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Theoretical models of spins coupled to bosons provide a simple setting for studying a broad range of important
phenomena in many-body physics, from virtually mediated interactions to decoherence and thermalization. In
many atomic, molecular, and optical systems, such models also underlie the most successful attempts to engineer
strong, long-ranged interactions for the purpose of entanglement generation. Especially when the coupling
between the spins and bosons is strong, such that it cannot be treated perturbatively, the properties of such
models are extremely challenging to calculate theoretically. Here, exact analytical expressions for nonequilibrium
spin-spin correlation functions are derived for a specific model of spins coupled to bosons. The spatial structure
of the coupling between spins and bosons is completely arbitrary, and thus the solution can be applied to systems
in any number of dimensions. The explicit and nonperturbative inclusion of the bosons enables the study of
entanglement generation (in the form of spin squeezing) even when the bosons are driven strongly and near
resonantly, and thus provides a quantitative view of the breakdown of adiabatic elimination that inevitably occurs
as one pushes towards the fastest entanglement generation possible. The solution also helps elucidate the effect
of finite temperature on spin squeezing. The model considered is relevant to a variety of atomic, molecular, and
optical systems, such as atoms in cavities or trapped ions. As an explicit example, the results are used to quantify
phonon effects in trapped ion quantum simulators, which are expected to become increasingly important as these

experiments push towards larger numbers of ions.
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I. INTRODUCTION

Spin-spin interactions play a crucial role in the generation
of entanglement for applications in quantum information and
metrology [1]. In atomic, molecular, and optical (AMO) sys-
tems, intrinsic spin-spin couplings are often extremely weak,
and generating entanglement much faster than decoherence
time scales remains an important and challenging task. One
strategy to realize strong, long-range spin couplings, which
is routinely employed in both trapped-ion systems and cavity
QED, is to mediate them via a collection of auxiliary bosonic
degrees of freedom (e.g., phonons in the case of trapped
ions [2] and photons in cavity QED [3]). If these bosonic
modes are far off resonance and the temperature is sufficiently
low, they are only virtually occupied and can be (pertur-
batively) adiabatically eliminated [4]. This procedure yields
approximate spin-only models that are generally easier to
treat theoretically and often more desirable experimentally. For
example, if w is the characteristic energy input needed to create
a boson and g is the characteristic coupling strength between
the spins and bosons, spin-spin interactions of strength ~g?/w
can be generated (see Fig. 1). However, the limit in which this
procedure is quantitatively valid (w > g) is directly at odds
with the limit in which the spin dynamics is fastest (large
g2/w). In order to overcome intrinsic time-scale limitations,
experiments are often forced to operate in parameter regimes
where perturbative adiabatic elimination is not quantitatively
justified, and a simple spin-only picture is questionable.

More generally, coupled spin-boson models play a central
role in our understanding of quantum systems in contact
with an environment, and have been studied extensively
in both the condensed-matter and AMO communities for
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decades. Even in the case of a single spin coupled to many
noninteracting bosons [S] or many spins coupled to a single
bosonic mode [6,7], remarkably rich and complex behavior
emerges. The general problem of many spins coupled to
many bosons has very few analytically tractable limits and
is extremely difficult to study numerically, especially out of
equilibrium and in more than one spatial dimension. As such,
exact solutions, even of the simplest nontrivial models, can
play an important role in extending our understanding of these
intricate coupled quantum systems.

Here we provide an exact solution for the far-from-
equilibrium dynamics of a collection of spins (with § = 1/2)
coupled uniaxially to a collection of noninteracting bosonic
modes (see Fig. 1). The solution is valid for arbitrary spatial
structure of the bosonic modes, and therefore applies to
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FIG. 1. (a) Schematic of the model, with spins coupled (at
characteristic coupling strength g) to a collection of noninteracting
bosonic modes (at characteristic energy w). When the phonons are
far-off-resonance, @ > g, one can generally derive an approximate
spin-only description of the system, which has direct spin-spin
couplings of order ~g?/w.
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systems in any number of spatial dimensions. To a high
degree of approximation, this model describes the dynamics
of trapped-ion crystals when they are perturbed by a spin-
dependent force [8]. When the coupled spin-phonon system
is driven far off (phonon) resonance, the phonons can be
adiabatically eliminated and the dynamics is governed by
an Ising Hamiltonian acting only on the spins. Several
experimental groups have exploited this result to engineer
spin-entangled states of trapped ions [9]. However, as system
sizes increase, it is crucial to characterize and understand the
discrepancies from this idealized situation that arise from finite
population of the phonons, either due to their nonzero initial
temperature or due to deviations from the far-off-resonance
limit. As a demonstration of its utility, the solution is used
to calculate the spin squeezing generated dynamically by
initializing the system in a product state of the spin and phonon
degrees of freedom that is far from equilibrium. The solution
yields expressions that are efficient to evaluate numerically,
enabling the calculation of dynamics for most experimentally
achievable system sizes (N < 10° spins and phonons).

The organization of the paper is as follows. In Sec. II we
present the model and review its realization with trapped ions
in a simple context. In Sec. Il A we explain the formalism
used to derive the exact results for this system. Details for how
to explicitly calculate correlation functions are presented in
Sec. III B and numerical results for spin squeezing follow in
Sec. IV. In Sec. V we discuss several interesting directions for
future research.

II. THE MODEL AND ITS REALIZATION WITH IONS

The model we solve consists of a collection of N,
bosonic modes coupled uniaxially to N spins. The spin-boson
couplings can be time dependent, and it is useful to break
the Hamiltonian up into static and time-varying parts as
H(t) = Ho + V(¢) [10], with

Ny Ny

V=33

j=1 a=1

[g4(Dal, + g% (1)) (1)

Here &j, (a,) creates (annihilates) a boson in a particular mode
o, and 6} are the (r = x,y,z) Pauli spin matrices for the
Jjth spin. The boson energies w, in Hy are arbitrary, as are
the coupling constants g‘j?‘(t) in V(t) [the overbar on g‘]’f(t)
denotes complex conjugation]. A coupling to longitudinal
fields ~) ; h j&; could also be included in Hj, but such a
term can be removed by working in a suitably rotating frame,
and so it is ignored from the outset. Also, note that terms
coupling to spin directions other than z are not included and
in general prohibit an exact solution.

