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We develop two methods to calculate the momentum distribution of the insulating �Mott and charge-density-
wave� phases of the extended Bose-Hubbard model with on-site and nearest-neighbor boson-boson repulsions
on d-dimensional hypercubic lattices. First, we construct the random-phase approximation result, which cor-
responds to the exact solution for the infinite-dimensional limit. Then, we perform a power-series expansion in
the hopping t via strong-coupling perturbation theory, to evaluate the momentum distribution in two and three
dimensions; we also use the strong-coupling theory to verify the random-phase approximation solution in
infinite dimensions. Finally, we briefly discuss possible implications of our results in the context of ultracold
dipolar Bose gases with dipole-dipole interactions loaded into optical lattices.
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I. INTRODUCTION

Ultracold atomic gases loaded into optical lattices have
been proven to be ideal systems for studying Hubbard-type
Hamiltonians �1�, the most successful of which has been the
Bose-Hubbard �BH� model. This model has three terms �2�: a
kinetic energy term which allows for the tunneling of the
bosons between nearest-neighbor lattice sites, a potential en-
ergy term that is given by the repulsion between bosons that
occupy the same lattice site, and a chemical potential term
that fixes the number of bosons. The phase diagram of this
model has been known for a long time �2–7�. The competi-
tion between the kinetic and potential energy terms leads to
two phases: a Mott insulator �Mott� when the kinetic energy
is much smaller than the potential energy and a superfluid
otherwise. The Mott phase has an excitation gap and is in-
compressible, and therefore, the bosons are localized and in-
coherent, so that a slight change in the chemical potential
does not change the number of bosons on a particular lattice
site. The superfluid phase, however, is gapless and compress-
ible, and the bosons are delocalized and move coherently.
Both of these phases, as well as the transition between the
two, have been successfully observed with ultracold point-
like Bose gases loaded into optical lattices �8–11�.

The on-site BH model takes only the on-site boson-boson
repulsion into account, i.e., the interaction is short-ranged. A
more general extended BH model is required when longer-
ranged interactions are not negligible, e.g., Coulomb or
dipole-dipole interactions. For instance, an ultracold dipolar
Bose gas can be realized in many ways with optical lattices
�12�: �ground-state� heteronuclear molecules that have per-
manent electric dipole moments, Rydberg atoms that have
very large induced electric dipole moment, or Chromium-
like atoms that have large intrinsic magnetic moment, etc.
can be used to generate sufficiently strong long-ranged
dipole-dipole interactions. The qualitative phase diagram of
this model has also been known for a long time �13–19�, and
it has two additional phases: a charge-density wave �CDW�
as shown in Fig. 1 and a supersolid. Similar to the Mott

phase, the CDW phase is an insulator with an excitation gap
and it is incompressible. The main difference is that an inte-
ger number of bosons occupy every lattice site in the Mott
phase, while the CDW phase has a crystalline order in the
form of staggered boson numbers �different occupancy on
different sublattices�. As the name suggests, a supersolid
phase �20�, however, has both the superfluid and crystalline
orders, i.e., both CDW and superfluid phases coexist. There
is some evidence that this phase exists only in dimensions
higher than one �15,16�.

There has been experimental progress in constructing ul-
tracold dipolar gases of molecules, namely, ground-state
K-Rb molecules, from a mixture of fermionic 40K and
bosonic 87Rb atoms �21,22�. While this K-Rb is a fermionic
molecule, similar principles will allow one to also create
bosonic dipolar molecules by simply changing the atomic
isotopes. Motivated by these achievements, in this paper, we
analyze the momentum distribution of the insulating phases
of the extended BH model, which is the most common prob-
ing technique used in atomic systems to identify different
phases.

The remainder of this paper is organized as follows. After
presenting the model Hamiltonian in Sec. II, we develop two
methods in Sec. III to calculate the momentum distribution
of the insulating �Mott or charge-density-wave� phases of the
extended Bose-Hubbard model. First, we use the random-
phase approximation �RPA� in Sec. III A, and then we per-
form a power-series expansion in the hopping t via the
strong-coupling perturbation theory in Sec. III B. The nu-
merical analysis of the momentum distribution obtained from
these methods is discussed in Sec. III C, and a brief summary
of our conclusions is presented in Sec. IV.

II. EXTENDED BOSE-HUBBARD MODEL

We consider the following extended BH Hamiltonian with
on-site and nearest-neighbor boson-boson repulsions
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where tij is the tunneling �or hopping� matrix between sites i
and j, bi

†�bi� is the boson creation �annihilation� operator at
site i, n̂i=bi

†bi is the boson number operator, U�0 is the
strength of the on-site and Vij is the longer-ranged boson-
boson repulsion between bosons at sites i and j, and � is the
chemical potential. In this paper, we assume tij is a real sym-
metric matrix with elements tij = t for i and j nearest neigh-
bors and 0 otherwise and similarly for Vij �equal to V�0 for
i and j nearest neighbors and zero otherwise�, and consider a
d-dimensional hypercubic lattice with M sites. Note that we
work on a periodic lattice without an external trapping po-
tential. We also assume U�zV where z=2d is the lattice
coordination number �number of nearest neighbors�.

