]| P_ by ||2
\ \
—7 0 b4 k

Fig. 3.1. lllustration of the expression (2.8) féfy . p(k) satisfies more stringent estimates than those stated
in (2.10a), and this plays an important role in deriving the lower bound

In order to see that the boundary vector has a projection in the subspace of the
eigenvectors with large eigenvalues, we first remark that

(i hab) = Y () — be(I? = 1Bk % (3.9)
{x.y}lx—yl=1
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We used the fact that each sit®f d A has at least one neighbpioutside ofA, and we
obtained an inequality by restricting the sum over such pairs. Let us intradusech
thatey < 3 andeyr41 > 3. We first consider the situation whene < N'. Using first
ej < 4d and then the previous inequality, we have

[A] [A]
4 Y AbepP = Y b @))%
J=N'+1 Jj=N'+1

v
> 1bell® = Y 1k, ) Pej = 3lbell®. (3.10)

j=1

For k| < %, (3.6) and (3.10) imply
0|

p(0) <Al = 505 (3.11)

We can write a lower bound by proceeding as in Sect. 2, but using the bound (3.11)
for p(k), instead of A|. The bathtub principle then gives

EAN—|A|e(n)>L/ dk8k<|A|— 9] )
' - (zn)d EF <€k <€p 2(4d)3
1 EXN
- — Sp———=, 3.12
@) Joyeer " 2(4d)3 (312)
where we introduceg such that
1 EXN
N=—[|A| - —— dk. 3.13
o (1M1= 5ay3) /< (3.13)

Notice that forn < |S;|/(4m)¢, we havesy < % so thats, < e implies k| < %.
This justifies the use of (3.11). We bound the first integral of (3.12) using g, and
we obtain

19A] 1

EA,N — |Ale(n) > WW

/ dk(ep — &r). (3.14)
ex<eF

One can derive a more explicit expression for the lower bound. First,
/ dk(eF — £x) > 3eF / dk. (3.15)
e <EE 8k<%a|:

Second we use % % < cosf < 1— 402, to get

8
;|k|2 <er < k% (3.16)

One can use the upper bound of (3.16) to get

/ dk > |S,1(ker) /2. (3.17)
sk<%s|:
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Recall that|S,| is the volume of the unit sphere ihdimensions. The lower bound of
(3.16) allows to write

eF > % (3.18)
Then one gets the bound
24+2d 145
/;KEF dk(ep — &) > W. (3.19)
Hence the boundary correction &, v is bounded below by (n)|d A| with
iy = — 2, (3.20)

ndd3|Sd|2/dn

Recall that we supposed < N’, whereN’ is the index of the largest eigenvalue
that is smaller thar%. Were it not the case, we can write, with= N'/|A|,

N’ N
Exn=) ¢j+ Y e =|Alen)+a@)|dAl+ 3Aln—n).  (3.21)
j=1 j=N'+1

We used the previous inequality to bound the first sum,eand % for the second sum.
This is greater thapA |e(n) + «(n)|dA| provided
|0A|

e(n') + a(n’)m +3(n—n) > e(n) + a(n)

|0A|
Al

(3.22)

A sufficient condition is tha%n —e(n) —a(n) is an increasing function af. Computing
the derivative (the derivative af(n) is ep(n), that is smaller thari2r)2n?/4/|S,|2/¢

using (3.16)), and requiring it to be positive leads to the condition

|Sdl
2d—2
wdds3

(3.23)

n <

(22102 + Zr(L+ 542

The right side is greater thafi;|/(47)?. O

It may seem obvious that the extra energy due to the presence of the boundary
increases asincreases, until it reachés Butwe can provide no proof for this, and hence
we need a new derivation for the lower bound with higher densities. We proceed in two
steps. First we give a lemma that works when the boundary has few nearest neighbors;
the proof is similar to that of the previous lemma. Then we give three lemmas, with
more intricate demonstrations, and that establish the lower bound for boundaries where
at least a density of sites have nearest neighbors. We need some notation to characterize
the configuration around a siteof the boundary.

Let e, ¢’ be unit vectors irZ¢; the notatione || i means that is parallel to the
it direction; equivalently, the componentse#re given bye; = +8;;. We introduce
integersg, ; andgy ;;; for x € A, we set

gri =#e | i x+e¢ A},
grij =H#(e,e)elli,e || j, x+ecdA, x+e+e ¢A} (3.24)
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Notice that 0< ¢g,; < 2and 0< gy ;; < 4.AlSO,qy ;i =#le | i, x+ec A, x+2¢ ¢
A}, and 0< ¢y ;i < 2. We also defing, =, gx,;-

The following lemma applies to domains where most boundary sisesisfyg, ;; =
0, in which caser has no neighbors that belong to the boundary. Hgrg, = 0 means
that, atx, g, ;; =0forall 1< i, j <d.

Lemma 3.2. For all A c Z4 with
1
#Hx € 0A 1 qrij #0} < @WAL
there exists:(n) > 0 such that
Ex N 2 |Ale(n) +a(n)|dA].

Remark.lim,_oa(rn) = 0 anda (1 — n) = a(n) by the symmetry foh 5.

Proof. We can suppos#/ < 'AZ‘ The definition ofp (k) involves a sum over the first

N eigenvectors (more precisely, of their Fourier transforms). In case of degenerate
eigenvalues one is free to choose any eigenvectors. For the proof of Lemma 3.2 it turns
out that the possible degeneracy dfl&ings some burden, and it is useful to redefine

o (k) by averaging over eigenvectors with eigenvalde 2

Y119 (k)2 it N <N

p(k) = (3.25)

N R _ R A ~
e 9501 + 505 X jejm2a 16501 I N > N
here N is suchthat < 2d andey, , > 2d. The degeneracy ofis | A| — 2N (which
may be zero). Of coursé; y is still given as the integral gf (k) multiplied by ey.

