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A completely algebraic solution of the simple harmonic oscillator
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(Received 18 December 2019; accepted 21 July 2020)

We present a full algebraic derivation of the wavefunctions of a simple harmonic oscillator. This

derivation illustrates the abstract approach to the simple harmonic oscillator by completing the

derivation of the coordinate-space or momentum-space wavefunctions from the energy

eigenvectors. It is simple to incorporate into the undergraduate and graduate curricula. We provide

a summary of the history of operator-based methods as they are applied to the simple harmonic

oscillator. We present the derivation of the energy eigenvectors along the lines of the standard

approach that was first presented by Dirac in 1947 (and is modified slightly here in the spirit of the

Schr€odinger factorization method). We supplement it by employing the appropriate translation

operator to determine the coordinate-space and momentum-space wavefunctions algebraically,

without any derivatives. VC 2020 American Association of Physics Teachers.

https://doi.org/10.1119/10.0001702

I. INTRODUCTION

The Hamiltonian of the simple harmonic oscillator is

Ĥ ¼ p̂2

2m
þ 1

2
mx2

0x̂2; (1)

where p̂ and x̂ denote the momentum and position operators,
which satisfy the canonical commutation relation

x̂; p̂½ � ¼ x̂p̂ � p̂x̂ ¼ i�h (2)

(hats will be used on all operators throughout this work).
Here, we have the mass m and the frequency x0 of the oscil-
lator. Most textbooks solve this problem in two ways: (1)
first, one represents the momentum operator in coordinate
space via p̂ ¼ �i�hðd=dxÞ and solves the resulting differential
equation, finding the energy eigenvalues via the condition
that the solution be bounded as jxj ! 1 and (2) an abstract
operator method is employed to factorize the Hamiltonian
and is then used to determine the energy eigenvalues and a
representation-independent form of the eigenvectors. When
it comes time to determine the wavefunctions in the latter
case, one converts the lowering operator into the coordinate-
space representation, which yields a first-order differential
equation for the ground state. Then applying the raising
operators in the coordinate representation to the ground state
produces the excited state wavefunctions in coordinate
space; a similar approach can also be used in momentum
space. We want to clarify one way to interpret what a wave-
function is. In the coordinate representation, the basis vectors
are the eigenvectors of position given by jxi, which satisfy
x̂jxi ¼ xjxi. These eigenvectors are known to produce an
orthonormal basis set by the spectral theorem for essentially
self-adjoint operators. A coordinate-space wavefunction is
constructed by calculating the components of a quantum
state vector jwi along all of the basis vectors of the coordi-
nate representation, and can be thought of as the set
fhxjwi : for all xg. What is interesting about this observation
is that each component of the coordinate-space wavefunc-
tion, i.e., each element of the set fhxjwi : for all xg, is an
inner product of just one position eigenvector with the quan-
tum state vector. The inner product between any bra and any
ket is just a property of the bra and the ket as is well known

from the geometrical fact that it is equal to the product of the
length of each vector multiplied by the cosine of the angle
between them. This suggests that a “representation-
independent” derivation of wavefunctions might be possible;
indeed, this is achieved by using the translation operator to
represent the position eigenvector in terms of the position
eigenvector at the origin and additional operator manipula-
tions. We provide details below for the simple harmonic
oscillator. We believe that this should become part of the
standard treatment of the simple harmonic oscillator. We do
want to point out that both B€ohm1 and (the third edition of)
Merzbacher2 also showed how to compute wavefunctions in
a representation-independent fashion, but their approach
develops recurrence relations between the wavefunctions of
different energy eigenstates at the same position (and hence
is different from our approach). The key to our procedure
lies in employing the appropriate translation operators to
relate the components of a wavefunction to each other (same
eigenstate, different position); this then allows for the entire
wavefunction to be determined algebraically from its value
at one (spatial) point (which is ultimately determined by nor-
malization). While we do not elaborate further on this point
here, this methodology employing translation operators can
be used to find the wavefunctions of many other quantum-
mechanical potentials. Examples for particles in square-well
potentials can be found in Ref. 3.

Before jumping into the derivation, we briefly summarize
the Schr€odinger factorization method for determining the
energy eigenvalues and eigenstates of the simple harmonic
oscillator following the textbooks of Green4 and Ohanian5

because the method is not well known to many
(Schr€odinger’s original reference is also quite readable6).
We do so here to present the context for our slight change in
the standard algebraic derivation of the simple harmonic
oscillator eigenstates. We employ the Dirac notation for
states in the Hilbert space throughout this work.

While Schr€odinger’s discovery of the Schr€odinger equa-
tion is widely known today, his work from the 1940s on the
so-called factorization method is less familiar. This portion
of Schr€odinger’s work has been omitted from most quantum
textbooks with the exception of its application to the har-
monic oscillator, the simplest example of this technique. The
general factorization method may appear rather abstract, but
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it can be straightforwardly applied to an array of problems.
In fact, any problem that can be solved via Schr€odinger’s dif-
ferential equation can also be solved using the factorization
method. Details can be found in the above references.

The goal of the factorization method is to factorize the
Hamiltonian in the form

Ĥ ¼ Â
†
Â þ E (3)

and one can immediately verify that

Â ¼ 1ffiffiffiffiffiffi
2m
p ðp̂ � imx0x̂Þ and Â

† ¼ 1ffiffiffiffiffiffi
2m
p ðp̂ þ imx0x̂Þ

(4)

achieves this factorization for the simple harmonic oscillator
with E ¼ �hx=2. We chose this nonstandard notation because
it matches the notation for the ladder operator method of the
simple harmonic oscillator given in many early quantum text-
books. However, the method and notation for the algebraic
solution to the harmonic oscillator differ somewhat in today’s
texts. The abstract method was first introduced in the 1930
edition of Dirac’s textbook on quantum mechanics7 (first edi-
tion) and further developed in his 1947 edition8 (third edition);
a more complete history is developed below. The framework
for the operator method has remained unchanged, but a differ-
ent notation has since been universally adopted by quantum
textbooks. The i factors are moved from the coordinate to the
momentum, and we work with dimensionless â and â† rather
than the Schr€odinger operators. The dimensionless (Dirac)
ladder operators are then defined as

â† ¼
ffiffiffiffiffiffiffiffiffi
mx0

2�h

r
x̂ � i

p̂

mx0

� �
; â ¼

ffiffiffiffiffiffiffiffiffi
mx0

2�h

r
x̂ þ i

p̂

mx0

� �
:

(5)

These operators differ by a factor of 6i=
ffiffiffiffiffiffiffiffi
�hx0

p
from the cor-

responding Schr€odinger operators given in Eq. (4). We work
now with the modern Dirac form of these operators due to
their familiarity.