For time-independent couplings (or, alternatively, at fixed
t), the eigenstates of the above Hamiltonian are product states
between all spins and suitably displaced vacuum states of the
bosonic modes, and hence equilibrium properties of the model
are essentially classical. However, we are concerned with the
response of the system when driven out of equilibrium; the
ensuing relaxation dynamics is highly nontrivial, generically
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being accompanied by entanglement growth between the spins
and bosons. If the couplings g7 are independent of time and
if the interactions are weak (g;‘ < wy), then V can be treated
perturbatively. For a system initialized in the boson vacuum,
the bosons will only be populated virtually in the dynamics,
which can therefore be described by an effective time-
independent spin-only Hamiltonian. For example, working to
second order in V, one obtains

. gogy
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Even at this level of approximation, the spin dynamics is
nontrivial, and exact time-dependent correlation functions
were only recently obtained for general coupling constants
Jjx [11-13]. If the Jj; do not depend on space, then Eq. (2) re-
duces to the single-axis-twisting model [ 14], which is a special
case of the more general Lipkin-Meshkov-Glick model [15]. In
this case, the analysis is greatly simplified because the square
of the total spin becomes a good quantum number, and the
model can be solved in terms of collective spin variables [6].

Before solving for the time dependence of correlation
functions induced by H(¢), recall that Eq. (1) appears naturally
in the description of various AMO systems. For example,
in ion traps the spin is realized by some internal structure
of an ionized atom and the bosons are excitations of the
vibrational modes of the crystalized ions (phonons). In cavity
QED, where identical [16] or closely related [17] models can
be realized, the spins are two-level neutral atoms and the
bosons are photons in long-lived cavity modes. In the context
of trapped ions, the model can emerge in several different
ways [8], the conceptually simplest of which is through the
application of a spin-dependent optical force to a crystal
of ions [18-20] (though see Refs. [21,22] for a common
alternative realization). For example, in the spirit of Ref. [23],
the ions can be driven by two lasers with difference frequency
n and relative wave vector k., as in Fig. 2(a). Each ion is
assumed to possess two long-lived hyperfine states labeled |1)
and || ); they will represent the spin degree of freedom. If the
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FIG. 2. Realization of Eq. (1) with trapped ions. (a) Ions driven
transversely via stimulated Raman transitions. The bosonic modes are
realized as the normal modes of oscillation of the crystal around its
equilibrium configuration (here shown as a one-dimensional chain).
(b) Simplified level diagram illustrating the essential ingredients for
generating spin-phonon couplings in trapped ions. Here, €2 denotes
the strength of the coupling between the states |1),|]) and the
optically excited state |e) (figure not drawn to scale).
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energy splitting between these two states is A, then the ion
Hamiltonian in the absence of driving is

M N,
H" =" wlala, + Z 3)
a=1 j=1

For simplicity, we assume that the crystal possesses a direction
along which a single set of decoupled normal modes oscillate,
the z direction, and that k. points along this direction; the
index « in Eq. (3) enumerates this set of modes. We also
assume that the laser couples both spin states to a single
optically excited state |e), and choose the laser frequency
so that the detunings from the optical transition are equal
in magnitude and opposite in sign (£A /2) for the two spin
states [see Fig. 2(b)]. If the single-photon Rabi frequency €2
(assumed to be the same for both the |1),[] ) <> |e) transitions)
is small compared to the single-photon detuning A /2, the
electronic excited state can be adiabatically eliminated, leaving
behind an ac Stark shift for each spin state that oscillates
in time at the difference frequency p© and in space at the
difference wave vector k.. Combined with a rotating-wave
approximation (i.e., ignoring all terms with optical-frequency
time dependences) and a frame transformation to remove the
energy splitting A, adiabatic elimination of |e) yields

Ny N,
Z wpdla, +Q Z cos(kiZ; — ut)oi.  (4)

j=1
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Here Q2 = 49.5 /A is the characteristic strength of the spin-
dependent ac Stark shift experienced by the states |1) and || ),
and k) = |ki|. The position operator along the z direction
for the jth ion, denoted by Z;, can be expanded in terms
of creation and annihilation operators for the normal modes
of the crystal as ke2; =), nabj-‘ (Ezl +a,). Here, bjf is
the orthogonal normal-mode transformation matrix and 1, =
kiein/h/2mw, (restoring h temporarily) parametrizes how
small the characteristic ion displacements in the ground state
of the mode « are compared to the length scale & el over which
the applied spin-dependent potential changes appreciably. In
the Lamb-Dicke limit, n, < 1 for all o, and working to lowest
order in 14, Eq. (4) becomes

b
ion ~ At A
driven(t) ~ 2 : Walyd,,

N Ny
+ Qsin(ut) Z Z 5;nab?(al +a,), &)

j=1 a=1

which is Eq. (1) with g;‘(t) = g‘}‘(t) =Q sin(ut)nab‘j’.‘. Having
motivated the general form of the Hamiltonian in Eq. (1),
we now proceed to compute correlation functions evolving
under it. With the formal solution in hand, however, we will
eventually return to the context of trapped ions and Eq. (5)
when discussing the application of our results to computing
spin squeezing in Sec. I'V.

III. SOLUTION FOR CORRELATION FUNCTIONS

The following section includes technical derivations that
are not essential for following most of the discussion in
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Sec. IV; readers wishing to skip these details can proceed
directly to that section. Because V(¢) in Eq. (1) is explicitly
time dependent, the time-evolution operator corresponding
to H(t) must be written as a time-ordered product, which
complicates the calculation of observables. The first step in
obtaining closed forms for correlation functions, therefore,
is to obtain an explicit form of the time-evolution operator
that does not require time ordering. It is well known (see
Refs. [24,25]) that this can be accomplished via appropriate
factorizations of the time-evolution operator. However, in the
interest of maintaining a self-contained solution of the model,
this procedure is briefly reviewed in Sec. III A. With an explicit
form of the time-evolution operator in hand, we then move on
to our main formal results in Sec. III B, obtaining closed-form
expressions for spin-spin correlation functions.