The goal is to prove that(k) cannot approacbmin in (2.15). SinceZ.',.A:'1 |§; (k) 12 =
|A[, we have

[Al

. 1 .
p<k><|A|—{ PBERICIE Y |<p,-<k>|2}. (3.26)
J=IAl-N+1 Jiej=2d
We introduce
[A] 1
2 2
S(k) = 2 |(bi, 9))] +§'Z |(br. )12, (3.27)
j=IAI-N+1 jrej=2d

with b, the boundary vector defined in (3.5). By the inequality (3.6), it is enough to show
that S (k) is bounded below by a quantity of the orderf@h\ |. We have

S(k) = (bx. Py bi) + 5 (b, Poby). (3.28)

where P, is the projector onto the subspace spanned by alith ¢; > 24, and Py is
the projector corresponding to the eigenvalde 2

We want to show thaf (k) > constd A| for small|k|. This amounts to prove that the
vectorpy cannot lie entirely in the subspace spanneddyi<j<n.
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Notice that ifx € dA andg,,;; = 0, thenx has no neighbors idA. Using the
assumption of Lemma 3.2, as wellj@g(x)| < 24 and|dA| < ||bx|%, we get

(b, habe) = Y k() — b
{x,y}:lx—yl=1
>2d ) @ —2d Y 1) (3.29)
xedA x€IA
qx,ij 70

1
>W—@WW-

The last inequality uses the assumption of Lemma 3.2, and the faghthel| is at most
2d and at least 1.
Next we considefi (ha — 2d)bi||2. We have, forx € A,

[(ha — 2d)bi](x) = Zbk(x +e), (3.30)

and therefore, ifk|oo < %,

G = 2d)bk |12 = DD Ibe(x + o) = Z<2d — q.) bk ()2, (3.31)

xXeA e

We write by = b’ + b”, with b”(x) = bi(x) if g = 2d, 0 otherwise. Notice that
b L b". Clearly, Pob” = b”, and therefore

S(k)y = (', P+ 0"y + 3/, Pob') + 3116711 (3.32)
Furthermore, from (3.29) and (3.31),satisfies
1
W', (hy = 200) > =Sl @, Gea = 240%) > b))% (3.33)
Becausde; — 2d| < 2d, the last inequality implies

=D M@, HPlej —2d)+2 Y (9, b)(ej —2d)

j Jjiej>2d

161
—Z|<<p,,b>| lej = 2d) > = (3.34)

With the first inequality in (3.33), this yields

b2 llbk)?
S 1y, B Pe; — 2y > 1210 1o (3.35)
jiej>2d 4d 8d
-“J
hence
s IPIZ |lbgl|?
> gy, b = o7~ 1al (3.36)

Jjej>2d
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Back to (3.32), we obtain

1612 1ol NBx 2
8472 1642 = 16d2°

We can combine this bound with (3.26) and (3.6); we have then foklall < 7,

S(k) > + 216717 - (3.37)

|OA]

p(k) < |A| — @y

(3.38)

We introducesg such that

1 [9A] [A]
IA] — 220 f dk + dk =N, (3.39
(Zﬂ)d< (4d)4) er <BF koo < X ) Jo < ko> (3.39)

3 3

and we have

Enn — [Ale(p)

1 19A| /
> —— (1Al - =27 dk
(Zn)d< (4d)4) eF <&k <EF,|kloo<F
[A . 1 [9A]
L — -
(Zn)d eF<ex <EF,lkloo>F (Zn)d (4d)4 ex<er, kloo<%

+ dk ey. (3.40)

We bound the first two integrals using > ¢f; from the definitions okg andég we
have

A A
| |d dk = |—|d dk. (3.41)
(2m) k<, lkloo<% (2m) eFE<ep<EF
As aresult, we obtain the bound we were looking for,
oA 1
Enw — IAle(L) > 128 ok (o5 — ). (3.42)

(4d)4 (zn)d er<er.lkloo<%
[m}

We present now another lemma that claims the lower boundEfog, and that
involves a new assumption. We shall see below in Lemmas 3.4 and 3.5 that for all
volumes, at least one of these lemmas applies.

Lemma3.3. Lets > Oandn > |Sy|/(47)?. We assume that
I(ha — en)bioll® = 813A],

for somekg belonging to the Fermi surface, i.&, = ¢, whereer is the Fermi energy
for densityn = IZX_I Then we have

Exn — |Ale(n) = n]dA]

with 5 = |S,[58304+2 /(2271d+23,10d+2j1301+9)
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The constany that appears as a lower bound seems ridiculously small, but we cannot
do better. Notice that this lower bound is much smaller than the one obtained in Lemma
3.1 at low density, witl = |S;|/(47)2. We expect however that the lower bound is an
increasing function of for 0 < n < % although we cannot prove it.

Proof. We have
Ean — |Ale(n) = i/ dk[A_(k)sk - A+(k)ek] (3.43)
’ (Zﬂ)d [—7‘[,7[]‘1 ’

where

AL(k) = (Al — pK)) X [ex < &F].
A_(k) = pk) X [ek > eF].

We used here another convention for the characteristic function, naxelyis 1 if - is
true, and is O otherwise. Notice thatlk A_ (k) = [ dk A, (k). Then we both have

G J kAR (ex — ep)

i (3.44)
o7 J Ak Ay (k) (er — ).

EA N — |Ale(n) > {

And by Holder, this implies

1 1\ 4
_ 1/5 .
Epn |A|e(n)/ o )d/dk[Ai(k)] ) /((Zn)dfdk|8k eF | 4) .
(3.45)

One shows in Lemma A.1 (a) that the integral qf — s,:|‘% is bounded by 2.

Recallthafy;}1< < a| are the eigenvectors bf, . Let P_, resp.P.., be the projectors
onto the firstN eigenvectors, resp. the lagt| — N eigenvectors. By (3.6), one has
inequalities

Ar) > s I Pebill® if e < er.
A_(k) = WIIPJ%IIZ if & > ek. (3.46)

Let us introduce setd andA’ by
3
A ={k:e <erandlk —ko| < m}
A = ke > e andlk — kol < zrgz )- (3.47)

We obtain a lower bound by substituting (3.46) into (3.45), and restricting the integrals
to A andA’. Namely,

l
Ean — IAlen) > 25 (2 G [ P b)’

l
Ea = I8le) > (g [ dkiP-bul?s)
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Let by = by/||b||. From the assumption of the lemma, and usihg — e|| < 4d
and LemmaA.1 (d), we have that for &lie A U A,

bell® 8
—_— > . 3.48
[0A| = 2542 (3.48)
Extracting a factotd A|, and using the above inequality, we can write
) - 5
Ean—I|A >aA—< dka2/5>,
AN — |Ale(n) = | |213d4(271)5d /A | P+l
Exn — |Ale(n) > |aA|L(/ dk ||P_Ek||2/5)5. (3.49)
* 21334(27)5d \ |,/