Our next task is to establish the eigenvectors and eigenval-
ues of the simple harmonic oscillator following the
Schr€odinger approach. This methodology is different from
Dirac’s 1947 approach, which relies too heavily on the
matrix mechanics approach in that it exploits the raising and
lowering operators to move up and down the spectrum. It is
more closely aligned with the approach of Ikenberry,9 which
employs instead the 1940 Schr€odinger notion of positivity as
the critical criterion for determining eigenstates after facto-
rizing a Hamiltonian. Here is how it is done.

The (Dirac) raising and lowering operators satisfy

â; â†
� �

¼ mx0

2�h

i

mx0

2 p̂; x̂½ � ¼ 1 (6)

and

Ĥ ¼ �hx0 â†â þ 1

2

� �
: (7)

Since â†â is a positive semidefinite operator, it satisfies

hwjâ†âjwi ¼ k âjwi k2 � 0 (8)

for any state vector jwi. Hence, we learn that the ground
state j0i of the simple harmonic oscillator requires

âj0i ¼ 0; (9)

and the ground-state energy is E0 ¼ �hx0=2.
We next find the relevant intertwining relationship: we

operate â† on the right side of Eq. (7) and discover that

Ĥâ† ¼ �hx0 â†â þ 1

2

� �
â† ¼ �hx0â† ââ† þ 1

2

� �
¼ â† Ĥ þ �hx0

� �
; (10)

where the last line follows by applying the commutation
relation of the Dirac operators. We then immediately find
that the eigenstates satisfy

jni ¼ â†ð Þnffiffiffiffi
n!
p j0i; (11)

with energies

En ¼ �hx0 nþ 1

2

� �
: (12)

This derivation repeatedly uses the intertwining relation to
determine the energy and the normalization. Finally, we
assume the ground state j0i is normalized from the beginning
(h0j0i ¼ 1). This derivation differs from the standard
approach, but we think it works better logically since it first
determines the ground state from the factorization and a pos-
itivity argument and then constructs the excited states
directly from the intertwining relation. Normalization then
follows as the last step.

Before developing the algebraic derivation of the wave-
function, we describe the historical background for the sim-
ple harmonic oscillator.

II. HISTORY OF THE SIMPLE HARMONIC

OSCILLATOR IN QUANTUM MECHANICS

Although much work has been done on the history of
quantum mechanics, it seems no one has attempted an in-
depth exploration of the harmonic oscillator. There is no
mention in standard quantum historical texts, including
Jammer,10 Taketani and Nagasaki’s11 three-volume work,
and even Mehra and Rechenberg’s12 six-volume set on the
history of quantum mechanics. In his discussion of transfor-
mation theory, Purrington13 does mention the introduction of
ladder operators for the harmonic oscillator in Born and
Jordan’s textbook.14 However, our interpretation of Born
and Jordan’s book differs from that of Purrington, as we read
the Born and Jordan text as working with Heisenberg matri-
ces of the raising and lowering operators. Thus, we do not
consider their approach an abstract operator formalism.
While the aforementioned texts expound on the evolution of
a variety of areas in quantum mechanics, none of them trace
the progression of the solutions of the harmonic oscillator.
One explanation for this might be a simple lack of interest in
the harmonic oscillator during the early development of
quantum theory. Most of the original publications that devel-
oped quantum mechanics in the period from 1925-30 were
primarily interested in determining the atomic spectra of
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elements other than hydrogen and in quantizing light. In
addition, the simple harmonic oscillator spectrum was deter-
mined in the first matrix mechanics papers by Heisenberg15

and Born and Jordan.16 Schr€odinger solved it in his second
paper,17 providing both the spectrum and the wavefunctions
(via a differential equations approach). So the harmonic
oscillator seems to have slipped through the cracks, and its
historical study remains underdeveloped. Starting from the
1920s, we seek here to provide an understanding of
the development of the quantum-mechanical solutions of the
simple harmonic oscillator. Note that from time to time we
will use the original notation employed in the original
articles. We try to make it clear when this is being done
below.

Heisenberg was the first to find the energies of the har-
monic oscillator in his 1925 paper15 that invented modern
quantum mechanics. His seminal paper relied on classical
equations of motion and replaced them with their matrix-
valued quantum counterparts (a strategy similar to the old
quantum mechanics method of Bohr-Sommerfeld quantiza-
tion). Using this matrix-valued equation of motion and the
canonical commutation relation, Heisenberg was able to find
the quantized energy levels. The first problem treated was
that of an anharmonic oscillator with a third-order perturba-
tion term. Heisenberg truncated his result to determine the
energies for the unperturbed harmonic oscillator

W ¼ �hx0 nþ 1

2

� �
: (13)

While Heisenberg’s article provided essentially no details
for how the calculation was done,18 he did compute the cor-
rect result. Born and Jordan published a paper16 shortly after
Heisenberg’s in which they provided the details of the
matrix-mechanics solution for the simple harmonic oscilla-
tor. The matrix mechanics methodology does contain many
elements of the operator method which Dirac later developed
in the first three editions of his textbook.7,8,19 Matrix
mechanics works by essentially determining the properties
of the position space matrix, defined in modern terms via

qmnðtÞ ¼ hmjeði=�hÞHtq̂eð�i=�hÞHtjni: (14)

One can see that the time-dependence of the matrix goes like
exp ½�iðEn � EmÞt=�h�. Substituting into the classical equa-
tion of motion for the simple harmonic oscillator yields the
constraint that En � Em ¼ 6�hx0. Hence, the q̂ matrix is tri-
diagonal, and the consecutive energy levels are separated in
steps of �hx0. Next, the positivity of the Hamiltonian is used
to show that there must exist some minimum energy level
equal to 1

2
�hx0. From this ladder of energies, they deduced

that the nth diagonal value of the Hamiltonian is given by
Heisenberg’s result in Eq. (13). The connection between
Born and Jordan’s paper and the ladder operator method is
further exhibited in Birtwistle’s textbook,20 which presents
diagrams in a ladder formation connecting the different
energy levels.