The ground-state phase diagram of this model Hamil-
tonian has been studied extensively in the literature including
the mean-field �13�, quantum Monte Carlo �14,15�, density-
matrix renormalization group �16�, Gutzwiller ansatz
�17,18�, and strong-coupling expansion and scaling theory
�19� techniques. When V�0, the ground state now has two
types of insulating phases. The first one is the Mott phase
where, similar to the on-site BH model, the ground-state bo-
son occupancy is the same for every lattice site, i.e., �n̂i�
=n0. Here, � . . . � is the thermal average, and the average bo-
son occupancy n0 is chosen to minimize the ground-state
energy for a given �. The second one is the CDW phase,
which has crystalline order in the form of staggered boson
occupancies, i.e., �n̂i�=nA and �n̂j�=nB for i and j nearest
neighbors. To describe the CDW, it is convenient to split the

entire lattice into two sublattices A and B such that the
nearest-neighbor sites belong to a different sublattice. A lat-
tice for which this can be done is called a bipartite lattice,
and we assume the number of lattice sites in each sublattice
is the same �M /2�. We also assume that the boson occupan-
cies of the sublattices A and B are nA and nB, respectively,
such that nA�nB. The case with nA=nB=n0 corresponds to
the Mott phase.

When t=0, it turns out that the chemical potential width
of all Mott and CDW lobes are U and zV, respectively, and
that the ground state alternates between the CDW and Mott
phases as a function of increasing � �13–19�. For instance,
the ground state is a vacuum �nA=0, nB=0� for ��0; it is a
CDW with �nA=1, nB=0� for 0���zV; it is a Mott insu-
lator with �nA=1, nB=1� for zV���U+zV; it is a CDW
with �nA=2, nB=1� for U+zV���U+2zV; it is a Mott
insulator with �nA=2, nB=2� for U+2zV���2U+2zV,
and so on. As t increases, the range of � about which the
ground state is insulating decreases, and the Mott and CDW
phases disappear at a critical value of t, beyond which the
system becomes compressible �superfluid or supersolid� as
shown in Fig. 1.

Identification of these phases in atomic systems loaded
into optical lattices is a real challenge, and the momentum
distribution of particles has been the most commonly used
probing technique to distinguish superfluid and Mott phases
of the on-site BH model. Motivated by these experiments,
next, we analyze the momentum distribution of the insulating
phases of the extended BH model, paying particular attention
to what signatures one might see that can distinguish the
CDW insulating phase.

III. MOMENTUM DISTRIBUTION

The momentum distribution of the atoms is one of the few
�and probably the easiest� physical quantity that can be di-
rectly probed in experiments with ultracold atomic gases.
This is achieved by time-of-flight absorption imaging of
freely expanding atoms that are released from the trap. Since
ultracold gases are very dilute, atoms do not interact much
with each other during this short time-of-flight, and there-
fore, the particle positions in the absorption image are
strongly correlated with their velocity distribution given by
their momentum distribution at the moment of release from
the trap.

The momentum distribution n�k� is also easy to calculate,
and it is defined as the Fourier transform of the one-particle
density-matrix ��r ,r��= ��†�r���r���, such that n�k�
=�dr�dr���r ,r��eik·�r−r��, where �†�r����r�� is the boson
creation �annihilation� field operator, and k is the momen-
tum. We expand the field operators in the basis set of Wan-
nier functions such that ��r�= �1 /	M���W�r−R��b�, where
M is the number of lattice sites, and the Wannier function
W�r−R�� is localized at site � with position R�. Here, the
summation index �� 
A ,B� includes the entire lattice.

In this paper, we use two methods to calculate the mo-
mentum distribution of the insulating phases of the extended
BH model. First, we calculate n�k� via the RPA theory in
Sec. III A, and its result corresponds to the exact result for
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FIG. 1. �Color online� We show the chemical potential � �in
units of U� versus hopping t �in units of U /d� phase diagram within
the random-phase approximation for d-dimensional hypercubic lat-
tices �it becomes exact for d→��. Here, the nearest-neighbor re-
pulsion scales inversely with d such that dV=0.2U. The red solid
line corresponds to phase boundaries for the Mott insulator to su-
perfluid and CDW insulator to supersolid states as obtained from
Eq. �5�.
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the infinite-dimensional limit. Then, in Sec. III B, we calcu-
late n�k� as a power-series expansion in the hopping t via the
strong-coupling perturbation theory. We also verify that our
strong-coupling expansion recovers the RPA result in the
infinite-dimensional limit when the latter is expanded out in
t to the same order. This provides an independent cross-
check of the algebra as discussed next in detail.