A. Explicit form for the time-evolution operator

The time-evolution operator satisfies the equation of motion
i0U(t,ty) /0t = H(t)U(t,tp) with respect to the full Hamil-
tonian H(z) defined in Eq. (1), and can be written as a
time-ordered product,

U(t,tg) = 7, exp (—i / dt H(r)), (6)

with 7; the time-ordering operator. The first step in rewriting
the time-evolution operator without the need for time ordering
is to move to the interaction picture with respect to Hp.
Defining the perturbation in the interaction picture

V](t t()) — eiHo(tftn)v(t)gfi'}'fg(tfto)

Ne M
=2 8ilg5 e al + g e 4, ],
=1 a=1
(7N
we can write U(t,ty) = e Tot=0)1 4, (¢ 1,), with
t
Up(t, 1) = T, exp (—i [ dt Vl(r,to)). ®)
fo

Here Hy(t — ty) is the product of the unperturbed Hamiltonian
‘Ho and the time difference ¢ — #y; the latter should not be
confused as an argument of o, which is manifestly time
independent.

The next step follows the textbook problem of driven
harmonic oscillators [26,27]. Defining the operator

W(t,to)z/ dt Vi(t,tp), 9

)

which satisfies dW(t,10)/dt = V,(1,1o), we further factorize
Uy (t,10) = e VDY (1), with

Ut 1) = VU (1, 10). (10)

The benefit of this factorization becomes immediately clear
upon differentiating U(t,t)) with respect to t. We take the
derivative with the help of the equality

deiW(t,tg) _ ( d

V(. 10)+4V1(t,10)] 11
dt d ne

A=0
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which can be verified by Taylor expanding both sides.
Crucially, the commutator of W(t,,ty) with V;(#1,%y) depends
only on the operators &;, and hence commutes with both W
and V; at all other times,

W(t3,10),[W(t2,10), Vi (11,10)]] = O, (12)
WVi(t3,10),IW(t2,10), Vi (t1,10)]] = 0. (13)

As an immediate consequence of Egs. (12) and (13), one can
make the replacement

VAV (110)] i W(10) fik Vi (1.10) LA DV(E.10). Vi (1.10)1/2
in Eq. (11), evaluate the right-hand side, and thereby obtain

d - 1 ~
27U 10) = SIV(E.10), Vi (1, 10)JU 2. 1o). (14)

Because Eqs. (12) and (13) hold for all times, Eq. (14) can be
integrated without regard for time ordering, yielding /(t,1y) =
exp{ft:) dt[W(z,t),V(t,1)]/2}. The full time-evolution op-
erator can now be written as

Z/{(t,t()) — e—iH()(t—to)e—iW(t,to)

1
X exp (% / dt[W(t,to),VI(r,to)]>. (15)
fo
At this point we have reduced the evaluation of a time-ordered
product to the evaluation of the product of three different time-
evolution terms, each generated by an operator that commutes
with itself at different times [but note that, in general, the
order of the three exponential factors in Eq. (15) must be
maintained]. It turns out that for the choice of Hamiltonian in
Eq. (1), only the first and second factors do not commute with
each other and need to maintain their relative ordering.
The operator W(t, 1) can be written explicitly as

N N
Witto) =iy Y [A%t.t)al — A4(t.10)a, )67, (16)
j=1 a=1
with
t
A%(1.10) = —if dt g(z)e' . (17)
fo

Taking the commutator in the third factor of Eq. (15) and
integrating yields

U(t,19) =expl—iHo(t — to)] exp[—iWV(1,10)]
N
X exp ( —iy. Sjk(t,to)a;akz), (18)

k=1

with

No .
Sjk(t,to)zlmZ/ dr/ dt’
a=1"%0 fo

8 (gf}‘(f')gl?(f) + &/ (tHgj(x)
2

) e (19)

AZ A

Note that we have utilized [a/?,a,f] = 0 to write the Ising
coefficients in an explicitly symmetric form, so Sjx = ;.

PHYSICAL REVIEW A 93, 013415 (2016)

B. Calculating time-dependent expectation values
of spin operators

To simplify the notation in what follows, we set #p = 0 and
suppress its appearance, in which case the time-dependent
expectation value of an operator O is given by O(t) =
(WO|Z/{T(I)(’A)L{(I)|1#0), with |{) the initial wave function at
t = 0 and the evolution operator given in Eq. (18). We will only
consider expectation values of spin operators; because they
commute with the bosonic Hamiltonian Hj, the boson-only
part of the evolution operator always cancels out, leaving

O@t) = (Y()|Oy (1)),

N
W) = e Vexp | =i Y Sp®6767 | o). (20)
Jok=1

The results that follow can easily be worked out for arbitrary
product states between all of the degrees of freedom (spin
and boson). However, in order to simplify the discussion we
present results only for initial states where all spins initially
point along the x axis,

Wo) =272 3" o) @+ @ loar) ® len) @ -+ ® log)-

2n

The bosons are taken to be in a product state between
the different bosonic modes, but we allow the state of any
particular mode, |¢,), to be arbitrary. While Eq. (21) may
seem restrictive, it is a natural choice for the generation of
spin squeezing, as will be made clear in Sec. IV.

To characterize the spin dynamics of the system, we
compute a number of time-dependent expectation values of
products of spin operators. Defining spin raising (+) and
lowering (—) operators fr]#E =67+ iéjy)/Z for each spin j,
we compute

(62) = (W) 62 1y (1)) , 22)
(6267 = (W) 6267 1y (1)), (23)
(6a8) = (w6587 1y (1)), (24)

with a,b = & and m # n. Note that all nontrivial expectation
values of one or two spin operators can be obtained as linear
combinations of those in Eqgs. (22)—(24) (correlation functions
involving only the 6; are independent of time, as [H(#),6] =
0).