Considerk € A. The assumption of the lemma fbg, together with the bound for
the gradientin LemmaA.1 (e), implies

(b (ha —en)?bi) _ 8

BN > 5. (3.50)
Therefore
(b, (hp — en)?br) > % (3.51)
This can be rewritten as
Al ) 5
Dl bolPtej —en)® > o5, (3.52)
j=1
that is,
[A]|
D @) b1l + eX) = = + 2en (bi. ha bi). (3.53)
j=1
Hence
Al 2_ 5
(Bieoha Bi) < e + Zl|(<p,,bk>| G- 5)— 5 (3.54)
J

o . . . a
The quantity in the brackets is negative fo< N. Observing thaéy > % >

1/29+172 (because > |S;|/(47)? and using Lemma A.1 (c)), the bracket is bounded
by 2¢t47242. Therefore,

- - ~ )
(br, ha br) < ey + 2947242 | PLby |2 — CONER (3.55)
On the other hand, for' € A/,
~ _ [A]
i habi) = Y (@), bi)lPe; > eny1— 4d|| P_by||>. (3.56)

j=N+1
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Sincelk — k'| < §3/22445/2 we have from Lemma A.1 (g) and (3.48),

(b, ha b)) — (bi, ha by) < 263" (3.57)
Therefore
1) )
ens1 = 4| P-by|® < en + 22 A PLbi? = S5 + oo (3.58)
Clearly,ey < ey+1;then
1Py bx 1 + mIIP—%IIZ Z 201 10,2,5° (3.59)

We use now (3.49). The worst situation happens whenb || is equal to the right
side of the previous equation. Using Lemma A.1 (b) we finally get the lower bound of
Lemma 3.3. O

Now we show that we can use Lemma 3.3 forlbuch that Lemma 3.2 does not
apply.

Leta, = ((2d—s)qx,i)1<i<d andQ, = ((1+8ij)qx,ij)1<i’j<d. More generally, we
leta denote a vector with entrig@d — ¢)q, ;, andQ a matrix with entries &, ;; in the
diagonal andy, ;; off the diagonal, that correspond to a possible configuration around
x. With ¢ = (cosk;)1<i<q, We introduce

F(c;a, Q) = (a,c) + 3Tr 0 — (¢, Qo). (3.60)

This function appears when establishing a lower bound| b — )by |12
Let O be the set of all matrice@ (for which there exists some compatible configu-
ration); we introduce

Q”:{QeQ:QiiEZaninj+jS=4foraIIi7éj} (361)
and
Q' ={0¢Q":0i #0} (3.62)

The reason behind the definition @' is that we can provide a lower bound only
if F(c;a, Q) is not uniformly zero whert moves along the Fermi surface (i.e. with
&, = ¢f); and we can show thdt(c; a, Q) is not uniformly zero only forQ € Q' see
Lemma 3.5 below.

For giveneg, we define

min min max |F 3.63
n(er) = Jmin, i max |F(c;a, Q). (3.63)

We state a lower bound involving(eg), and check below in Lemma 3.5 thateF) is
strictly positive foreg > 0.

Lemma 3.4. Letd > 2. For all finite A satisfying
#x € 0A 1 qgyij 0} 2> 4|8A|

we have

max |(ha — )bl t{er)

krer= 26d55d2 O
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The factorz2; is arbitrary here, and has been taken such in order to complement the
condition of Lemma 3.2.

Proof. Let us introduce

Q) = Xaa(x) Y ek (3.64)
ex+egA

By the definition of the discrete Laplacian,

[(ha — e)bi](x) = e*”‘X{(Zd —oqr(x) = Y e kg (x + e)]. (3.65)

Let us denote by (x) the quantity inside the brackets above. Cledrijia — )by |2 =
el LetRy,a =1, ..., 29, represent all combinations of inversions of some coordi-
nates. We have the following inequality:

2
1 2 1
= lrrull? > | =5
25t |
Indeed, starting from the RHS, we have in essence (withd) < 1 and)_; a; = 1)
(Zaivi, Zaivi) = Zaiaj(vh vj)
i i ij
2
< () Vaivaillvill) (3.67)

< [(Zai)l/z(lZa,-||v,-||2)1/2]2

i

d

2
D Rk

a=1

2

(3.66)

which is the LHS of (3.66).
The RHS of (3.66) is clearly smaller than max=. [|(ha — €)bx 2. One computes

now Zﬁdzl rrk(x) for x € dA. First,

2 d
1
57 D2 —&)qr () = (2d —£) ) qx ;i COSki. (3.68)
a=1 i=1
Second,
1 2
—iRuke —iRuke
22, 2. e > e
2 a=lex+ecdA e':x+ete' EgA

d
1
= — ZC]x,ii coq2k;) — E Z qx,ij [cos(ki +k;) + cogk; — kj)]
i=1 i, jit]

d d
=—2 quiiCOSki+ Y qeii— Y qx.ij COSki COSk;. (3.69)
i=1 i=1 i)
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We used co@k;) = 2 cof k;—1,and the bracketin the second lings= 2 cosk; Cosk;.
Gathering (3.68) and (3.69), we obtain

1 Z
Z_d ZrT\’,ak(x) = F(c; ax, Ox). (370)

a=1

One can check that whenevgr, ¢ Q' and differs from 0, there exists a neighbor
that belongs t@’. Then the condition of the lemma implies that

#x cdA: Qe Q) > 19A. (3.71)

26d5

Furthermore Q' has less than® elements since & Q;; < 4, then for anyA that
satisfies the assumption of the lemma there exists Q' such that

Hx cdA: Q= 0} > Al (3.72)

26554d° 19

We get a lower bound fof(ix — £)bx||% by considering only those sites, i.e.

2 1(eF)
— >
Jmax | — )bl /XEMXQ: ch;w; IF(eian, Q1 > ooeep |00 (3.73)

uniformly ine € [0,2d]. O
There remains to be checked thatr) differs from O.
Lemma 3.5. For all e > 0, we haveu(er) # 0.