A. Random-Phase Approximation (RPA)

Using the standard-basis operator method developed by
Haley and Erdös �23�, and following the recent works on the
on-site BH model �24–28�, here we obtain the equation of
motion for the insulating phases of the extended BH model.
This approximation is a well-defined linear operation in
which thermal averages of products of operators are replaced
by the product of their thermal averages. In accordance with
this approximation, the three-operator Green’s functions are
reduced to two-operator ones �23�. Therefore, the RPA
method allows us to calculate the single-particle Green’s
function G�k , i	n�=−���k , i	n��†�k , i	n�� in momentum
�k� and Matsubara frequency �i	n� space, from which the
spectral function A�k ,	�=−�1 /
�Im G�k , i	n→	+ i�� can
be extracted by analytical continuation. Here, the angular
brackets denote the standard trace over the density matrix.
Notice that the spectral function should always satisfy the
sum rule �−�

� A�k ,	�d	=1, due to the bosonic commutation
relations of the creation and annihilation operators in the
Heisenberg picture at equal times. Then, the momentum
distribution n�k�= ��†�k���k�� �at zero temperature� can be
easily obtained from the spectral function
n�k�=−�−�

0 A�k ,	�d	, i.e.,

n�k� =
1



�

−�

0

Im G�k,i	n → 	 + i��d	 , �2�

which measures the spectral weight of the hole excitation
spectrum.

Expanding the field operators in the basis set of Wannier
functions, the momentum distribution becomes

n�k� =
W�k�2

M
�
�,��

�b�
†b���e

−ik·�R�−R���, �3�

where W�k�=�drW�r�eik·r is the Fourier transform of W�r�.
Here, the summation indices �� 
A ,B� and ��� 
A ,B� in-
clude the entire lattice. Since W�k� is a nonuniversal prop-
erty of the lattice potential, and it has nothing to do with the
extended BH model on a discrete periodic lattice, we ignore
this function in this paper by setting it to unity.

But before beginning the discussion of our formal treat-
ment of the theory, we want to comment further on the subtle
features that arise for the momentum distribution n�k� in an
ordered phase, when the lattice periodicity is further broken
by the spontaneous appearance of the CDW phase with a
lower lattice periodicity. This system becomes that of a lat-
tice with a basis, as the A and B sublattices now have a
different occupancies of particles on them. When examining
n�k� on the lattice, we evaluate the one-particle density ma-
trix at each lattice site ��r ,r��→��Ri ,R j�=�ij. The integral

in the definition of n�k� is replaced by a summation that
extends over all lattice sites of the original lattice (before the
CDW order occurred). We can break this summation up into
terms that involve solely the A sublattice, solely the B sub-
lattice, and terms that mix the A and B sublattices. One can
immediately see that the terms restricted to one of the sub-
lattices are periodic with the periodicity of the reduced Bril-
louin zone, while the mixed terms are only periodic with
respect to the full Brillouin zone. If we assume the Wannier
functions are identical for the A and B sublattices, then this
uniform weighting of the different contributions yields the
correct momentum distribution; in general, one potentially
has different weightings of the three different components. A
full discussion of this issue is beyond this work, where we
focus on the properties of the pure discrete lattice system, not
on the experimental systems which have the additional real-
space structure arising from the spatial continuum.

The fluctuations are not fully taken into account in the
RPA method, however, it goes beyond the mean-field ap-
proximation for low-dimensional systems, and it becomes
exact for infinite-dimensional bosonic systems recovering
the mean-field theory. The RPA method has recently been
applied to describe the superfluid and Mott phases of the
on-site BH model �25,26�, and its results showed good agree-
ment with the experiments. Motivated by these earlier works,
here, we generalize this method to describe the insulating
phases of the extended BH model.

Keeping in mind our two-sublattice system, the single-
particle Green’s function in momentum and frequency space
can be written as G�k , i	n�= �1 /2��S,S�GSS��k , i	n�, where
the indices S and S� label sublattices 
A ,B�, and
GSS��k , i	n�= �2 /M����S,���S�G����i	n�e−ik·�R�−R��� is the
Fourier transform. Here, the summation indices ��A or B
and ���A or B include only one sublattice and the Green’s
function is defined only at the different lattice positions.
Since there are M /2 lattice sites in one sublattice, a factor of
2 appears in this expression. Note that this is just a rewriting
of the summation over all lattice sites that explicitly shows
the contributions from the different sublattices. The RPA
equations have the following form in position and frequency
space G����i	n�=G�

0�i	n������+���J���G�����i	n��, where
G�

0�i	n� and J��� are given below Eq. �4�. Here, the indices �,
��, and ��� 
A ,B� include the entire lattice. Using the Fou-
rier transforms, the RPA equation in momentum and fre-
quency space becomes GSS��k , i	n�=GS

0�k , i	n���SS�
+�S�JSS��k�GS�S��k , i	n��. This expression defines a set of
coupled equations for the functions GAA�k , i	n�, GAB�k , i	n�,
GBA�k , i	n�, and GBB�k , i	n�.