In order to calculate these expectation values, we make
a few observations about Eq. (20). First, the final factor of
the time-evolution operator, which involves only the Ising
spin operators, can be further factorized into a product of
exponentials (instead of an exponential of a sum of terms),
because each term in the exponent commutes with every other
term in the exponent. Second, we can factorize the exponential
of W(t) into factors that have fixed « (but still sum over j),
because those operators also commute with each other. Each
one of these factors that commutes with the operator O can be
moved from the right, through @, and then cancels against an
inverse term on the left coming from the Hermitian conjugate
of the time-evolution operator.
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Using the identity

ez)»ama,:l:e i

6y 6,:l:e:l:21)\, (25)
valid for [%.63] = [A,

eiW(Z‘ZO)()\‘je_iW([‘ZO)

&m ] = 0, together with

No
W10 exp (:':22 Affl(t)a AZ(Z‘)@J)
a=1
x e—iW(t,tg)ﬁri:
No
=exp | T2 | [An0a) — A5 0a,]
a=1
N
=Y Im[AL(AYD)]65 | |6, (26)
j#m

which follow from standard operator identities, we can
simplify the expectation values of the operator averages that
we are calculating. After some additional algebra, and defining
the displacement operators D, (%) = exp(¥al — va,) and
modified spin-spin couplings

No
mn(t) - mn(t) + Imz Aﬁ (I)Aﬁ(t) (27)

the final results are as follows:

N’b
1‘[<wa|DT [2a45,0)]l¢a) Hcos[48m,<z>] (28)
a 1 Jj#Em

e
(o167) = 5 1 @l Dl [2a45,0)] )

a=1

N
x sin[4S,, (0] [ cosl4S,;(01. (29
j#Em,.n
1 Ny
ZH (@al DL[2a A% (1) + 2bA%(1)] 190a)
N
x [ cosl4aS,,;(t) + 4bS,;(1)). (30)
j#m.n

From Eq. (17) we see that Im[Aij (t)A2(¢)] = 0, and therefore
Spn(t) = Spn(t), whenever g (1)g2(12) = g2(11)g2 (t2). This
situation is realized for the normal modes of ions in linear
Paul traps, and also for the axial modes of Penning traps
(though not the in-plane modes) [28]. There, g‘j’f (t) = gj‘(t) =
Q sin(ut)n, bf}‘, since the normal-mode transformation matrix
bf can always be chosen to be real.

C. Evaluation of the boson matrix elements
A boson matrix element of the form ((pa|l5 (19)|(p0,) can
easily be evaluated for an arbitrary state |@) = > oy % 1),
where |n), = f( T)”|O)a are normalized Fock states
of the oth mode. Writing the displacement operator as
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Dy (9) = e 1912000 =D straightforward algebra leads to

n+p n+qﬁpﬁq v (l’l + q)'(n + P)

p! qvnvelﬂl /2

(Pal Da()ga) = Y

n,p,q=0
(31)

The complete boson matrix elements in Eqs. (28)—(30) follow
by taking the product of Eq. (31) over all of the A, modes
labeled by «. Expectation values such as Eq. (31) can easily
be generalized to deal with finite-temperature states of the
bosonic modes. For example, in what follows we consider a
situation where all bosonic modes are thermally populated at
an inverse temperature 8, such that the initial boson density

matrix is 0(8) = &), p«(B), With

ZuB) Y Inadnal e P, (32)
ny=0
> 1
Zy(py =) et =

ne=0

Pa(B) =

Ty (33)

Expectation values of the form (¢a|l5a(z9a)|<pa) appearing
in Egs. (28)—(30) should be replaced with Z,(8,9,) =
Tr[,oo,(,B)Da(ﬁa)]. Inserting Eq. (32) into this trace and
utilizing Eq. (31), straightforward algebra leads to

Da(B.0s) = exp [—3[0,1* coth(Bwy /2)]. (34)

IV. SPIN SQUEEZING

It is also possible to obtain closed-form expressions for
higher-order (n-spin) versions of the two-spin correlation
functions derived above. However, already at the level of
two-spin correlation functions, we can learn a great deal
about the time evolution of the system, and the nature of the
entanglement that develops. For example, from the correlation
functions in Egs. (28)—(30), we can compute the variance of
the spin distribution, which enables us to characterize spin
squeezing [14,29]. Spin squeezing is just one of many mea-
sures of entanglement in a many-body system, which has the
virtue of quantifying the potential enhancement in precision
obtainable in Ramsey spectroscopy (as compared to the case
of unentangled spins) [30]. Moreover, it establishes a lower
bound on the depth of entanglement, i.e., the minimum number
of simultaneously entangled particles in the system [31].

If the bosonic modes are initially cooled to a vacuum state,
driven weakly so that they can be adiabatically eliminated,
and if the resulting effective spin-spin coupling strength J
is independent of the spatial distance between the spins, the
dynamics is governed by the single-axis- tw1sting Hamiltonian
Hsat = 4JS SZ, where S =(1/2) Z [14]. In this model,
spin squeezing is generated by first polanzmg the collective
spin vector along the x axis, and then letting it evolve under
Hat- Makmg a mean-field approximation, Hg, ~ 8J (8 )S —
47J(S.)?, the dynamics can be understood as a precession about
the z axis in a direction determined by the mean z component
of the spin; the initial spin state has quantum fluctuations above
and below the equator and therefore this dynamics causes it to
get sheared and elongated, as in Fig. 3. Uncertainty along one
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FIG. 3. Illustration of an experimental protocol employed to
generate spin squeezing. Spins are forced into a nonequilibrium state
polarized along the x axis. The Hamiltonian then acts for some period
of time, causing squeezing of the initially Gaussian spin state, after
which the minimal variance of the spin distribution is mapped onto
the z axis and measured. The coordinate system shown corresponds
to that used in Eq. (35).

axis is reduced (squeezed), while uncertainty in an orthogonal
direction is increased.