These matrix-mechanics papers failed to treat the eigen-
states of the harmonic oscillator since matrix mechanics has
no concept of an eigenfunction. It was not until Schr€odinger
introduced the wavefunction in 1926 that quantum papers
began to explicitly refer to the eigenstates of the harmonic
oscillator. In his paper,17 Schr€odinger not only introduced

the wavefunction but also developed the differential equation
method for treating the harmonic oscillator. Using his time-
independent wave equation for a harmonic potential

d2wnðqÞ
dq2

þ 2m

�h2
En �

1

2
mx2

0q2

� �
wnðqÞ ¼ 0; (15)

Schr€odinger found the energies of the harmonic oscillator as
well as its eigenstates, which he expressed (unnormalized) in
the coordinate-space representation as

wnðqÞ ¼ eð�mx0=2�h2Þq2

Hn q

ffiffiffiffiffiffi
x0

�h

r !
; (16)

where Hn denotes the Hermite polynomials. Schr€odinger
thus introduced the differential equation method now univer-
sally employed in all quantum textbooks, and his articulation
of the eigenstate enabled the development of the operator
method in early editions of Dirac’s textbook.7,8 Dirac, like
his contemporaries, discussed matrix mechanics in his 1930
textbook. Indeed, the relationship between matrix mechanics
and operator methods is quite close.

Before jumping into the development of the ladder opera-
tor method for the harmonic oscillator, we must mention the
appearance of bosonic creation and annihilation operators in
other areas of quantum theory. As noted earlier, a principal
concern of many early quantum papers was the quantization
of light. Consequently, Dirac,21 Jordan,22 and Fock23 all pub-
lished papers in the late 1920s and early 1930s which include
bosonic creation and annihilation operators. While at the
time it appears that they were unaware of the relation
between these operators and the harmonic oscillator, their
publications coincide with the origins of the ladder operator
method presented here. Since it was present in other areas of
quantum theory at the time, we can see then that the notion
of ladder operators was not unique to the early treatment of
the harmonic oscillator.

We also mention one other item which was of great inter-
est to the quantum pioneers—the theory of canonical trans-
formations and the formulation of quantum mechanics in
terms of action-angle variables. Here, Dirac led the way in
his first quantum paper24 on canonical quantization, where
he nearly constructed the raising and lowering operators
toward the end of the paper. He did note that the approach
works for the simple harmonic oscillator but provided no
details. Fritz London produced similar work in a 1926
paper,25 although the raising and lowering operators do not
explicitly appear in his work either.

The first work to formally define two operators which factor-
ize the Hamiltonian of the harmonic oscillator is Born and
Jordan’s 1930 textbook,14 which was completed a few months
before Dirac’s first edition.7 They write the Hamiltonian as

H ¼ 1

2l
p2 þ a

2
q2; (17)

where l represents mass and a what they call the quasi-
elastic constant. Born and Jordan introduced two matrices

b ¼ Cðp� 2pi�0lqÞ and b† ¼ Cðpþ 2pi�0lqÞ;
(18)

where C ¼ 1=
ffiffiffiffiffiffiffiffiffiffiffiffi
2h�0l
p

. They noted that bb† � b†b ¼ 1 and
rewrote the Hamiltonian as
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H ¼ h�0bb† � h�0

2
¼ h�0b†bþ h�0

2
: (19)

Born and Jordan’s definition of b and b†, and subsequent
rewriting of the Hamiltonian appears nearly identical to the
modern operator method (which instead uses â and â†).
Although they referred to them as “Stufenmatrizen,” Born
and Jordan did not seem to use b and b† as ladder operators,
which act directly on eigenstates. We then do not consider
this approach to be the initial formulation of the abstract
operator method. Born and Jordan apparently wrote their
1930 textbook as a last-ditch-effort to save matrix mechanics
from oblivion. This did not happen, and unfortunately the
textbook has been nearly forgotten (in part because it was
never translated into English).

The operator method for the simple harmonic oscillator
then takes its first form in the 1930 edition7 of Dirac’s text-
book, although his discussion was quite similar to Born and
Jordan’s and inherits much of the matrix-mechanics argu-
ment. Dirac worked with a dimensionless abstract
Hamiltonian first. To find the eigenvalues of

Ĥ ¼ p̂2 þ q̂2; (20)

Dirac defined an operator Â as follows (note Â is not a ladder
operator here):

Â ¼ ðp̂ þ iq̂Þðp̂ � iq̂Þ: (21)

A simple calculation showed Â to be essentially the
Hamiltonian for the harmonic oscillator. He defined the
eigenstates of Â to satisfy the standard eigenvalue equation

ÂjA0i ¼ A0jA0i (22)

and then proceeded through a matrix-mechanics argument to
show that hA0jðp̂ þ iq̂ÞjA00i equals zero unless A00 ¼ A0 � 2.
Using this and the non-negativity of p̂2 þ q̂2, Dirac found
that the eigenvalues of Â are all the even non-negative inte-
gers: 0; 2; 4; 6;… and so on. From his earlier assertion that

hA0jðp̂ þ iq̂ÞjA00i ¼ dA00;A0�2; (23)

we can then see how ðp̂ þ iq̂Þ acts as a ladder operator on
jA00i to raise it to the next highest eigenstate of Â. Dirac’s
expression given in Eq. (21) then showed that Â is analogous
to the ladder operator formulation of the Hamiltonian. What
Dirac’s initial treatment lacked was a formulation of the
eigenstate in terms of operators acting on the ground state
(which we conjecture is because he adopted a matrix-
mechanics methodology to find the spectrum and matrix-
mechanics does not construct eigenstates). Dirac alluded to
the ladder operators by introducing their matrix representation

0 0 0 0 0 � � �
1 0 0 0 0 � � �
0 1 0 0 0 � � �
0 0 1 0 0 � � �
0 0 0 1 0 � � �
..
. ..

. ..
. ..

. ..
. ..

.

0
BBBBBBBBBB@

1
CCCCCCCCCCA

and

0 1 0 0 0 � � �
0 0 1 0 0 � � �
0 0 0 1 0 � � �
0 0 0 0 1 � � �
0 0 0 0 0 � � �
..
. ..

. ..
. ..

. ..
. ..