Since hopping is allowed between nearest-neighbor sites
that belong to different sublattices, JAA�k�=JBB�k�=0 and
JAB�k�=JBA�k�=�k�, where �k� is the Fourier transform of
the hopping matrix �also called the band structure�. For
d-dimensional hypercubic lattices considered in this paper,
the energy dispersion becomes �k�=−2t�i=1

d cos�kia�, where
a is the lattice spacing. This then yields the following expres-
sion for the Green’s function

GIns�k,i	n� =
Gavr

0 �i	n� + �k�GA
0�i	n�GB

0�i	n�
1 − 2�k�GA

0�i	n�GB
0�i	n�

, �4�

where Gavr
0 �i	n�= �GA

0�i	n�+GB
0�i	n�� /2. The k-independent

functions GA
0�i	n� and GB

0�i	n� correspond to the single-
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particle local Green’s functions for sublattices A and B, re-
spectively, at zeroth order in t. They have the familiar form
GS

0�i	n�= �nS+1� / �i	n−ES
par�−nS / �i	n+ES

hol�, where EA
par

=UnA+zVnB−� and EB
par=UnB+zVnA−� are the zeroth-

order particle excitation spectrum in t �the energy required to
add one extra particle� for sublattices A and B, respectively,
and similarly EA

hol=−U�nA−1�−zVnB+� and EB
hol=−U

�nB−1�−zVnA+� are the zeroth-order hole excitation spec-
trum in t �the energy required to remove one particle�. Notice
that GIns�k , i	n�=Gavr

0 �i	n� at zeroth order in t, as one may
expect.

The poles of GIns�k , i	n�, i.e., the condition 1
=2�k�GA

0�i	n�GB
0�i	n�, give the k-dependence of the par-

ticle and hole excitation spectrum. The insulating phase be-
comes unstable against superfluidity when any of the excita-
tion energies becomes negative at k=0. In addition, the
poles of GIns�k , i	n� at �k=0, i	n=0�, i.e., the condition 1
=2�0�GA

0�0�GB
0�0�, gives the mean-field phase boundary be-

tween the incompressible �Mott or CDW� and the compress-
ible �superfluid or supersolid� phases. This condition leads to

1

z2t2 = �nA + 1

EA
par +

nA

EA
hol��nB + 1

EB
par +

nB

EB
hol� , �5�

which is a quartic equation for �, and it coincides with our
earlier result �19�. Notice that Eq. �5� reduces to the usual
expression for the phase boundary of the on-site BH model
when nA=nB=n0 and V=0. Having discussed the general
RPA formalism for the insulating phases of the extended BH
model, next, we analyze the momentum distribution of the
Mott and CDW phases separately.

1. Mott Phase

The single-particle Green’s function for the Mott phase
can be obtained from Eq. �4� by setting nA=nB=n0. This
leads to GMott�k , i	n�=G0

0�i	n� / �1−�k�G0
0�i	n��, which has

the same form with that of the Green’s function of the Mott
phase in the on-site BH model �25,26,28�. Here, GA

0�i	n�
=GB

0�i	n�=G0
0�i	n�. The function GMott�k , i	n� has two poles

at i	n=E0
par�k� and i	n=−E0

hol�k�, where, E0
par�k�=E0

par

− �U−�k�−E0�k�� /2 and E0
hol�k�=E0

hol− �U+�k�
−E0�k�� /2 corresponding to the particle �the energy required
to add one extra particle� and hole �the energy required to
remove one particle� excitation spectrum, respectively, where
E0�k�=	2�k�+2U�2n0+1��k�+U2. Notice that the Mott
insulator becomes unstable against superfluidity when
E0

par�0�=0 or E0
hol�0�=0, and these conditions coincide with

the mean-field condition given in Eq. �5� when nA=nB=n0.
Therefore, the Green’s function for the Mott phase can be

written as

GMott�k,i	n� =
C0

par�k�
i	n − E0

par�k�
+

C0
hol�k�

i	n + E0
hol�k�

, �6�

where the coefficients �or the spectral weights� are functions
of the excitation spectrum