The extent of squeezing along a particular direction in the
vz plane can be quantified by the parameter

ASy
0) = N2 ——, 35
£(0) STRY (35)

where §, = S, cos@—}—S'y sinf and ASy = ((33)—(3‘3)2)1/2.
The spin-squeezing parameter is then defined by minimiz-
ing the standard deviation, ASmm = ming ASy, such that
£ = ming £(0) = N./*ASmin/|(S:)]. Straightforward algebra
enables the optimal angle to be expressed explicitly in terms
of spin-spin correlation functions [29],

0 = %arctan (M) (36)

A. Connection to trapped ions

Equations (28)—(30) are very general, enabling a complete
description of spin-spin correlations in a variety of different
physical systems, but they cannot be further simplified or eval-
uated without choosing explicit forms for the boson spectrum
w, and spin-boson couplings g7 (7). In the remainder of Sec. IV
we compute the squeezing induced by the Hamiltonian in
Eq. (5) using parameters relevant for ions in a linear Paul
trap, though many of the qualitative features discussed below
are insensitive to the detailed trap geometry and would be
similar for ions in a Penning trap if the axial modes were
being driven [23]. Specifically, we examine the dynamics of 20
ions, and assume that the wave-vector difference of the driving
lasers, ky, points along one of the two transverse principal
axes of the trap. In this configuration, the spins only couple
to normal modes oscillating along a single spatial direction
and therefore the number of (coupled) phonon modes is equal
to the number of spins; N = Ny = A, = 20. To calculate the
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normal-mode eigenvectors and associated frequencies, we set
the ratio of longitudinal to transverse trap frequencies equal
to 0.1. The mass of the ions enters the calculation only as an
overall scaling of the normal-mode frequencies and can be
ignored if all energies (times) are measured in units of the
center-of-mass frequency we.m, (1/wc.m.).- The phonon modes
are calculated in the standard fashion assuming a pseudopoten-
tial approximation holds [28,32,33], which neglects any effects
due to micromotion. We first find the equilibrium positions of
the A/ ions in the trap for the given trap curvatures in the
different spatial directions and the mutual Coulomb repulsion
of the ions. Then we determine the spring constant matrices
by expanding the Coulomb interaction to quadratic order
about equilibrium. Diagonalizing these dynamical matrices
yields both the normal-mode oscillation frequencies w, and
the associated orthonormal eigenvectors b}. Because the
spring-constant matrices are real and symmetric, the b} are
real, and the spin-phonon coupling constants satisfy g;‘(t) =
g (1) = Q2sin(ut)nebf.

Substituting this expression for 85 %(t)into Egs. (17) and (19)

and performing the integrals, we obtaln
o i§2n, b
A5 () =m(ﬂ -

a

zwa

" cos(ut) — iw, sin(ut)]),

5 Zbaboz o ! Wy
Sjk(t) =—Q Z (— m sin(2ut)

M 2 cos(ut) sm(a)at) — Uy Sin(put) cos(a)o,t))
— u?
(37)

Here Af(1) is proportional to the interaction-picture phase-
space displacement of the jth spin as a result of periodically
driving the mode «. Because this driving is periodic, the
displacement amplitudes A%(7) have a simple structure. In
particular, for a single mode drlven near resonance (|8, | <K< wy,
with §, = u — wy), it is straightforward to show that

Qneb®
A%(1) ~ -%((’5 L. (38)

o

This amplitude traces a closed circle, vanishing at times such
that é,¢ = 2nm [Fig. 4(a)], with n an integer, at which the
phonon matrix elements of the mode « in Egs. (28)—(30)
all become equal to unity. At these times, the mode «
becomes unentangled with the spins, regardless of its initial
state. Physically, the independence on initial state reflects the
independence of the period of a harmonic oscillator on its
displacement and implies that the periodic disentanglement
of a given phonon mode occurs even at finite temperature,
which was pointed out originally in Ref. [21]. Formally, it is
immediately apparent from Eq. (34) that finite-temperature
phonon expectation values of the form @a(ﬁ,Aj‘(t)) will
return to unity periodically for any inverse temperature S
[see Fig. 4(b)]. However, when multiple modes participate
in the dynamics, they do not all disentangle at the same
time, with further off-resonance modes exhibiting phase-space
excursions with smaller radii but larger frequencies, as in
Fig. 4(c).
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FIG. 4. Schematic phase-space dynamics of the phonon modes.
(a) When driven close to resonance, a single mode periodically returns
to its original position in phase space (here p, = Im[A‘;(t)] and z, =
Re[Af(r)]). (b) The phonon modes periodically disentangle at finite
temperature, as can be seen from the expectation values Z, (8, Af )
returning to unity. The overlap of a given mode with its initial value,
however, decreases more sharply away from the recurrence times at
higher temperature (here kT = hw, x {0,2,5,10}, from darker to
lighter curves). (¢) When multiple modes are driven, those further
from resonance make smaller but faster excursions through phase
space and in general the different modes do not simultaneously return
to their initial states.

In Sec. IV B, we produce plots of the squeezing parameter &
as a function of time using the exact solution and also using two
useful approximations. In the first approximation, we evolve
our initial state with the spin-only time evolution operator

N
Upin(t) = exp | =i Y Sp(0)656¢ |, (39)
Jjik=1

which amounts to ignoring spin-phonon entanglement. This
evolution is achieved by replacing A% (r) — 0inEqs. (28)—~(30)
while treating the S, (¢) [which in reality depend implicitly
on the A%(¢)] as independent parameters and then evaluating
the S (¢) using Eq. (37). In the second approximation, spin-
motion entanglement is ignored and the spin-spin couplings
are replaced with their time averages, yielding time evolution
under a time-independent Ising spin model

N
USE) =exp | —it Y ShEsiof | (40)

spin
J.k=1

with time-averaged coupling constants

N 2
Savg — lim Sjk(t) _ _92 nabj‘tbl‘:wa
kT i S t - 2 . 2
o=

(41)

2 _
Wy — |

We produce plots by varying €2, which controls the spin-
phonon coupling strength, § = @ — .., Which is the dif-
ference between the two-photon detuning of the Raman lasers
and the center-of-mass mode frequency, and also the phonon
temperature 7', which controls the initial number distribution
in the phonon modes. For the rest of the paper we measure
all energies in units of the transverse center-of-mass mode
frequency ., (A =1), and all temperatures in units of
Wem./ kp, with kg Boltzmann’s constant.
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B. Phonon effects at T = 0