.

0
BBBBBBBBBB@

1
CCCCCCCCCCA
;

(24)

which he denoted via the unconventional notation eix and
e�ix, respectively. He noted that we can write the momen-
tum and position operators as

p̂ ¼
ffiffiffiffiffiffiffi
mx
2

r
Ĵ

1=2
eix þ e�ixĴ

1=2
� �

and

q̂ ¼
ffiffiffiffiffiffiffiffiffiffi

1

2mx

r
�iĴ

1=2
eix þ ie�ixĴ

1=2
� �

; (25)

where Ĵ was denoted the “action variable” and given by

Ĵ ¼ Ĥ
x
� 1

2
�hI: (26)

With Eqs. (24) and (26), we can calculate that

Ĵ
1=2

eix ¼
ffiffiffi
�h
p

â† and e�ixĴ
1=2 ¼

ffiffiffi
�h
p

â; (27)

where â and â† are the ladder operators commonly used to
treat the harmonic oscillator today (but not introduced by
Dirac in 1930). Furthermore, with Eq. (27) above, we can
also see that the form of Eq. (25) is almost identical to the
way the momentum and position operators are defined today
in terms of the ladder operators. Finally, Dirac’s 1930 text-
book seems to be the first to give the wavefunctions of the
harmonic oscillator as the overlap of the energy eigenstates
with position space, which he wrote as an inner product
ðqjnÞ, where jnÞ denoted the nth eigenstate (this was written
before Dirac notation was introduced). Dirac used differen-
tial equations to find the wavefunctions, which he expressed
with a finite power series in q (using the standard Frobenius
series solution method). While the operator method in his
1930 textbook contains remarkable similarities to that in
modern textbooks, there remain a few differences to point
out. Dirac did not formally define the ladder operators here
but instead used expressions of the form ðp̂6iq̂Þ as ladder
operators—indeed, his approach presaged the Schr€odinger
factorization method since it is focused on factorizing the
Hamiltonian. We also note that Dirac included the factor of i
on the position operator in Eqs. (21) and (25) above, which
differs from the standard notation today, but again agrees
with the Schr€odinger factorization method. However, it is
also fair to say that Dirac’s approach is quite similar to the
matrix mechanics methodology of Born and Jordan. Dirac
used the Heisenberg matrices to determine the eigenvalues
in a standard matrix mechanics approach. His main differ-
ence is that he was the first to work with the operators by
themselves instead of solely with the matrices (which is how
we interpret the Born and Jordan methodology).

Other textbooks in the 1920s and 1930s do not treat the
simple harmonic oscillator by operator methods but usually
do so by both matrix mechanics and by wave mechanics.
This includes texts like Birtwistle (1928),20 Condon and
Morse (1929),26 Born and Jordan (1930),14 Mott (1930),27

Sommerfeld (1930),28 Fock (1932),29 Frenkel (1932),30

Pauli (1933),31 Frenkel (1934),32 Pauling and Wilson
(1935),33 Jordan (1936),34 Kemble (1937),35 and Dushman
(1938).36 The one exception from the 1930s appears to be
Rojansky’s 1938 text,37 which provides a treatment nearly
identical to Dirac’s 1930 method. But Rojansky makes it
clear that he is working with operators (as his derivation is in
a chapter entitled “The Symbolic Method”), and he strictly
works solely with the operators, never introducing the
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Heisenberg matrices in this section of his book (although he
does discuss matrix mechanics elsewhere). While he has all
of the elements available to construct the eigenvector
abstractly in terms of the raising operators, he fails to do so.
He does, however, employ the intertwining relationship in
the derivation, making it closer to the way we proceeded
here.

Intriguingly, Schr€odinger6 developed his factorization
method in 1940–1941. The first problem he tackled was the
simple harmonic oscillator. In this work, he showed that one
can evaluate the equation âj0i ¼ 0 for the ground state (in
coordinate space) and found a first-order differential equa-
tion for the ground-state wavefunction. He then simply stated
that one can extend the same method to higher eigenstates
but provided no details. Hence, Schr€odinger was, perhaps
aptly, the first to determine all the eigenvectors (and the
associated wavefunctions) for the simple harmonic oscillator
via the operator-based approach.

The next development of the operator method for the sim-
ple harmonic oscillator appears in the 1947 edition of
Dirac’s textbook.8 This gives the origin of the modern
approach adopted by all subsequent textbooks and provides
the modern abstract derivation. Dirac explicitly defines
dimensionless operators

g ¼
ffiffiffiffiffiffiffiffiffiffiffiffi

1

2m�hx

r
ðp̂ þ imxq̂Þ

and �g ¼
ffiffiffiffiffiffiffiffiffiffiffiffi

1

2m�hx

r
ðp̂ � imxq̂Þ; (28)

which he uses to establish this modern operator method. He
checks that

�gg� g�g ¼ 1 (29)

and shows that g and �g act as ladder operators which raise
and lower the energy of the harmonic oscillator in steps of
�hx, respectively. Dirac demonstrates that g�g is a positive
semi-definite operator and uses this to show that the ground
state energy of the harmonic oscillator equals 1

2
�hx. He

expresses the nth energy eigenstate as gnj0i and represents
the wavefunctions by

hq0jgnj0i; (30)

which he finds using differential equations. While Dirac’s
method here is identical to the modern operator method used
today, his notation differs slightly. He uses g and �g to denote
the ladder operators and again includes the factor of i on the
position operator. It is fair to say that it is here, in 1947, that
today’s popular abstract formulation of the simple harmonic
oscillator is born.