C0
par�k� =

E0
par�k� + Un0 + E0

hol

E0
par�k� + E0

hol�k�
, �7�

C0
hol�k� =

E0
hol�k� − Un0 − E0

hol

E0
par�k� + E0

hol�k�
. �8�

Using the definition given above Eq. �2�, the spectral func-
tion for the Mott phase can be easily obtained from Eq. �6�,
leading to AMott�k ,	�=C0

par�k���	−E0
par�k��+C0

hol�k�
��	+E0

hol�k��, where ��x� is the Delta function defined by
��x�= �1 /
�lim�→0� / �x2+�2�. Notice that this function satis-
fies the sum rule mentioned above Eq. �2�, since the coeffi-
cients satisfy C0

par�k�+C0
hol�k�=1. The momentum distribu-

tion measures the spectral weight of the hole excitation
spectrum as defined in Eq. �2�, and for the Mott phase it is
given by

nMott�k� = − C0
hol�k� =

U�2n0 + 1� + �k�
2E0�k�

−
1

2
, �9�

which is identical to the nMott�k� of the on-site BH model
�25,26�. Therefore, at the RPA level, nMott�k� is independent
of V, which is mainly because of the underlying mean-field
Hamiltonian that is used in the RPA formalism �we remind
that fluctuations are not fully taken into account within
RPA�. For instance, the mean-field phase boundary condition
given in Eq. �5� shows that the Mott lobes are separated by
zV, but their shapes and, in particular, the critical points are
independent of V. This point will become more clear in Sec.
III B, where we analyze n�k� via the strong-coupling pertur-
bation theory up to second order in t. Notice that the momen-
tum distribution is flat and equals the average filling fraction
nMott�k�=n0 at zeroth order in t, corresponding to vanishing
site-to-site correlations.

2. CDW Phase

In contrast to the Green’s function of the Mott phase, the
single-particle Green’s function for the CDW phase
GCDW�k , i	n� has four poles. Two of them correspond to the
particle and the other two to the hole excitation spectrum of
sublattices A and B. Unfortunately, general expressions for
these poles are not analytically tractable since the condition
1=2�k�GA

0�i	n�GB
0�i	n� defines a quartic equation for i	n;

they can be easily obtained numerically for any given CDW
lobe as shown in Sec. III C. Assuming that the excitation
spectrum is known, the Green’s function for the CDW phase
can be written as

GCDW�k,i	n� =
CA

par�k�
i	n − EA

par�k�
+

CA
hol�k�

i	n + EA
hol�k�

+
CB

par�k�
i	n − EB

par�k�

+
CB

hol�k�
i	n + EB

hol�k�
, �10�

where EA
par�k� and EB

par�k� are the particle �the energy re-
quired to add one extra particle� and EA

hol�k� and EB
hol�k� are

the hole �the energy required to remove one particle� excita-
tion spectrum. The coefficients �or the spectral weights� are
functions of the excitation spectrum, such that
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CA
par�k�

=
D0�k� + D1�k�EA

par�k� + D2�k��EA
par�k��2 + �EA

par�k��3

�EA
par�k� − EB

par�k���EA
par�k� + EB

hol�k���EA
par�k� + EA

hol�k��
,

�11�

CB
par�k�

=
D0�k� + D1�k�EB

par�k� + D2�k��EB
par�k��2 + �EB

par�k��3

�EB
par�k� − EA

par�k���EB
par�k� + EA

hol�k���EB
par�k� + EB

hol�k��
,

�12�

CA
hol�k�

=
D0�k� − D1�k�EA

hol�k� + D2�k��EA
hol�k��2 − �EA

hol�k��3

�EB
hol�k� − EA

hol�k���EA
hol�k� + EB

par�k���EA
hol�k� + EA

par�k��
,

�13�

CB
hol�k�

=
D0�k� − D1�k�EB

hol�k� + D2�k��EB
hol�k��2 − �EB

hol�k��3

�EA
hol�k� − EB

hol�k���EB
hol�k� + EB

par�k���EB
hol�k� + EA

par�k��
.

�14�

Here, the coefficients D0�k�, D1�k�, and D2�k� are functions
of the zeroth-order excitation spectrum in t, and are given by

D0�k� = − �EA
parEA

hol�UnB + EB
hol� + EB

parEB
hol�UnA + EA

hol��/2

+ �k��UnA + EA
hol��UnB + EB

hol� , �15�

D1�k� = ��EA
hol − EA

par��UnB + EB
hol� + �EB

hol − EB
par��UnA + EA

hol�

− EA
parEA

hol − EB
parEB

hol�/2 + �k��UnA + UnB + EA
hol

+ EB
hol� , �16�

and

D2�k� = �UnA + UnB − EA
par − EB

par�/2 + EA
hol + EB

hol + �k� .