Trapped ion experiments aimed at quantum simulations
generally cool the phonon modes to temperatures on the order
of, or ideally lower than, typical phonon energies. However,
in general, and especially for two-dimensional or large one-
dimensional crystals, these temperatures are decidedly not
zero for all of the relevant modes. Nevertheless, the phonons
are often assumed to be cooled well enough that one can
approximate them as being at zero temperature; we will
address the zero-temperature situation first, and return later
to analyze the consequences of having thermal phonons in the
initial state. At zero temperature, the qualitative structure of the
dynamics is determined by two independent considerations.
First, the coupling strength to a given phonon mode, measured
relative to its detuning from the drive frequency ., determines
how strongly that mode is driven. Because the vibrations of
the particles in the trap are transverse, all vibrational modes
have frequency wy, < wem.. As a result, by choosing § > 0
(so that no modes other than the center-of-mass mode can
be resonant), we ensure that €2/§ is a suitable measure of how
deeply in the perturbative limit the system is. When this ratio is
small, all phonon modes are weakly populated in the dynamics
and we expect spin-phonon entanglement to be unimportant.
Conversely, when this ratio is large, spin-phonon entanglement
will be important, and we do not expect the approximations
described above to agree well with the exact solution. Next, we
must consider the absolute size of § and €2 relative to the mode
bandwidth, denoted by D, which controls the relative extent
to which different phonon modes participate in the dynamics.
For example, when § and 2 are small compared to the typical
mode spacing, §,2 <« D/N, spin dynamics occurs primarily
due to coupling to the center-of-mass mode (more generally,
if the modes are not evenly spaced, we must assume §,$2
much smaller than the gap between the center-of-mass mode
and the mode nearest to it in energy). By increasing § from
much smaller than the typical mode spacing to much larger
than the mode bandwidth, all the while keeping Q2 < §, one
can navigate between two extreme limits. (a) For § < D/N,
the center-of-mass mode dominates the mediation of spin-spin
interactions, which are therefore independent of the distance
between two spins (since the center-of-mass mode is spatially
homogeneous). (b) For § > D, all modes participate equally
in mediating the spin-spin interactions, which fall off roughly
as the cube of the distance between two spins [4]. In between
these extremes, it is common to approximate the spin-spin
interaction to decay as a power law, Sig o 1/r%, with r the
distance between ions j and k£ and 0 < ¢ < 3. All of these
considerations are summarized in Fig. 5, where a guide to the
parameter space explored in the rest of this section can also be
found.

Figure 6 illustrates the behavior of the squeezing parameter
& at T = 0, with the detuning chosen close to the center-of-
mass mode (§ < D/N) and marginally in the perturbative
limit (2/8 = 1/4). The squeezing parameter is normalized
such that log(§) = 0 for a coherent state, so the region of the
plot where the squeezing parameter dips below the horizontal
axis denotes a period of improved uncertainty with respect
to the standard quantum limit. Under these conditions, the
exact solution and the two approximations exhibit fairly similar
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In Q2
Perturbative

Ind

Non-Perturbative
Q=D/N

FIG. 5. Parameter space at zero temperature. On this logarith-
mic scale, the ratio of /8, which controls the extent to which
the system is in the perturbative limit, is given by the distance
to the diagonal dashed line. The boxed area on the lower left indicates
the parameter space in which the center-of-mass mode dominates
the dynamics. Many trapped-ion experiments attempt to operate
in the perturbative limit, shown here as a white arrow. Along this
line, the decay of interactions can be tuned from 1/r° (at § < D/N)
to 1/r3 (at 8 > D). The white dots with numeric labels indicate the
parameters investigated in the numbered figures that follow.

behavior. The smooth red curve produced by the time-averaged
spin-coupling approximation correctly captures the overall
trend of squeezing observed in the exact solution. As shown
by the black curve, the time dependence of the spin couplings

]I*:}xact solution

l

m No spin-phonon entanglement
=
o —2f . .
Y Time-averaged couplings
B
2 4l
z -
n
-6}

0 10000 20000 30000 40000 50000 60000 70000
Time (units of 1/we.m.)

FIG. 6. Plots of the squeezing parameter £ as a function of
time at zero temperature and with x tuned very close to @, . The
parameters used here are {T =0, § = 1073, and Q = 2.5 x 1074}.
The three curves show the results of the three different approximations
described in Sec. IV A. The blue curve is the exact solution, the black
curve ignores spin-phonon entanglement but retains the full time
dependence of the spin couplings Sj,(), and the red curve uses the
time-averaged spin couplings 7.
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produces small-amplitude high-frequency oscillations. These
oscillations are amplified by spin-phonon entanglement, as
indicated by the exact solution (blue curve), showing that
even at zero temperature and nominally in the perturbative
limit, the creation of phonons during the dynamics can
significantly affect the spin squeezing. We note that very
slight improvements in squeezing over the time-averaged spin-
coupling approximation do periodically occur. They appear
to be due to the time dependence of the true spin couplings
Sk (), rather than the spin-phonon entanglement, as they occur
in both the blue and black curves (and the latter bounds the
former from below).

To better understand the role that dynamical phonon
creation plays in spin squeezing, we change the detuning from
the center-of-mass mode, §, while holding €2 constant. Figure 7
illustrates a series of results in which § is increased but kept
small compared to the detuning from all other modes (i.e.,
8 < D/N). These plots therefore primarily reflect changes in
behavior caused by variations in the strength with which the
center-of-mass mode is driven relative to its detuning, i.e., the
ratio €2/4. In the time-averaged spin-coupling approximation
(red curve), the dynamics is completely insensitive to this ratio
up to an overall time scale, and upon scaling the maximum
time by §/ 2, we observe nearly the same squeezing behavior
in all three panels. In the first plot, §/ €2 is relatively small; the
center-of-mass mode is strongly driven, resulting in strongly
oscillatory spin couplings and large spin-phonon entangle-
ment. In this limit, neither approximation accurately captures
the exact dynamics, nor do they agree with each other. As §
is increased, the oscillation amplitudes of the time-dependent
couplings Sj(¢) diminish compared to their time-averaged
values, so the two approximations begin to agree better with
each other. At the same time, population in the center-of-
mass mode becomes suppressed, spin-motion entanglement
diminishes, and the exact result begins to converge to both
approximations. As discussed in Sec. IV A, when considering
coupling only to the center-of-mass mode, the phonon degree
of freedom periodically becomes unentangled from the spins,
even at strong driving. This behavior is reflected in the periodic
agreement between the exact solution and the approximation
ignoring spin-phonon entanglement.