Proof. We proceeab absurdaand explore ways whetg(c; a, Q) could be uniformly
zero. Letu be the vector such that = 1.

The constraint; = ¢r takes a simple form, namelyt, ¢) = d — %SF. Furthermore,
¢ satisfiede|oo < 1;if ep # 0, we can findic such thatc + 8¢l < 1and(u, c+38c) =
d— %s,: —inwhich caséc must be perpendicular to The conditionF' (¢ +éc; a, Q) =
F(c;a, Q) forall ¢ L u implies thate — 2Qc || u. This should also be true whers
replaced withe + éc¢, henceQéc || u for all ¢ L u. Now take(dc)e = 8;¢ — 0. We
have

(Qéc)i = Qii — Qij,
(Qdc)j =—0jj + Qji, (3.74)

and these two components must be equal, sfhieis parallel tax. HenceQ;; + Q;; =
Qij + Qji, or

2qx.ii + 2qx,jj = qx,ij + qx.ji- (3.75)
In this caseF'(c; a, Q) takes the form

d d d
F(cia, Q)= (2d — &)Y qeici— 2d —eF) Y _qeiici+ Y qeii-  (3.76)

i=1
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SinceQ € Q' we havey, ;; # 0; if (u, c) = 0, one can take = 0, andF(c; a, Q)
is strictly positive, so we can suppoge c) # 0.
Lets = ), qx.ii/(u, ¢), andv be the vector with components

= (2d — &)qx,i — (2d — €F)qyx,ii + 5. (3.77)

ThenF(c; a, Q) = (v, ¢). If we require this to be zero far || u, then we need L u.
But we also requirév, ¢ + §¢) = (v, ¢) for all §¢ L u, hencev || u. Sov must be zero,
i.e.

(2d —e)gx,i — (2d —er)gxii +5s =0 (3.78)

foralll1<i <d.

We also havey,; + g..ii < 2, andg, ;; cannot be always equal to 2. 4f # O,
one checks that necessarily ;; = 1, which is impossible because € Q’. Hence
F(c; a, Q) cannot be uniformly zero when moving along the Fermi surface.

4. FiniteU

We consider now the Falicov—Kimball model with finite repulsidnand establish a
lower bound for the ground state energyMfelectrons in a configuration specified by
A. More precisely, we show that when decreasing the repulgioone does not lower
the energy more than congbA|/U.

For anyA, the spectrum diU QA isincluded in0, 4d1U[U, U +4d]. WhenU > 44,
eigenstates with energy [0, 44] show exponential decay outside/df and eigenstates
with energy in[U, U + 4d] show exponential decay inside HenceA andQ2 \ A are
essentially decorrelated, and the situation is close to thatiith oco.

The following proposition compares the energies of electrons with finite and infinite
U. Itis useful to introduce(U),

24 N2 (U —2d)27 (U —2d)%
) = <U — 2d> ;[U(U - 4d)] T (UWU —4dyd ~ L (4.1)

Notice that limy_.o. U?n(U) = 443, as it easily comes out from the middle expression.
Proposition 4.1. If U > 4d, we have
E{ y > Ean —y(DIDA,
with
2
U-—2d

y(U) = +d 22 U).

Proof. First, we remark that eigenvectorsidf , with eigenvalue smaller thanihave
exponential decay outside &f. Indeed, forx ¢ A the Schrddinger equation can be
written

Yepix+e)

. 4.2
U+2d—€j ( )

@j(x) =
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If e; < 4d, we have

o Y24 Y, g (x + o)
> les < T (4.3)

Using this inequality, we can proceed by induction on the distance betwaetA .
The induction hypothesis is that the following holds true:

[A]

Z|<o,<x>| (

for anyx such that distx, A) > n. As a result, we have

)2" (4.4)

|A| .
2d 2 dist(x,A)
Z 0P < (5=57) : (45)
Let us introduce
N
By = D XA @F(X) 9, (0) XA (). (4.6)
j=1

We show thatEU A.n 1S bounded below by Tah A, up to a contribution no greater than
constjaA|/U. Recall that , is the Hamiltonian with infinite repulsions. B, is the
projector onto the domain, letg; = Prg;,

N
Ev=2( X wo-¢oP+UY lewP)

J=1 {x.y}hlx—yl=1 XEA

N
>3 Y @ -aomP

J=1 {x,y}lx—yl=1

+ Y i@ -egmP- Y lewP)

{x.y}ZA xEA,yEA
lx—yl=1 lx—yl=1
N
>Trpha —2) D> lei@lle;Ol. (4.7)
j=lxeA,y¢A
lx—y|=1

By the Schwarz inequality, the last term is smaller than

N N 2
2( 3 Z|‘Pj(x)|2)l/2( > lej(y)lz)l/zsUSildem. (4.8)
X‘EA,)‘Wéi\ j=1 xleA,)l)¢i\ j=1
X—Yy|= X—y|=

We used (4.5) with distx, A) being respectively 0 and 1, in order to control the quantities
in both brackets.
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Recall that; denotes thg‘th eigenvalue of the Hamiltonial, ; that is, with infinite
repulsions. Let us introduce the projec®yronto the corresponding eigenstate. Then

[Al [Al
TrﬁhAZZEjTrﬁPjEZEjnj, (49)
j=1 j=1

where the:; satisfy 0 n; < 1, andzj nj = Tr p. By the bathtub principle [LL], we
obtain the lower bound

Trp

Trpha > ) ej. (4.10)
j=1

There remains to show that pris close toN. We have

Trj = ZZ"")/(X” Z#{x:dist(x,A)=n}<U2_d2d>2n

x¢A j=1 n=1

2d 2
|aA|sz (mhds 1)(U 2d) — 2(U)[9A. (4.11)

We bounded #} < 2¢("}971)|dA|. Sincee; < 4d, we obtain the proposition. O

5. Upper Bound

We establish now an upper bound for the sum of the firetgenvalues in a finite domain
A, for the case of infinite repulsion. The bound carries over to fIUI,tSInceEA N IS
increasing inU.