�17�

Using the definition given above Eq. �2�, the spectral
function for the CDW phase can be easily obtained
from Eq. �10�, leading to ACDW�k ,	�=CA

par�k���	−EA
par�k��

+ CA
hol�k���	+EA

hol�k�� + CB
par�k���	−EB

par�k�� + CB
hol�k���	

+EB
hol�k��. Notice that this function satisfies the sum rule

mentioned above Eq. �2�, since the coefficients satisfy
CA

par�k�+CA
hol�k�+CB

par�k�+CB
hol�k�=1. The momentum distri-

bution measures the spectral weight of the hole excitation
spectrum as defined in Eq. �2�, and for the CDW phase it is
given by

nCDW�k� = − CA
hol�k� − CB

hol�k� . �18�

This expression has a highly nontrivial dependence on t, and
it has to be solved numerically together with the excitation
spectrum. However, it can be analytically shown that the
momentum distribution is flat and equals the average filling
fraction nCDW�k�= �nA+nB� /2 at zeroth order in t, corre-
sponding to vanishing site-to-site correlations. To provide an

independent check of the algebra �and to extend to finite
dimensions�, we next calculate n�k� as a power-series expan-
sion in the hopping t via the exact strong-coupling perturba-
tion theory in d dimensions.

B. Strong-coupling Perturbation Theory

To determine the momentum distribution of the insulating
phases, we need the wave function of the insulating state
�Ins� as a function of t. We use the many-body version of
Rayleigh-Schrödinger perturbation theory in the kinetic en-
ergy term �29� to perform the expansion �in powers of t� for
�Ins� needed to carry out our analysis. A similar expansion
for the ground-state energies was previously used to discuss
the phase diagram of the on-site BH model �3,4�, and it has
recently been applied to the extended BH model �19�. For the
on-site BH model, extrapolated results of these expansions
showed an excellent agreement with recent quantum Monte
Carlo simulations �5,6�. A high-order strong-coupling expan-
sion for the ground-state energies has now been extended to
all dimensions and fillings �30�, and a high-order expansion
for the wave function has also been used to describe the Mott
phase in one-dimensional systems �31�.

For our purpose, we first need the ground-state wavefunc-
tions of the Mott and CDW phases when t=0. To zeroth
order in t, the insulator �Mott or CDW� wave function can be
written as

�Ins
�0�� = �

��A,���B

M/2
�b�

†�nA

	nA!

�b��
† �nB

	nB!
0� , �19�

where M is the number of lattice sites, and 0� is the vacuum
state �here, we remind that the lattice is divided equally into
A and B sublattices�. In principle, we can apply the pertur-
bation theory on �Ins

�0�� to calculate �Ins� up to the desired
order. However, since the number of intermediate states in-
creases dramatically due to the presence of nearest-neighbor
interactions, we perform this expansion only up to second
order in t. The �unnormalized� wave function for the insulat-
ing state can then be written as

�Ins� = �Ins
�0�� + �

m��Ins
�0��

Tm0

E0m
�Ins

�0��

+ �

m�,m���Ins

�0��

Tm�mTm0

E0m�E0m
�Ins

�0�� + O�t3� , �20�

where Tm0=−�S,S����S,���S�t����mb�
†b���Ins

�0�� is the hopping
matrix element between the first-order intermediate state m�
and the zeroth-order state �Ins

�0��, and Tmm� is between m�
and the second-order intermediate state m��, and E0m=EIns

�0�

−Em
�0�. Here, the summation indices �� 
A ,B� and ��

� 
A ,B� include the entire lattice, and S and S� label sublat-
tices 
A ,B�. The m� states are connected to �Ins

�0�� state with
a single hopping, and similarly m�� states are connected to
m� states with a single hopping. However, the m�� state
must be different from the �Ins

�0�� state.
To calculate the momentum distribution, we need the nor-

malized wave function for the insulating state �Ins�
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= �Ins� /	��Ins �Ins�, where the normalization up to second
order in t is given by

��Ins�Ins� = 1 +
nA�nB + 1�Mzt2/2

�U�nA − nB − 1� + V�znB − znA + 1��2

+
nB�nA + 1�Mzt2/2

�U�nB − nA − 1� + V�znA − znB + 1��2 + O�t4� .

�21�

Here, z=2d is the lattice coordination number. Since
�m �Ins

�0��= �m� �Ins
�0��= �m� m�=0, the first- and third-order

terms in t vanish in the normalization. In general, all odd-
order terms in t vanish.