In all panels of Fig. 7, both § and 2 are kept small
compared to the mode spacing, and therefore the variation
of /6§ is the dominant factor contributing to the changes
in behavior. However, these plots provide little insight into
the other important effect of increasing the detuning §: the
increased importance of modes other than the center-of-mass
mode. In order to isolate the latter effect, in Fig. 8§ we again
vary § but now keep the ratio 2/6 = 1/4 fixed. This keeps the
coupling to any given mode in the (barely) perturbative limit,
thus counteracting the dominant role that varying spin-phonon
entanglement played in the qualitative trends observed in
Fig. 7. As § is increased, the time-averaged spin-coupling
approximation correctly captures an overall trend of the exact
solution: The time of optimal spin squeezing is becoming
shorter and the extent of squeezing that occurs at that time
is diminishing. The former effect is simply the result of
increasing the spin-phonon coupling, which increases the
overall rate of dynamics. The reduction of squeezing achieved
at the optimal time reflects the diminishing spatial range of
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FIG. 7. At zero temperature, the detuning from the center-of-mass mode is varied at constant Q = 2.5 x 1073, Note that the time-axis
scaling is different in each plot and the optimal squeezing occurs progressively later as § is increased. The color code here is the same as that
used in Fig. 6 (in order of smallest to largest oscillation amplitudes, the curves correspond to the time-averaged spin-coupling approximation,

the approximation of ignoring spin-phonon entanglement while keeping the time-dependent spin couplings, and the exact solution).

the spin-spin couplings (approaching 1/r3 for large 8) as
more phonon modes participate in mediating them. With or
without the inclusion of spin-phonon entanglement (i.e., in the
blue or black curves), the squeezing exhibits high-frequency
oscillations arising from the coupling to phonon modes other
than the center-of-mass mode. As multiple phonon modes at
different frequencies become entangled with the spins, it is no
longer possible for all of those modes to become disentangled
from the spins simultaneously. This is strongly reflected in the
third panel, where the exact solution no longer agrees with
either approximation at regular intervals.

C. Effects of finite temperature

In Sec. IVB, we were primarily interested in the effects
of dynamical phonon generation starting from the phonon
vacuum. In many experiments, especially those using large
numbers of ions, this starting state is not realistic. For example,
in Ref. [23], the Doppler-cooling limit of 7 ~ 1 mK >
10(hwe m./ kp) leads to 2 10 phonons per transverse mode. As
explained in Sec. III C, spin-spin correlation functions can also
be computed at finite temperatures, and the above analysis can
therefore be extended to capture the consequences of nonzero
initial motional temperature on spin squeezing.

With the addition of temperature, there is a large parameter
space to be explored; here we focus our attention on the
barely perturbative limit at fixed 2/§ = 1/4 (the same ratio
used in Fig. 8), and consider both variations of § and T (see
Fig. 9 for a guide to the parameter space explored). We first
examine the case of near detuning from the center-of-mass
mode (8,2 <« D/N), but now taking the phonon modes to be
atatemperature T attime ¢t = 0 (Fig. 10). Here we plot just the
exact solution and the time-averaged spin-coupling approxi-
mation (both the time-averaged spin-coupling approximation
and the approximation of ignoring spin-phonon entanglement
are insensitive to the phonon distribution, so neither varies
with 7'). The primary effect of increasing temperature on the
squeezing is that the amplitude of oscillations above the curve
obtained from the time-averaged spin-coupling approximation
increases. Nevertheless, the exact solution continues to agree
with the approximation at regular intervals. As discussed in
Sec. IV A, this behavior can be understood as the insensitivity
of a harmonic oscillator’s period to its state of excitation;
at finite temperature many Fock states of the center-of-mass
mode are occupied, but as they are driven periodically they
all return to their initial point in phase space simultaneously,
at which point they are unentangled from the spins. As
T becomes larger, the system spends most of its time in

. - i
(a) (b)

g 0 oFR:

=

op —2f -1

g

IS o

3 -
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Time (units of 1/we.pm.)

0 1000 2000 3000 4000 5000 6000 7000

0 100 200 300 400 500 600 700

Time (units of 1/we.m.)

Time (units of 1/wem.)

FIG. 8. Atzero temperature, the detuning from the center-of-mass mode is varied while keeping €2/8 = 1/4, thereby controlling the relative
contribution of the different phonon modes without greatly affecting the extent to which the individual modes are in the perturbative limit [i.e.,
Q/(n — w,) is not changing very much]. Note that as § grows larger, the time of optimal squeezing becomes shorter and the total amount of
squeezing obtained at that time is shrinking. The color code here is the same as that used in Fig. 6 (in order of smallest to largest oscillation
amplitudes, the curves correspond to the time-averaged spin-coupling approximation, the approximation of ignoring spin-phonon entanglement
while keeping the time-dependent spin couplings, and the exact solution).
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FIG. 9. Schematic illustration of a two-dimensional cross section
of the full three-dimensional parameter space spanned by €2, §,and T'.
Working just barely in the perturbative limit (and at a fixed value of
2/8), we explore the effects of temperature for multiple values of §,
which controls the relative participation of the various phonon modes
in mediating spin-spin interactions. The parameter space explored in
Figs. 10 and 11 are indicated as vertical arrows.

states with large uncertainty (poor squeezing), but precisely
timed measurements of the system could nevertheless yield a
significantly improved resolution over the standard quantum
limit. Interestingly, at times short compared to 27/3, the
spin distribution is always antisqueezed, and the degree of
antisqueezing could in principle be used to perform in situ
temperature measurements of the phonon modes.