The remainder of the harmonic oscillator’s development
consists mainly of notational changes. Leonard Schiff intro-
duced, but did not significantly use, the â and â† notation in
his 1949 quantum textbook.38 We suspect the reason for the
use of this letter to denote the ladder operators may lie in the
second volume of Sin-Itiro Tomonaga’s 1953 quantum text-
book.39 Tomonaga uses As to denote the complex time-
dependent amplitude of a De Broglie wave packet

Wðx; y; z; tÞ ¼
X1
s¼1

AsðtÞ/ðx; y; zÞ: (31)

He then gives the real and imaginary parts of As by

ReAs ¼
1

2
ðAs þ A�s Þ ¼

ffiffiffi
p
p

Qs

and ImAs ¼
1

2i
ðAs � A�s Þ ¼

ffiffiffi
p
p

Ps; (32)

which bears a striking resemblance to the way many popular
textbooks relate p̂ and q̂ to the ladder operators. If our suspi-
cions hold true, the use of a would then stand for
“amplitude.” The origin of this notation would then lie in the
early work on quantizing light by the fathers of modern
quantum mechanics. Born and Jordan’s textbook14 also
seems to support this notion, as they explicitly referred to b
and b† as “komplexe Amplituden.” One should also note that
Frenkel’s 1934 book32 discussed many of these same themes
too when quantizing light, including the same modern nota-
tion as used by Schiff fifteen years later. Frenkel’s approach
was deeply entrenched in matrix mechanics, as was much of
the work at that time—our interpretation is that the objects
he worked with were in fact matrices and not abstract opera-
tors in their full generality—but this conclusion is not crystal
clear. Interestingly, Frenkel also employed the a; a† notation
when quantizing light.

Through the 1950s and 1960s, we see textbooks use a
combination of differential equations and Dirac’s 1947 oper-
ator method to treat the harmonic oscillator. While every
book’s operator treatment follows Dirac’s, we see a swathe
of different notations. We find this in Bohm,40 Landau and
Lifshitz,41 Messiah,42 Dicke and Wittke,43 Merzbacher,2

Powell and Crasemann,44 Harris and Loeb,45 Park,46

Gottfried,47 Green,4 Ziman,48 and Fl€ugge.49 From the late
1960s to date, all quantum textbooks use the same notation
as Schiff, Messiah, and Park. These include Saxon,50

Baym,51 Gasiorowicz,52 Cohen-Tannoudji,53 and Winter54 in
addition to virtually all subsequent textbooks. We could not
figure out why all textbooks adopted a standardized notation
after 1970, but the earliest instance of the modern approach
with the modern notation seems to be in Messiah’s 1959
textbook.42

In summary, we see the operator method for the simple
harmonic oscillator to have developed as follows. The matrix
mechanics approach of Heisenberg15 and Born and Jordan16

already has about one third of the abstract method worked
out. That approach uses the positivity of the Hamiltonian and
a ladder structure of the matrix elements to determine the
energy eigenvalues. The ladder operation structure was even
illustrated graphically by Birtwistle.20 Next, Born and
Jordan’s 1930 textbook14 was the first to represent the ladder
operators in the matrix mechanics formalism, but Dirac’s
1930 textbook7 initiated the abstract operator approach with
the factorization of the Hamiltonian in terms of operators,
even though it later employed the matrix mechanics method-
ology to determine the eigenvalues. Rojansky37 performed
the first completely abstract derivation free from matrix
mechanics. Though he was on the precipice of also determin-
ing the eigenvectors, he did not. That had to wait for Fock
space23 and Schr€odinger’s use of it in his factorization
method6 before one could construct the eigenvectors
abstractly (but the derivation still required going to coordi-
nate space to determine the wavefunctions). Finally, Dirac
finished the modern derivation in his 1947 text.8 The opera-
tor method was immediately adopted by nearly all other
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textbooks, although the notation did not become the standard
one we are accustomed to until the early 1970s.

III. ALGEBRAIC DERIVATION OF THE

WAVEFUNCTIONS OF THE SIMPLE HARMONIC

OSCILLATOR

We begin the algebraic derivation of the wavefunctions by
simply noting that the components are the inner products of
the energy eigenvectors jni with the position jxi and momen-
tum jpi eigenvectors, or wnðxÞ ¼ hxjni and /nðpÞ ¼ hpjni.
Our strategy is to employ operator methods without resorting
to specific representations of the operators, so we do not
need to introduce the coordinate-space representation of the
momentum operator in terms of a derivative with respect to
the position. Instead, we follow the representation-
independent operator-based approach initiated by Pauli55

and independently by Dirac56 in 1926.
We assume that an eigenstate exists for position at the ori-

gin and is denoted jx ¼ 0i. It satisfies x̂jx ¼ 0i ¼ 0, and we
relate the component hx ¼ 0jni to all other components of
the coordinate-space wavefunction. Note that we do not need
to worry about the normalization of the state for anything
that we do here, so we do not discuss this issue further (as its
treatment is well covered in all quantum texts).

We will employ the Hadamard lemma, which is given by

eÂ B̂e�Â ¼ B̂ þ
X1
m¼1

1

m!
Â; Â;…; Â; B̂

� �
� � �

� �
m;

h
(33)

where the m subscript on the commutators denotes that there
are m nested commutators; this lemma is also called the
Baker-Hausdorff lemma and the braiding relation. But as far
as we can tell, it was first discovered by Campbell in 1897
[see Eq. (19) of the historical discussion of the Baker-
Campbell-Hausdorff relation57] and hence should be called
the Campbell lemma. Despite significant research, we were
unable to determine where the Hadamard lemma name
comes from.

Before we jump into the derivation of position and
momentum operators, we note that the Hadamard lemma can
be employed to establish some additional identities. Any
function f ðB̂Þ of an operator B̂ that can be written as a power
series in B̂ satisfies

eÂ f ðB̂Þe�Â ¼ eÂ
X1
m¼0

fmB̂
m

e�Â ¼
X1
m¼0

fm eÂ B̂e�Â
	 
m

¼ f ðeÂ B̂e�ÂÞ

¼ f

�
B̂ þ

X1
m¼1

1

m!

�
Â;
�
Â;…; Â; B̂

� �
� � �
�

m

�
:

(34)

This is an exact relation. Choosing f ðB̂Þ ¼ exp ðB̂Þ then
yields an important identity after some simple re-arranging
of terms:

eÂeB̂ ¼ exp

�
B̂ þ

X1
m¼1

1

m!

�
Â;
�
Â;…; Â; B̂

� �
� � �
�

m

�
eÂ :

(35)

This relation is often called the braiding relation. When
½Â; B̂� commutes with Â and B̂, we then have the exponential
re-ordering identity

eÂeB̂ ¼ eB̂eÂe Â;B̂½ �; (36)

which includes a correction term when the exponential oper-
ators are re-ordered.