A lengthy but straightforward calculation leads to the mo-
mentum distribution, defined in Eq. �3�, up to second order in
t as

nIns�k� =
nA + nB

2
+ � nA�nB + 1�

U�nA − nB − 1� + V�znB − znA + 1�

+
nB�nA + 1�

U�nB − nA − 1� + V�znA − znB + 1���k�

+ � nA�nB + 1�
2�U�nA − nB − 1� + V�znB − znA + 1��2

+
nB�nA + 1�

2�U�nB − nA − 1� + V�znA − znB + 1��2

−
nA�nB + 1�

U�U�nA − nB − 1� + V�znB − znA + 1��

−
nB�nA + 1�

U�U�nB − nA − 1� + V�znA − znB + 1���
��nA + nB + 1��2�k� − 2dt2� + O�t3� . �22�

In the definition of the momentum distribution, the summa-
tion indices �� 
A ,B� and ��� 
A ,B� include the entire lat-
tice. Here, �k�=−�2 /M����S,���S�t���e

ik·�R�−R��� is the Fou-
rier transform of the hopping matrix t�,�� �energy dispersion�,
and 2�k�−2dt2= �2 /M��
�,����S,���S�t���t����e

ik·�R�−R���,
where the summation indices 
� ,���� A �or B� and ���B
�or A� include only one sublattice. Since there are M /2 lat-
tice sites in one sublattice, a factor of 2 appears in these
expressions. To zeroth order in t, Eq. �22� shows that nIns�k�
is flat and equals the average filling fraction �nA+nB� /2.
However, it develops a peak around k=0 and a minimum
around k=� at first order in t. These general observations
are consistent with the RPA results shown in Eqs. �9� and
�18�.

Equation �22� is valid for the insulating phases of all
d-dimensional hypercubic lattices. For instance, when nA
=nB=n0, Eq. �22� reduces to the momentum distribution for
the Mott phase, i.e.,

nMott�k� = n0 − 2n0�n0 + 1�
�k�

U − V
+ n0�n0 + 1��2n0 + 1�

��2�k� − 2dt2�
3U − 2V

U�U − V�2 + O�t3� . �23�

This expression recovers the known result for the on-site BH
model when V=0 �32,33�. In addition, in the d→� limit, we
checked that Eqs. �22� and �23� agree with the RPA solutions
�which are exact in this limit� given in Eqs. �18� and �9�
when the latter are expanded out to second order in t, pro-
viding an independent check of the algebra. One must note
that the terms 2V and V that appear in the numerator and
denominator of Eq. �23� vanish in the limit when d→� be-
cause V�1 /d. Next, we compare the RPA results with those
of the strong-coupling perturbation theory.

C. Numerical Results

Since the momentum distribution of the CDW phase
given in Eq. �18� has a highly nontrivial dependence on t, it
has to be solved numerically together with the excitation
spectrum. Next, we set dV=0.2U and solve this equation for
the first CDW lobe. For this parameter, we remind that the
t=0 chemical potential width of all Mott and CDW lobes are
U and 0.4U, respectively, and that the ground state alternates
between the CDW and Mott phases as a function of �. For
instance, the ground state is a vacuum �n0=0� for ��0; it is
a CDW with �nA=1, nB=0� for 0���0.4U; it is a Mott
insulator with �n0=1� for 0.4U���1.4U; it is a CDW with
�nA=2, nB=1� for 1.4U���1.8U; it is a Mott insulator
with �n0=2� for 1.8U���2.8U.

In Fig. 2, the results of the RPA calculation given in Eq.
�18� are compared to those of the second-order strong-
coupling perturbation theory given in Eq. �22� for a �d=2�-
and �d→��-dimensional hypercubic lattices. In this figure,
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FIG. 2. �Color online� Momentum distribution nCDW�k� versus
�k� / �dt� for a �d=2�- and �d→��-dimensional hypercubic lattices.
Panel �a� has the nearest-neighbor boson-repulsion satisfying dV
=0.2U, the hopping satisfying dt=0.05U, and the chemical poten-
tial set by �=0.2U corresponding approximately to the center of the
first CDW lobe, and panel �b� has dV=0.2U, dt�0.083U, and �
�0.16 corresponding approximately to the tip of the first CDW
lobe. The solid �red� lines correspond to the RPA, and the dashed
and circled lines to the second-order strong-coupling perturbation
theory for different dimensions. The peak occurs at the zone corner
only when the hopping is close to the tip of the CDW lobe.
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we show the momentum distribution nCDW�k� as a function
of �k� / �dt� for two sets of parameters. In Fig. 2�a�, we
choose dt=0.05U and �=0.2U, which approximately corre-
sponds to the center of the first CDW lobe. For this param-
eter set, deep inside the CDW lobe, the momentum distribu-
tion has a peak at �k�=−2dt corresponding to the k=0
point, and it has a minimum at �k�=2dt corresponding to
the k= �
 ,
 , . . .� point. This is very similar to what happens
in the Mott phase. However, in Fig. 2�b�, we choose dt
�0.083U and ��0.16U, which approximately corresponds
to the tip of the first CDW lobe. For this parameter set, close
to the CDW-supersolid phase transition, the momentum dis-
tribution has two peaks: a large peak at �k�=−2dt corre-
sponding to the k=0 point, and a smaller one at �k�=2dt
corresponding to the k= �
 ,
 , . . .� point. The second peak is
unique to the CDW phase and it does not occur in a Mott
phase. Notice that both the RPA and second-order strong-
coupling expansion give qualitatively similar results �al-
though the peak is much sharper and has lower weight in the
exact solution�.