In Fig. 11, we explore the behavior of the system detuned
away from the center-of-mass frequency and at finite temper-
ature. The behavior exhibited in Fig. 11 reflects the general
trends observed in the previous plots: Increasing § induces
additional high-frequency structure in the exact solution and

T =10

Squeezing (dB)

0 10000 20000 30000 40000 50000 60000 70000
Time (units of 1/wem.)

FIG. 10. For a system driven very close to the center-of-mass
frequency (§ = 0.001 and Q = 2.5 x 10™*), spin squeezing is very
robust against large initial temperatures. Here the temperature is
varied from zero up to 10w, (0.1 mK) and to a very good
approximation the squeezing obtains its 7 = 0 value at regular
intervals.
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FIG. 11. For a system driven further off-resonance from the
center-of-mass frequency (6 = 0.1 and 2 = 0.025), finite temper-
ature has a much more detrimental effect on the spin squeezing,
eventually preventing any squeezing from occurring beyond a critical
temperature (here 7 ~ 10). Inset: Note that, due to the relatively
large population of many modes, there is significant high-frequency
structure that is hidden on the time scale over which squeezing
occurs.

increasing T produces an overall growth in the amplitude of
oscillations in the spin squeezing. Unlike in Fig. 10, however,
here the exact solution reveals that increasing temperature
causes the local squeezing minima to become increasingly
displaced from the curve calculated in the time-averaged spin-
coupling approximation. Even though at 7 = 0 the squeezing
nearly agrees with this approximation throughout the entire
time region plotted, spin squeezing is completely destroyed
when the temperature reaches 7 ~ 10.

Indeed, for a given detuning there will always be some
temperature threshold above which no squeezing takes place
at all (¢ > 1 for all 7). By varying T at evenly spaced
intervals of Ind, in Fig. 12 we produce a phase diagram
demarcating this boundary in the parameter space. The
qualitative downward trend of the boundary can be understood
as an increased sensitivity of the spin dynamics to the initial

50F R
Not Squeezed
20F R
1ol Fig. 11 |
S
5,
2,
Squeezed
11
1()“2 0.65 0.10 0.50 1 5

FIG. 12. Squeezing phase diagram in the §-7 plane, showing that
no squeezing occurs above a critical temperature (note that /8 is
being held constant as § is changed; see Fig. 9).
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phonon temperature as more phonon modes participate in
the dynamics. The additional modes prevent the spins from
becoming periodically unentangled with the phonons; the
consequences of this residual spin-motion entanglement on
spin squeezing are exacerbated at finite temperature because
the occupation of a given phonon mode affects the extent to
which that mode remains entangled with the spins at a given
time [see Fig. 4(b)]. At small §, squeezing persists even for
temperatures on the order of 100 times the center-of-mass-
mode energy. However, note that at these high temperatures
the approximation that the phonons are noninteracting (or
equivalently that the potential experienced by an individual ion
is harmonic) is likely to break down and the system may well
be outside the Lamb-Dicke limit used to justify a description
in terms of Eq. (1).

V. DISCUSSION AND FUTURE DIRECTIONS

While Eq. (1) is quite general and can describe a diverse
array of practically relevant experiments, there is certainly a
sense in which it is extremely constrained: It has a large number
of locally conserved quantities. Indeed, a careful inspection of
our calculations reveals that the local conservation of 67 is, at
several different levels, directly responsible for the solvability
of the model. Nevertheless, our solutions form a useful
benchmark for powerful (but computationally expensive) tools
capable of numerically solving the nonequilibrium dynamics
of more general models, such as time-dependent versions of
matrix-product-state algorithms [34]. Despite the existence of
structure not present in more general, nonintegrable models,
bipartite entanglement entropy does grow with time after
the quench considered, posing similar challenges for matrix-
product-state algorithms as more general models would.
Especially in two dimensions, but generally even in one
dimension given the long-range nature of the spin-couplings
induced by the (often) delocalized bosonic modes, it remains
unclear to what extent there are any general purpose and
controlled numerical tools for studying this dynamics. We also
point out that questions about equilibration and thermalization,
which require studies of long-time dynamics, are difficult even
in one dimension for all but the smallest systems.

The exact solution will be useful in testing a variety of ex-
perimental idealizations that are frequently made but generally
not quantitatively justified. For example, many trapped-ion
experiments employ a spin-echo pulse in order to obtain a
coherence time on the order of the spin-spin interaction time.
If the spins are unentangled with the phonons, then a spin
echo completely removes the effects of an inhomogeneous

PHYSICAL REVIEW A 93, 013415 (2016)

magnetic field (~)_ ; h j&f) added to the Hamiltonian in
Eq. (1). However, the existence of spin-phonon entanglement
at the time of the echo pulse invalidates this picture [35] and
the consequences on spin-spin correlation functions could be
explored using the solution developed in this paper.

There are also many interesting purely theoretical questions
about the present model, many of which we believe the
tools developed here are well suited to begin answering.
For example, while spin-squeezing calculations reveal the
impact of spin-boson entanglement on attempts to generate
strictly spin-spin entanglement, it should also be possible to
analyze spin-boson entanglement more directly by calculating
correlation functions involving both spin and boson operators.
It would also be interesting to explore to what extent the
solvability of this model can be extended to calculating more
general quantities than low-order correlation functions. While
our solution enables efficient calculation of arbitrary-order
correlation functions of the form given in Eqs. (22)-(24),
calculating the full counting statistics along any spin direction
orthogonal to z is still very difficult. In particular, computation
of the full counting statistics is equivalent to the computation
of ~ N th-order correlation functions of Pauli (x, y,z) matrices,
which involves the summation of an exponentially large
(in ) number of high-order correlation functions of the
form in Egs. (22)—(24). It seems very plausible that this
difficulty is related to computational hardness results for
classically sampling spin distributions following dynamics
under commuting spin Hamiltonians [36]. The present model
adds an interesting twist, in that it builds bosonic degrees
of freedom into a commuting spin Hamiltonian in a way
that preserves its solvability (in the sense of calculating
low-order correlation functions); the bosons alone, despite
being noninteracting and therefore solvable in the same sense
as the model studied here, are thought to be hard to simulate
classically in a precise sense [37].
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