The strategy is to average, over a huge box. The “strength” of the averaged Hamil-
tonian depends on the number of bondsAinwhich is roughly 2|A| — [0A|. The
averaged Hamiltonian is, up to a factor, the hopping matrix in the huge box, and its
ground state energy is easy to compute in the thermodynamic limit. This can be com-
pared toE 5 x by concavity of the sum of lowest eigenvalues of self-adjoint operators.
The resultis

Proposition 5.1. The sum of the firg¥ eigenvalues of the Laplace operator in a domain
A with Dirichlet boundary conditions, satisfies the upper bound

ExN < |Ale(n) + |0A](2dn — e(n)).

Proof. Let L be a multiple of A|, andNL be such thatv; /L¢ = N/|A|. We con3|der
abox{1,..., L}¥. We introducet = 3(ey +ent1). LetRy, a = 1,. , L4d\, rep-
resent a translatlon possibly followed by an axis permutation. We define the averaged
Hamiltonian

) 1 Lid!
hpa = Tagl Z(hRuA - ??JlmA)- (5.1)

a=1
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Then

Lid
Sy, (hp.n) > Tagl Z Sny (hr,a — ElR,A)
a=1

— Sn(ha — £1y). (5.2)

Indeed, all summands in the above equation are equal, and the Hamilkigniai 1 5
has no more thav negative eigenvalues, and at leagt— |A| zero eigenvalues. The
RHS is equal tafs y — NE.

LetK; be the number of sites ifi that have neighborsim. We havgA| = 3% K;
and|oA| = Zizigl K;; and the number of bonds iis 3 Zizio iK;. Thenthe averaged
Hamiltonian is

- A
(hLvA)xy - 8|X yl=1+ (2d — 8)| d| Oxys (5.3)
with
1 X
I=gzi1{i~ (5.4)

LetK = sz 2d— ’K,, thent = |A| — K andK < |dA|. One easily checks that

[Al
4

JA]

hL’A = h{ L) + (2d:“{1 Ly — I’l{l ’’’’’ L}d) — €ﬁ:“{1 ..... Ly- (55)

Notice that all operators commute. In (5.2), the terms involvingancel, since
Sn, (g, 1j0) = N, andN, 2} = N. Now, asL — oo,

,,,,,

1
TasSn i ya) = e(). (5.6)
Therefore (5.2) implies

[Ale(n) + K (2dn — e(n)) = EA,N. (5.7)

6. Positive Electronic Temperature

This section considers the electronic free energy at positive temperature, for a fixed
configuration of classical particles. We will see that the inequalities satisfied by the
sums over lowest eigenvalues have an extension to free energies.
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6.1. Lower bound forlU = oco. We start withU — oco. Let Fo(B,pn) = —%

log Tr e #Ha  where the trace is taken in the Fock space of antisymmetric wave functions
onA, andHy = Hg ¢ is the second quantized form of the one-particle Hamiltonian
ha deflned by (2.1).

Proposition 6.1. For all finite A, one has the lower bound

FA(B, ) — IALF (B, ) = a(B, wWIdA],
wherea (g8, u) > O satisfiedimg_.oc a(B, n) > 0if0 < pu < 4d.

Proof. The fermionic free energ§a (8, 1) can be expressed in terms of the eigenvalues
of ha,

[A]
1
Fa(B, ) = -3 Z log(1 + e Flei=m). (6.1)
=1

In order to compare this with the corresponding infinite-volume expression (1.9), we
partition the Brillouin zong—r, 71¢ according to the level sets of the functign more
precisely, we define measurgs, 1 < j < |A|, by

|A]
dM](k)=W X[ F( |A|)<8(k)<8F(|A|)] (62)
Notice that dujk)y =1 and‘AI Z'Al du;k) = (2 )d Next we mtroduc&* that
are equal ta; averaged ovep ;:
e;f = /d,uj(k) &k- (6.3)

The ground state energy (1.3) of a densityj A | of electrons irZ? can then be written
as

N

1
e(N/|A|) = mze;ﬂ (6.4)

From the lower bound without a boundary term, we have

N N
Doei>) e (6.5)
j=1 j=1

forall N < |A|, and equality whemv = |A]|.

Actually, inequality (6.5) can be strengthened by introducing a term dependlng onthe
boundary ofA. In Theorem 1.1¢(n) can be taken to be increasingiffior n < 2 Also,
a(1—n) = a(n). Therefore there exists a functialk), witha(e) > 0for0 < ¢ < 2d,
a(4d — &) = —al(e), and

1
a(n) = W /Ek<EF dk a(er). (6.6)
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Next we define
¢ = /duj(k) (ex + Ttaten); (6.7)

then the following is stronger than (6.5) and holds true,

N N
Zq}Ze}. (6.8)
j=1 j=1

With a(e) chosen appropriately both sequences and (e;.) are increasing, and the
inequality above is an equality whe¥h = |A|. The sequencg;) is said to ‘majorize’

(e;.). We can apply an inequality due to Hardy, Littlewood and Pdlya (and independently
found by Karamata); see [Mit] p. 164. For any concave functipwe have

[Al [Al

D gle)) =Y g(e). (6.9)
j=1 j=1

(Conversely, if (6.9) holds for all concavg then (e;) majorizes(e;.).) We use this
inequality with

1
s@=-7 log(1 + e P, (6.10)
which is concave. We get
IN Al
F > 'y > A1
A (B, 1) ;g(ep ) f[_md dk g (ex + Tlaten)), (6.11)

where the last step is Jensen’s inequality. Then
1 1
A FABw = B > G / dk {g(ex + Pila(er) — glen)}.  (6.12)
In the limit 8 — oo, we have

e—n ife<pu
gle) = . (6.13)
0 ife > .

As aresult, for all 0< u < 4d we get a lower bound for largé that is uniform in the
limit 8 — oo.

One also gets a lower bound by using concavity @hat holds for all temperatures,
but that is not uniform irg:

1 1 ekt AT @ e ,
(L) f(ﬁ,u»W/dk/ de g ()

1
= 2oy / dk{ 28l ateng’ () — 0]

DA 1 /
= dk
Al @0 J., oy

x {g'e0) —g'(4d = e0) — 0@} (6.14)



270 J.K. Freericks, E.H. Lieb, D. Ueltschi

The integrand in the last line is strictly positivedifs; ) is small enough, and chosen to
vanish appropriately ag — 24. O

6.2. Lower bound with finité&/. We extend now the results of the previous section to
the case of finite repulsioli. As we noted in Sect. 4, whéih > 44 all eigenstates have
exponential decay, either in or in Q \ A. We show that the total free energydnis
equal to a term involving2 \ A only, plus a term involving\ only, up to a correction

of order|oA|/U.