One might have expected to always see the peak in the
momentum distribution at the k= �
 ,
 , . . .� point due to the
reduced periodicity of the CDW order. But because the mo-
mentum distribution involves four terms corresponding the
AA, AB, BA, and BB sublattice combinations, only the first
and last terms are periodic in the reduced Brillouin zone.
Deep inside the CDW lobe, the presence of a large gap in the
one-particle excitation spectrum produces an exponential de-
cay of the one-particle correlations, which suppresses this
peak in the momentum distribution as can be seen in Fig.
2�a� �this point has already been discussed in Ref. �34��. This
essentially occurs because there is a cancellation of the peak
that arises from the AA and BB contributions with the results
from the AB and BA pieces, similar to what happens in the
Mott phase. However, close to the tip of the CDW lobe, the
peak emerges in the exact solution of the RPA as shown in
Fig. 2�b�.

As a further check of the accuracy of our second-order
strong-coupling expansion, in Fig. 3, we compare the d=2
and d→� limits of Eq. �22� to the RPA method given in Eq.
�18�, which corresponds to the exact solution in the latter
limit. In this figure, we show nCDW�k=0� and nCDW�k=�� as
a function of dt /U when �=0.2U. In d=2 dimensions, the
RPA and second-order strong-coupling expansion gives
qualitatively similar results for small values of dt /U, i.e.,
deep inside the CDW lobe. However, in the d→� limit, the
results of the RPA and the second-order strong-coupling ex-
pansion match exactly for small values of dt /U �as they
must�. Close to the tip of the CDW lobe, the RPA and strong-
coupling results differ substantially from each other signal-
ing the breakdown of the second-order expansion. However,
both theories show that nCDW�0� is an increasing function of
dt /U as one may expect. This is because the range of �
about which the ground state is a CDW decreases as dt /U
increases from zero, and the CDW phase becomes a super-
solid at a critical value of dtc�0.08U. Beyond this point,
n�0� diverges due to the appearance of a condensate, corre-
sponding to the macroscopic occupation of the k=0 state.

Note that we do not attempt to perform a scaling analysis
of the momentum distribution for the CDW phase. The rea-

sons why are twofold. First, we only have the series through
second order, which probably is too short to be able to prop-
erly fit to a phenomenological scaling form, and second, we
cannot extract the analytic scaling form from the RPA calcu-
lation anymore, so guessing an appropriate phenomenologi-
cal form has less guidance than for the Mott phase. A scaled
theory would be expected to be accurate for all values of t
within the insulating phases, as has been recently shown for
the Mott phase of the on-site BH model �32�.

IV. CONCLUSIONS

We developed two methods to calculate the momentum
distribution of the insulating �Mott and charge-density-wave�
phases of the extended Bose-Hubbard model with on-site
and nearest-neighbor boson-boson repulsions on
d-dimensional hypercubic lattices. First, we analyzed the
momentum distribution within the random-phase approxima-
tion, which corresponds to the exact solution for the infinite-
dimensional limit. Then, we used the many-body version of
the Rayleigh-Schrödinger perturbation theory in the kinetic
energy term, and derived the wave function for the insulating
phases as a power series in the hopping t, to calculate the
momentum distribution via the strong-coupling perturbation
theory. A similar strong-coupling expansion for the ground-
state energies was previously used to discuss the phase dia-
gram of the on-site BH model �3,4�, and it has recently been
applied to the extended BH model �19�.

The agreement between the second-order strong-coupling
expansion and that of RPA method is only qualitative in low-
dimensional systems. This is not surprising since the fluctua-
tions are not fully taken into account in the RPA method.
However, we showed that our strong-coupling expansion
matches exactly the RPA result �as it must� in the infinite-
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FIG. 3. �Color online� Momentum distributions at specific mo-
mentum points nCDW�k=0� and nCDW�k=�� versus dt /U for �d
=2�- and �d→��-dimensional hypercubic lattices. The chemical
potential �=dV corresponds to the first CDW lobe, and the nearest-
neighbor repulsion is set to dV=0.2U. The solid line corresponds to
the RPA and the dashed and circled lines to the second-order strong-
coupling perturbation theory for different dimensions.
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dimensional limit when the latter is expanded out in t to the
same order. We believe some of these results could poten-
tially be tested with ultracold dipolar Bose gases loaded into
optical lattices �35�. This work can be extended in several
ways if desired. For instance, one could calculate the mo-
mentum distribution up to third order in t, and develop a
scaling theory with the help of the RPA results �or a good
phenomenological guess for the scaling form of the momen-
tum distribution�. The scaled theory is expected to be accu-
rate for all values of t within the insulating phases, as has

been recently shown for the Mott phase of the on-site BH
model �32�.
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