To start working with the translation operator, we use the
Hadamard lemma in Eq. (33), which allows us to evaluate
the similarity transformation of the operator x̂ as follows
(with x0 being a real number):

eði=�hÞx0p̂ x̂eð�i=�hÞx0p̂ ¼ x̂ þ i

�h
x0 p̂; x̂½ � � x2

0

2�h2
p̂; p̂; x̂½ �½ � þ � � �

¼ x̂ þ x0: (37)

The final equality occurs because ½p̂; x̂� ¼ �i�h is a number,
not an operator, and subsequently it commutes with all addi-
tional multiple commutators of p̂. This truncates the
Hadamard lemma expression after the first commutator.
Next, we multiply both sides of Eq. (37) by exp ð�ix0p̂=�hÞ
from the left to yield

x̂eð�i=�hÞx0p̂ ¼ eð�i=�hÞx0p̂ðx̂ þ x0Þ: (38)

With this identity, we establish the eigenvector jx0i, which
satisfies x̂jx0i ¼ x0jx0i (here, x0 is a number and a label for
the Dirac ket)

jx0i ¼ eð�i=�hÞx0p̂ jx ¼ 0i: (39)

Operating x̂ onto the state jx0i yields

x̂jx0i ¼ x̂eð�i=�hÞx0p̂ jx ¼ 0i ¼ eð�i=�hÞx0p̂ðx̂ þ x0Þjx ¼ 0i
¼ x0jx0i: (40)

The last equality follows from x̂jx ¼ 0i ¼ 0, the fact that
numbers always commute with operators and the definition
of jx0i. Hence, Eqs. (39) and (40) establish that jx0i is an
eigenstate of x̂ with eigenvalue x0.

Similarly, one can also derive that the momentum eigen-
states satisfy

jp0i ¼ eði=�hÞp0 x̂ jp ¼ 0i; (41)

where p0 is both a number and the label for the ket. Note the
different sign in the exponent of the operator for the position
and momentum eigenvectors.

We are almost ready to compute the coordinate-space
wavefunction using purely algebraic methods. The deriva-
tion requires one more identity: the Baker-Campbell-
Hausdorff (BCH) identity.58–60 The BCH identity is
“halfway” between the two sides of the exponential re-
ordering identity, which rewrites the exponential of the sum
of the operators in terms of the two exponential operators
and a correction factor—here, the BCH formula takes a
product of exponential of operators and rewrites it as the
exponential of a new operator. Unlike the Hadamard lemma
and its application to exponential re-ordering, the BCH iden-
tity does not have any simple explicit formula for its result in
the general case (although one can write the result in closed
form).61,62 Fortunately for us, we need it only for the case

981 Am. J. Phys., Vol. 88, No. 11, November 2020 M. Rushka and J. K. Freericks 981



where ½Â; B̂� commutes with Â and B̂—in this case, the BCH
result greatly simplifies and is given by

eÂeB̂ ¼ eÂþB̂þ1
2

Â;B̂½ � and eB̂eÂ ¼ eÂþB̂�1
2

Â;B̂½ �: (42)

The BCH identity is a well-known and well-established
result, so we do not provide its derivation here; in this form,
it is often called the Weyl identity.

We now have all the technical tools needed to determine
the coordinate-space wavefunction wnðxÞ ¼ hxjni. Using the
position eigenstates and the energy eigenstates, we immedi-
ately find that

wnðxÞ ¼ hxjni ¼
1ffiffiffiffi
n!
p hx ¼ 0jeði=�hÞxp̂ â†ð Þnjn ¼ 0i: (43)

The operators p̂ and â† can be easily identified by their hats.
Note that one can think of this representation in the follow-
ing way: at the origin, the wavefunction is wnð0Þ ¼ hx ¼
0jni (which is a number that will ultimately be fixed by nor-
malization) and the translation operator then shifts the wave-
function from the origin to the position x and tells us how the
wavefunction value changes in the process. This allows us to
compute the wavefunction everywhere by shifting the value
of the coordinate. The algebraic computation then simply
evaluates the operator expression.

The strategy to determine the wavefunction algebraically
now takes a few additional steps. First, we replace the
momentum operator in the exponent of the translation opera-
tor by its expression in terms of the ladder operators

p̂ ¼ �i

ffiffiffiffiffiffiffiffiffiffiffiffi
m�hx0

2

r
â � â†ð Þ: (44)

The wavefunction becomes

wnðxÞ¼
1ffiffiffiffi
n!
p hx ¼ 0je

ffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ðmx0=2�hÞ
p

xðâ�â†Þ â†ð Þnjn ¼ 0i: (45)

Then we use the first BCH relation in Eq. (42) with Â / â†

and B̂ / â to factorize the translation operator into a factor
involving the raising operator on the left and the lowering
operator on the right. This is given by

wnðxÞ ¼
1ffiffiffiffi
n!
p e�ðmx0=4Þ�hx2hx ¼ 0je�

ffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ðmx0=2�hÞ
p

xâ†

� e
ffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ðmx0=2�hÞ
p

xâ â†ð Þnjn ¼ 0i: (46)

Third, we take the relation in Eq. (34) and multiply by
exp ðÂÞ on the right to create the general functional braiding
relation and apply it to the matrix element for the wavefunc-
tion with f ðB̂Þ ¼ ðâ†Þn. This yields

wnðxÞ¼
1ffiffiffiffi
n!
p e�ðmx0=4�hÞx2hx ¼ 0je�

ffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ðmx0=2�hÞ
p

xâ†

� â†þ
ffiffiffiffiffiffiffiffiffi
mx0

2�h

r
x

 !n

e
ffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ðmx0=2�hÞ
p

xâ jn ¼ 0i: (47)

The rightmost exponential factor gives 1 when it operates on
the state because âjn ¼ 0i ¼ 0. Thus, we have

wnðxÞ ¼
1ffiffiffiffi
n!
p e�ðmx0=4�hÞx2hx ¼ 0je�

ffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ðmx0=2�hÞ
p

xâ†

� â† þ
ffiffiffiffiffiffiffiffiffi
mx0

2�h

r
x

 !n

jn ¼ 0i: (48)

Next, we introduce a new exponential factor with the oppo-
site sign of the exponent multiplying the ground-state wave-
function, because it equals 1 when operating against the
state:

wnðxÞ ¼
1ffiffiffiffi
n!
p e�ðmx0=4�hÞx2hx ¼ 0je�

ffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ðmx0=2�hÞ
p

xâ†

� â† þ
ffiffiffiffiffiffiffiffiffi
mx0

2�h

r
x

 !n

e�
ffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ðmx0=2�hÞ
p

xâ jn ¼ 0i:

(49)

The general functional braiding relation is used again to
bring the rightmost exponential factor to the left through the
â† term raised to the nth power

wnðxÞ ¼
1ffiffiffiffi
n!
p e�ðmx0=4�hÞx2hx ¼ 0je�

ffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ðmx0=2�hÞ
p

xâ†

� e�
ffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ðmx0=2�hÞ
p

xâ â† þ
ffiffiffiffiffiffiffiffiffiffiffiffi
2mx0

�h

r
x

 !n

jn ¼ 0i:

(50)

Now, we use the BCH relation again to combine the two
exponentials into one which increases the Gaussian exponent
by a factor of two,

wnðxÞ ¼
1ffiffiffiffi
n!
p e�ðmx0=2�hÞx2hx ¼ 0je�

ffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ðmx0=2�hÞ
p

xðâ†þâÞ

� â† þ
ffiffiffiffiffiffiffiffiffiffiffiffi
2mx0

�h

r
x

 !n

jn ¼ 0i: (51)

Finally, we use the fact that the sum of the raising and lower-
ing operator is proportional to the position operator

x̂ ¼
ffiffiffiffiffiffiffiffiffiffiffiffi

�h

2mx0

r
â þ â†ð Þ: (52)

We replace the sum of the raising and lowering operator in
the exponent and let it act on the state to the left, where it
gives 1, because the position operator annihilates the state
hx ¼ 0j. The wavefunction has now become

wnðxÞ¼
1ffiffiffiffi
n!
p e�ðmx0=2�hÞx2hx ¼ 0j â† þ

ffiffiffiffiffiffiffiffiffiffiffiffi
2mx0

�h

r
x

 !n

jn ¼ 0i:

(53)

We are almost done. We have achieved a reduction of the
problem into a Gaussian function multiplied by a matrix ele-
ment which is an nth degree polynomial in x. All that is left
is evaluating the polynomial. To do this, we first introduce a
definition of the polynomial, which we will then show is a
so-called Hermite polynomial Hn. We write the wavefunc-
tion as
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wnðxÞ ¼
1ffiffiffiffiffiffiffiffiffi
n!2n
p Hn

ffiffiffiffiffiffiffiffiffi
mx0

�h

r
x

 !
e�ðmx0=2�hÞx2hx ¼ 0jn ¼ 0i;

(54)

which defines the Hermite polynomial via

Hn

ffiffiffiffiffiffiffiffiffi
mx0

�h

r
x

 !
¼

ffiffiffiffiffi
2n
p

hx ¼ 0jn ¼ 0i

� hx ¼ 0j â† þ
ffiffiffiffiffiffiffiffiffiffiffiffi
2mx0

�h

r
x

 !n

jn ¼ 0i:

(55)

Note that the number hx ¼ 0jn ¼ 0i is the normalization con-
stant for the ground-state wavefunction; we will discuss how
to determine it below. This definition allows us to immedi-
ately determine the first two polynomials H0 and H1.
Choosing n¼ 0 in Eq. (55) immediately yields H0 ¼ 1.
Choosing n¼ 1, produces

H1

ffiffiffiffiffiffiffiffiffi
mx0

�h

r
x

 !
¼ 2

ffiffiffiffiffiffiffiffiffi
mx0

�h

r
xþ

ffiffiffi
2
p

hx ¼ 0jn ¼ 0i
� hx ¼ 0jâ†jn ¼ 0i: (56)

The second term vanishes for the following reason: we first
note that â†jn ¼ 0i ¼ ðâ† þ âÞjn ¼ 0i, because the lowering
operator annihilates the ground state. Hence â†jn ¼ 0i
/ x̂jn ¼ 0i. But hx ¼ 0jx̂ ¼ 0, so this state vanishes when it
acts against the position eigenstate.

For the remainder of the Hermite polynomials, we work
out a two-term recurrence relation. We focus on the nontriv-
ial matrix element, and factorize the terms as follows:

hx ¼ 0j â† þ
ffiffiffiffiffiffiffiffiffiffiffiffi
2mx0

�h

r
x

 !
â† þ

ffiffiffiffiffiffiffiffiffiffiffiffi
2mx0

�h

r
x

 !n�1

jn ¼ 0i:

(57)

The constant term in the first factor can be removed from
the matrix element and it multiplies the matrix element with
n – 1 operator factors (which is proportional to Hn�1). For
the remaining term proportional to â†, we replace the opera-
tor by â† ! â† þ â � â. The term proportional to â† þ â is
proportional to x̂, and so it annihilates when it operates on
the left against the hx ¼ 0j state. The remaining â operator
can be replaced by the commutator of the n – 1 power of the
â† term, because âjn ¼ 0i ¼ 0. Generalizing the standard
result ½â; ðâ†Þn� ¼ nðâ†Þn�1

, the remaining commutator is
straightforward to evaluate via

â; â† þ
ffiffiffiffiffiffiffiffiffiffiffiffi
2mx0

�h

r
x

 !n�1
2
4

3
5

¼ ðn� 1Þ â† þ
ffiffiffiffiffiffiffiffiffiffiffiffi
2mx0

�h

r
x

 !n�2

: (58)

We can assemble all of these results to find the recurrence
relation for the Hermite polynomials, which becomes

Hn

ffiffiffiffiffiffiffiffiffi
mx0

�h

r
x

 !
¼ 2

ffiffiffiffiffiffiffiffiffi
mx0

�h

r
xHn�1

ffiffiffiffiffiffiffiffiffi
mx0

�h

r
x

 !

� 2ðn� 1ÞHn�2

ffiffiffiffiffiffiffiffiffi
mx0

�h

r
x

 !
: (59)

This recurrence relation, which is of the form HnðzÞ
¼ 2zHn�1ðzÞ � 2ðn� 1ÞHn�2ðzÞ, is the standard Hermite
polynomial recurrence relation when H0ðzÞ ¼ 1 and H1ðzÞ
¼ 2z, as we have here.