Proposition 6.2.
F§ A(B. 1) = FA(B, ) + Fao\a(B, i — U) — 7(U)|9A|
with 5
_ (4d)
= (2 2yod it
y(U) = (2dU + 4d + 8d°)2°n(U) + U—2d’
andn(U) is defined in(4.1). Notice thatim y_, oo U7 (U) = 1642 + 84%24.
Proof. Let us introduce
3 {(pj(x) ifl<j<|Alandx € A, orif |A| < j <|Q]andx ¢ A
@j(x) =

0 otherwise.
(6.15)

We assume&V > |A| (otherwise, replaceA| by N in the next expressions, and ignore
the sums whose initial number is greater than the final one). Then

N [Al
V=X mO-G0PE Y e —e,mP
j=1 j=1 {x,y} {x,y}ZA
[x—yl=1 [x—yl=1
- Y @R U Y lewP)
xeA,yEA XEA
lx—yl=1

N
+ 3 (X ww-60P+ Y g0 -e;mP (6.16)

J=IAHL {xy) {x,y}ZAC
[x—yl=1 [x—y|=1
= Y I @R+U Y lgi@P).
x¢A,yeA XEA
[x—yl=1

We proceed as in Sect. 4 and define

[A]
ey = Y XAD)@T@)@; (XA G),
j=1
N
Pry =D Xac)@}O@;(MAAc)- (6.17)

J=IAl+1
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Then
N N
D eV > Trpha +Trpllhaa +U1=-2) " Y loj)lle;().  (6.18)
j=1 j=lxelA,y¢A

[x—y|=1

The inequality (4.10) is still valid, for botf andg’. Hence

N Trp [A|+1+Tr 5’ N
YUY+ Y @Gr-23 3 lg@lle;ml.  (6.19)
j=1 j=1 j=IAl+1 j=lxeA,y¢A

lx—y|=1

Heree;, |A| < j < || are the eigenvalues of the operahos 4 .

We define
Ady  gn loj ()% + ZleeA,ngi\ lpj () e ()] if1<j<I|Al
§; = x—yl= , ,
/ Ad+U) Y, cp loj 012+ ZZX'EA,}l’ﬁéi\ lo; ) ;] I JA] < j < Q.
X—=Yy|=
(6.20)
Then (6.19) takes the simpler form
N [A] N
Y= e, —sp+ Y, @ +U=8). (6.21)
j=1 j=1 J=IAl+1

The sequence in the RHS is not necessarily increasing, but one gets a lower bound by
rearranging the terms. Hence one can apply Hardy, Littlewood, Pélya inequality. Indeed,
it also works when the total sum over elements of the sequences are not equal, provided
the concave function is increasing — which is the case w(#h. One obtains

12| [A] o]
Yogeh =) glej—sp+ Y 8@ +U—5). (6.22)
j=1 j=1 J=IAI+1
We use nowg(e — 8) > g(e) — 3, and we find
1€2]
FS A (B.1) = FA(B. 1) + Foxa (B — U) = 5. (6.23)
j=1

The remaining effort consists in estimating the sund gfusing exponential decay
of eigenfunctionsy; either inA orin Q\ A. Retracing (4.11) and (4.8), we get

[A] 2
< 4d 2! A Al,
Za, 4d 2'n(W)IIA] + - 0A
j=1
12| 2
D 5 SWUHAD2ZW)PDQ@\ M) + - 19Al. (6.24)

J=IAl+1
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Notice that the last term can be written wjthA | instead offa (2 \ A)|, as can be seen
from (4.8). We us& (2 \ A)| < 2d|dA|, and we finally obtain

> 8j < (2dU +4d +84%) 2'n(U) [0 A| + oo 10Al (6.25)

j=1

6.3. Upper boundWe turn to the upper bound for the electronic free energy. We first
notice that the free energy is raised when one decorrelates the domain occupied by the
classical particles, from the empty domain. The following proposition applies to all finite
subsets 0%, and it also applies whef1 is a finited-dimensional torus.

Proposition 6.3. We have the upper bounds

o FY A(B. 1) < FA(B. 1) + Fana (B — U).
o FA(B, 1) < IALF(B, 1) + prim (AL IA1T + 2410 A).

Notice that the isoperimetric inequality implies that for all finitec Z¢, |A|dT*1 <
|0 A|. This does not hold, however, whenis e.g. a box with periodic boundary condi-
tions.

Proof. The Peierls inequality allows us to write

Tre PHGA—1N2) > Ze—lg(ij»[HgyA—MNQ]Wj)’ (6.26)
j

for any set of orthonormal functions/;} (in the Fock space of antisymmetric wave
functions on<2). We can choose thé¢; to be eigenfunctions off, and Ho\n —
decorrelatingh andQ \ A. In Q\ A, the free electrons experience a uniform potential
U, the energy levels are given by the spectrunhgf, plus U. This only shifts the
chemical potential, so that we obtain the first claim of the proposition.

Now we estimate (8, ). Let us introduce

& =(1—Bher 4241081 = fduj(k) ex + (2d — en) P]; (6.27)
thene; < éjy1, Z‘].A:'l ej = Z‘]A‘l ot and the upper bound for the ground state energy

can be cast in the form
N N
e <) e (6.28)
j=1 j=1
This allows us to summon again the Hardy, Littlewood, Pdlya inequality, and we get

|A|
Fao < 3 ([ duytofen + @1 - 0 2]). (6.29)

j=1
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The derivative ofg(e) satisfies

0<g'(e) < (6.30)

1+e P
(recall thate > 0). Since the measure; is concentrated on thogewhereeg; lies
betweensp(flT_ll) andg':(lljx_l)' we can bound (6.29) by