We have now established that the simple-harmonic-oscil-
lator wavefunction satisfies

wnðxÞ ¼
1ffiffiffiffiffiffiffiffiffi
n!2n
p Hn

ffiffiffiffiffiffiffiffiffi
mx0

�h

r
x

 !
e�ðmx0=2�hÞx2hx ¼ 0jn ¼ 0i:

(60)

The last task in front of us is to find the normalization factor.
This is computed for the ground state via

jhx ¼ 0jn ¼ 0ij2
ð1
�1

dxe�mx0=�hx2 ¼ 1 (61)

or

hx ¼ 0jn ¼ 0i ¼ mx0

p�h

� �1
4

: (62)

We have finally produced the wavefunction for the simple
harmonic oscillator using algebraic methods. Note that cal-
culus is only needed for the last normalization step.

We end this section with a brief sketch of how one uses
similar methods to determine the momentum-space wave-
functions. To start, the momentum “translation” operator is
given by exp ðipx̂=�hÞ, and the momentum eigenstates satisfy

jpi ¼ eði=�hÞpx̂ jp ¼ 0i: (63)

The wavefunction is given by /nðpÞ ¼ ðiÞnhpjni; we added
an additional global phase to ensure we reproduce the stan-
dard results—you will see why this is important below. The
wavefunction can be expressed in terms of the operators as

/nðpÞ ¼
ðiÞnffiffiffiffi

n!
p hp ¼ 0jeð�i=�hÞpx̂ â†ð Þnjn ¼ 0i: (64)

The remainder of the calculations proceeds as before for the
coordinate-space wavefunction. We start by replacing the x̂
operator by the sum of raising and lowering operators; in this
case, the coefficients of the raising and lowering operators
are now purely imaginary. We use BCH to factorize the
exponential into a raising operator on the left and lowering
operator on the right. Then we use the braiding identity to
move the exponential through the ðâ†Þn terms and let it oper-
ate on the ground state, where it produces 1. The shift term
added to the raising operator is now purely imaginary. Next,
we introduce a factor of 1 at the ground state, which is the
same exponential operator of the lowering operator but with
the sign of the exponent changed. Then we use the braiding
identity to bring it back to the left, BCH to place the opera-
tors in one exponential, and evaluate the momentum operator
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on the momentum eigenstate. At this stage, the wavefunction
has become

/nðpÞ ¼
ðiÞnffiffiffiffi

n!
p e�p2=2�hx0m

� hp ¼ 0j â† � i

ffiffiffi
2
p

pffiffiffiffiffiffiffiffiffiffiffiffi
�hx0m
p

 !n

jn ¼ 0i: (65)

Note the additional factors of i and the replacement offfiffiffiffiffiffiffiffiffiffiffiffiffiffi
mx0=�h

p
x by p=

ffiffiffiffiffiffiffiffiffiffiffiffi
�hx0m
p

. The Hermite polynomial now
needs to be defined via

Hn
pffiffiffiffiffiffiffiffiffiffiffiffi

�hx0m
p
� �

¼
ffiffiffiffiffi
2n
p

in

hp ¼ 0jn ¼ 0i

� hp ¼ 0j â† � i

ffiffiffi
2
p

pffiffiffiffiffiffiffiffiffiffiffiffi
�hx0m
p

 !n

jn ¼ 0i:

(66)

Starting with H0 ¼ 1 and H1 ¼ 2p=
ffiffiffiffiffiffiffiffiffiffiffiffi
�hx0m
p

, we find the
same Hermite polynomials as we found before, but now with
z ¼ p=

ffiffiffiffiffiffiffiffiffiffiffiffi
�hx0m
p

. The rest of the calculation is similar to the
coordinate space calculation. The normalization factor is
found by a simple integral. One can see that this procedure
will lead to the momentum-space wavefunction, which
finally satisfies

/nðpÞ ¼
1

ðp�hx0mÞ
1
4

1ffiffiffiffiffiffiffiffiffi
n!2n
p Hn

pffiffiffiffiffiffiffiffiffiffiffiffi
�hx0m
p
� �

e�p2=2�hx0m:

(67)

Aside from some different constants, the coordinate-space
and momentum-space wavefunctions have identical func-
tional forms. This is expected from the outset, because the
Hamiltonian is quadratic in both momentum and position.
Hence, the wavefunctions must be isomorphic.

This ends our algebraic derivation of the wavefunctions of
the simple harmonic oscillator. Note that it used only the
commutator ½x̂; p̂� ¼ i�h and the existence of eigenstates of
position at the origin and of the ground state of the simple
harmonic oscillator. We hope that you will try employing it
the next time you teach a quantum mechanics class. If you
do, we recommend having the students work out the
momentum-dependent wavefunctions as a homework prob-
lem after being shown the derivation of the coordinate-space
wavefunctions.

IV. CONCLUSION

The simple harmonic oscillator is generally viewed as one
of the most important problems in quantum mechanics. The
operator-based solution of the energy eigenvalues and eigen-
states (along with the abstract methodology used to evaluate
matrix elements) is often the highlight of a quantum-
mechanics course. In this work, we tweaked the derivation
of the eigenvalues and eigenvectors to put them in a more
standard approach motivated by the Schr€odinger factoriza-
tion methods instead of Dirac’s 1947 derivation. In addition,
we extended the operator-based method to also allow for an
abstract derivation of the wavefunctions in coordinate and
position space. This approach employed the translation

operator to shift the wavefunction from the origin and com-
pute the change of its value. It employs simple operator iden-
tities (the Hadamard lemma and Baker-Campbell-Hausdorff
identity when ½Â; B̂� commutes with Â and B̂) and hence it is
easy to understand and follow even for undergraduates in an
introductory course. In addition, we explored the history
behind the operator method for the simple harmonic oscilla-
tor. Our findings are that this history is much richer than sim-
ply “Didn’t Dirac do that?” Indeed, we discovered that one-
third of the argument can already be found in the matrix
mechanics works of Heisenberg and Born and Jordan. We
argue that Dirac’s original 1930 treatment is much closer to
the matrix mechanics approach and that it actually was
Rojansky in 1938 who made the derivation a completely
abstract operator argument. Even Schr€odinger had a hand in
this, being the first to use the abstract operators to construct
eigenvectors and coordinate-space wavefunctions in 1940-
1941. Dirac then finished the methodology in 1947.

We hope that our completion of this work here will be
adopted by others teaching quantum mechanics, as we feel it
is yet another beautiful demonstration of the elegance of the
abstract operator approach. Now the entire simple harmonic
oscillator problem can be solved algebraically!
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