[A]
[Al 1 j =
< - oy J—
FABL0 < o /[_md dh 8(60) + 1 (;[SF(A) r(ih] + 2419A1).
(6.31)
We need a bound fO&'F(ﬁ) — EF( A ) since Ve, = 2(sinkq, ..., sinky), we

have||Ver| < 24/4d. Let us takek such thats, = 8F(|T|1), andék || k such that
Skt+sk = SF(ﬁ)- Then

er(thy) — er(URE) < 2V/d ||8K]l. (6.32)
If Skmin iS chosen so as to minimize the norm of sdéhwe have

1 _ 1 /
[A| (Zﬂ)d s,:(’W )<8k<8F(T7)

Combining this inequality with (6.32), we get
4 \/d N

dk > |8minll/]Sa1. (6.33)

20!

o
8F(|A|) 8F( A ) S |S |l/d| (634)
This leads to the upper bound of Proposition 6.8.
6.4. Proofs of the corollaries.
Proof of Corollary 1.3.Lete™ = —d + h ande™ = —d — h be the energies per site

of the all — and all + Ising configurations. A configuration can be specified by the
setA of — spins. LetB(A) be the set of bonds connectidgand \ A. Notice that
%|B(A)| < |0A] < |B(A)|. The partition function of the Ising model can be written as

Zia=Y e BlIAle+HI\AleT]g-28IB(A)| (6.35)
ACR
Now the upper bound foFQ A (B, ) implies that the partition function of the Falicov—
Kimball model is bounded below by
d-1
Zo > Z e—ﬂ[\A\f(ﬁ,u)+|Q\Alf(ﬁ,u—U)]e—ﬁCd,u\GA\e—ﬁCQ,M\QI T (6.36)
ACR

The last factor vanishes in the thermodynamic limit. One then makes the connection
with Ising by multiplyingZg, by

exp| BIR1(4Ca + 31 B 0 + £ 6.1 - D]) ],
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and by choosing the temperature to%(éd,ﬂﬁ, and the magnetic field to be

1
d.pn

(the magnetic field is negative). The other bound is similar, simply reg@laceby a /2d.
O

Proof of Corollary 1.4Because? was assigned periodic boundary conditions, we have

1
(Buywy)g = @(Z S W (6.38)
zeQ

It is not hard to check that for any configuratienspecified byA c €, one has

D Sueseyie = 191 — 19A]1x — yl1. (6.39)
zeQ
Then
8|
<8wx,wy>52 >1—|x— y|1<ﬁ>g- (6.40)

We need a bound for the last term. The fact is that typical configurations of classical

. aA| _ 2log2
particles cannot have too much boundé% is smaller thanr = EIGADE Indeed,
Y aco X [10A] > r@)]e a0
—BFY A (B.10)
ZACQe Pranbu
21Qla=BIALf (B.1)—B(KQU—=|AD f(B.1n—U) g—(2l0g 2| Q]
< — (6.41)
d-1 y d-1
e BIAIF(B.)—BULU=ADF(B.u—U) @=BCau(nclQ) @ g=FCy 19204
d—1
< 27\Q|eﬂ(Cd,,L+C,’,,M)IQIT'
Therefore
2log?2 ’ =1
Buuy)g > 1= oD |x — yly — 2711t o127 (6.42)

Ba(B, i)

The last term vanishes in the limit 7 Z<, and the term involvingx — y|; vanishes
wheng — oco. O

7. Conclusion

Our analysis of the Falicov—Kimball model away from half-filling allows some extrap-
olations. We expect segregation to survive at small temperature, when both the classical
particles and the electrons are described by the grand-canonical ensemble, at inverse
temperatures and with chemical potentialg. and e. Segregation is a manifestation

of coexistence between a phase with many classical particles and few electrons, and a
phase with many electrons and few classical particles. Itis therefore natural to conjecture
the following, ford > 2:
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A first order phase transition occurs at low temperature, when varying the chem-
ical potentials.

The transition from the chessboard state at half-filling for the itinerant and heavy
electrons (and larg®) to the segregated state is still not clear. A heuristic analysis
suggests that these states could coexist, hence there could be another first-order phast
transition. Alternate possibilities include mixtures between other periodic phases and
the empty or full lattice before the segregation sets in.

One interest of the Falicov—Kimball model is its possible relevance in understanding
the Hubbard model, a notoriously difficult task. See e.qg. [Lieb2] and [Tas2] for reviews
of rigorous results on the Hubbard model. The relationship between the Falicov—Kimball
model and the Hubbard model is like the one between the Ising and Heisenberg models
for magnetism. The former does not possess the continuous symmetry of the latter, and
therefore the approximation is a crude one. Still, the two models share many similarities;
forinstance, the Falicov—Kimball model displays long-range order of the chessboard type
at half-filling and at low temperature [KL], and the ground state of the Hubbard model
is a spin singlet [Lieb].

Ferromagnetism in the Hubbard model depends on the dimension, on the filling, and
on the geometry: it has been shown to occur on special lattices such as “line-graphs”
[MT, Tas, Mie, Tas2]. Does ferromagnetism take place in the Hubbard modét,dor
large repulsions and away from half-filling?

Returning to Falicov—Kimball, let us walk on the road that leads to Hubbard. We
consider theasymmetric Hubbard mod#tat describes spié electrons with hoppings
depending on the spins (this interpretation is more convenient than physical). Its Hamil-
tonian is

H, = — Z CITCyT —t Z CLCN +U annw. (7.0
x,y:lx—y|=1 x,y:lx—y|=1 X

Notice thatHy is the Falicov—Kimball model, whilé{; is the usual Hubbard model.
Although we did not prove it, it is rather clear that segregation still takes place for very
small t. Furthermore, the density of the phase with classical particles, in the ground
state, should still be exagtl — indeed, the electrons exert a sort of “pressure” that packs
the classical particles together, and the tendency of the latter to delocalize is not strong
enough to overcome this pressure. This is summarized in the following conjecture:

For t < tg, segregation occurs in the ground state, at lalgeand away from
half-filling, in the form of a coexistence between a phase of classical particles
with density 1, and a phase of electrons with smaller density.

This should also hold at positive temperature, although the density of the phase of
the classical particles will be reduced, due to the presence of some holes.

If we increase, assuming that segregation remains, we should reach a critical value
tc < 1 where the region of classical particles starts to grow. The density of the phase of
particles with smaller hoppings is now strictly less than 1. A major question is whether
segregation survives all the way to the point whereachs 1 — this would imply the
existence of a ferromagnetic phase in the Hubbard model. We note, however, that while
it is conceivable that there is a segregated (i.e., ferromagnetic) ground state At
it cannot be true thatveryground state (for equal number of up and down spins) is
segregated. This follows from the SU(2) symmetryifis a saturated ferromagnetic
ground state with & up electrons, we can construét = (S_)V W, which is also
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a ground state, wittv up andN down electrons. Howeve has the up and down
electrons inextricably mixed, which is the opposite of a segregated state. Indeed, the
SU(2) symmetry is restored precisely at t=1, and the ground states have at least the
degeneracy due to this symmetry.

The Hubbard model is a rich and complicated model that poses difficult challenges.
The Falicov—Kimball model can be of some help, for instance in checking scenarios that
should apply to both models. This discussion of ferromagnetism illustrates however that
the links between them are subtle.

A. Appendix

We derive in the sequel various expressions that are too intricate to appear in the main
body of this paper.

LemmaA.l
(a) ﬁ [ dklex — ep|~Y4 < 2.

(b) Assume that? < ﬁ%ﬁ;@d nY/4; then for all k such thatsy = ef,

2
di’ x [IK — k| < o] > 1S,0(2—)*
/E,MF [ <] > 18d(g )"

2 2
(©) e(n) > 123)'n™"7 /ISal7.
(o) V120 < 8452
(e) ||V”(hA F)ka | < 29d11/2.
(f) ”V(bk‘ h[(\‘bk) | < 32d7/2

(9) Assume thaltby||2/|0A| > n. Thenify < 1, ||v(bk”h”ﬁ£”|| < 2284192,

Proof of Lemma A.{a). SettingY = 2d — e — 221.22 cosk;, and making the change
of variablest = coskj, one gets

T
1
=2 dky - - - dk dkp————
/[_n,n]dl 2 d,/o 1|Y — 2 coskq|1/4

1

1
1
=2/ dkz - - - dk / d
[—m,w]d-1 2 ¢ -1 S\/TsZ|Y_2§|l/4
1 1 2/3, 11 o\ /3
1 e
ng—mdldkz dkd(z/o d§(1—52)3/4> (/_1d$'y 26[7%4)

1 1 2/3 3 1 1/3
< __ ~3/4 / ~3/4
2/[_7”{]“ dko dkd(Z/O de i ;)3/4) (2 | le] )

The integral over can be split into one running from 0 %) and one running fron%
. 1 3 .
to 1. For the first part we bou T S < 2% f’ while the bound for the second
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part can be chosen to héiﬁ Everything can now be computed explicitly, and
we find 2Y1232/3(2)4-1 < 227)?. O

Proof of Lemma A.1b). Let us introduce a map (¢) such that 1— %yz(é) = COSE;
precisely,

J2(1—cosE) if £ €0, ]
y() = , (A.1)
—/2(1—cost) if& e [—m 0]

The conditions; < e becomeS_?_, |y (k;)|? < er. The derivative ofy is

dy _ Ising|
dt¢ ~ /2(I—=cost)

We check now thalty (¢) — y (§)| > |£/ —£]%/4r. Letus assume that(&') > y (£).
Then

(A.2)

&) —y &) = E,dklsi—m”'>}/gd)»|sin)\| A3)
rETre =) et ~ 2, |
%«/
> / dAA] > I8 — E[2/4. (A.4)
T Jg

Then we can write

/ dk/X[lk/—k|<a]>/ dk/X[Ikg—ki|<%Vi]
&y <EF &y <EF d

d
> /dyl/...dyé X [Zly,-’lz <er| x[lv —vil < %].
i=1

One gets a lower bound by replacing the last characteristic function by the condition
d 2 32 . ;

Y1 ly — vil? < . Recall thatsp > an/", the assumption of the lemma

. . 2 .

implies that,/er > ;—; as a consequence, a lower bound is the volume of the sphere

of radius%. O

Proof of Lemma A.{c). By (3.16),

8d|S4| g+1

8 2
> 2t oo = T A9

The lower bound then follows from

32 54
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Proof of Lemma A.1d)—(g) Since

bl = > > ke, A7)

X€EIA ex+e¢A
e :x+e'¢A

we have

Bl -
<Vm) |8A| D D ilej —epee. (A8)

€A e,e

This is less than @4)2, and we obtain the bound (d).
We consider now|(hx — €)bx||?,

eikX[(hA _ g)bk](.x) — (2d _ 8) Z e*ik(f, _ Z e*ik(€+e/)
e':x+e' ¢ e:x+ecdA
e :xtete ¢A
= Yoo e ket (@2d — &) x [le] = 0] — x [lel = 1]).
e:x+ecdA,le|=0,1
e :xtete ¢A
(A.9)

In the last lineg is allowed to be 0. Let(e) = ((2d — &) x [le| = 0] — x [le| = 1]).
Then

2 ik(ete' —e —e'"
(s —ob])|* = > hlete=e"=Dg o)z (e”).
ex+ecdA,le|=0,1 ¢":x+e"€dA,|e”|=0,1
e ixtete ¢ e x+e+e" ¢
(A.10)

One computes now thd" component of the gradient; itinvolves atedz'ere —e;’ e’,”

that is smaller than 4; there are sums aee’”, with less than2d)? terms the sum
>, l&(e)| is bounded by 4, finally, the number of sites whelé 5 — )by differs from
0 is bounded by 2|3 A|. As a result, thei™ component of the gradient is bounded by
%(4d)5, and we obtain (e).

We estimate now the gradient @y, i by). One easily checks that

(i hab) = 1bel? =Y Y Y > ke (A
XA exx+eg A e':x+e'€dA e :x+e'+e"¢A
We can use the bound (d) for the gradient]bf||2. The gradient of the last term is less
than 324)3|d A |, so we can write
b

”V( k> hADK)

|0A]

Finally, one easily checks that

bi, haby) |2 dA bi, hab
Hv(k Azk)’ < (I |2) H (bk Ak)”

129 129 [OA]

+2((bk|,ah1;\|bk)> (HIZ:\HIZ) HVH'l;kAII'Z”{ (A.13)

Using (d) and (f), as well agy, habi)/1dA| < 2(2d)3, one gets (g). O

H < 8452 424472 < 3247/2. (A.12)
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