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We develop a strong-coupling perturbation theory for the extended Bose-Hubbard model with on-site and
nearest-neighbor boson-boson repulsions on �d�1�-dimensional hypercubic lattices. Analytical expressions for
the ground-state phase boundaries between the incompressible �Mott or charge-density-wave insulators� and
the compressible �superfluid or supersolid� phases are derived up to third order in the hopping t. We also briefly
discuss possible implications of our results in the context of ultracold dipolar Bose gases with dipole-dipole
interactions loaded into optical lattices.
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I. INTRODUCTION

Ultracold atomic physics in optical lattices has created a
new experimental arena where many simple model Hamilto-
nians can be constructed and “simulated” experimentally �1�.
To date, the most successful efforts have been with bosonic
atoms on optical lattices �2–5�. Here, when the single-
particle bands of the optical lattice are well separated in en-
ergy, the boson-boson interaction is much smaller than that
separation, and the particle filling is not too high, the system
is described well by the single-band Bose-Hubbard �BH�
model. This model is the bosonic generalization of the Hub-
bard model and was introduced originally to describe 4He in
porous media or disordered granular superconductors �6�.
The superfluid phase of bosonic systems is well described by
weak-coupling theories, but the insulating phase, where there
is a gap to particle excitations with a uniform �integer� filling
of the bosons on each lattice site, is a strong-coupling phe-
nomenon that only appears when the system is on a lattice.
This Mott insulator phase is incompressible and hence occu-
pies a finite area in the parameter space of the chemical
potential and the hopping. It has a transition from the incom-
pressible phase to a compressible superfluid as the hopping
or chemical potential is varied. The on-site BH model has
been studied extensively, and the strong-coupling
perturbation-theory approach has been shown to be quite ac-
curate in determining this phase diagram of the system �7–9�.

Recently, experimental progress has been made in con-
structing ultracold dipolar gases of molecules, namely, K-Rb
molecules, from a mixture of fermionic 40K and bosonic
87Rb atoms �10,11�. In this case, the molecules are fermionic,
but similar principles will allow one to also create bosonic
dipolar molecules. Future experiments are likely to load
these bosonic molecules into optical lattices. These systems
will have a long-range boson-boson interaction mediated by
their dipole moment, which can be approximated, in some
circumstances, by an on-site and a nearest-neighbor repul-
sion. �Generically, dipole-dipole interactions will be longer
ranged than just nearest neighbors and also can have direc-
tionality due to the orientations of the dipoles.� The case of
an extended BH model, where the boson-boson interaction is
longer ranged, has also been widely studied �12–20�. Inclu-

sion of a nearest-neighbor repulsion can lead to the forma-
tion of a charge-density-wave �CDW� phase, where at half
filling, for example, one would have a checkerboard arrange-
ment of the density in an ordered pattern. This phase is in-
compressible with a finite gap to excitations. It also breaks
the original translational symmetry of the lattice, forming a
new crystalline phase. The CDW phase has generated signifi-
cant interest, because it often can become a supersolid prior
to becoming a superfluid as the interactions are reduced. A
supersolid phase is a �compressible� superfluid that continues
to have a density modulation �or CDW� present �21�. That is,
the superfluid and crystalline orders coexist. Interest in su-
persolid physics has increased dramatically since the recent
observation of supersolidlike behavior in low-temperature
He experiments �22�. There is some numerical and theoreti-
cal evidence that the supersolid phase exists only in dimen-
sions higher than one �15,16�.

In this paper, we examine the extended BH model with
on-site and nearest-neighbor boson-boson interactions via a
strong-coupling perturbation theory in the hopping, plus a
scaling analysis, which allows us to accurately predict the
critical point and the shape of the insulating lobes in the
plane of the chemical potential and the hopping. We carry
out the analysis to third order in the hopping, and we per-
form the scaling theory using the known critical behavior at
the tip of the insulating lobes �which corresponds to the �d
+1�-dimensional XY model, and is identical for the Mott and
CDW phases�.

The remainder of the paper is organized as follows. After
introducing the model Hamiltonian in Sec. II, we develop the
strong-coupling perturbation theory in the kinetic-energy
term in Sec. III, where we derive analytical expressions for
the phase boundaries between the incompressible �Mott or
CDW insulators� and compressible �superfluid or supersolid�
phases. There we also propose a chemical-potential extrapo-
lation technique based on scaling theory to extrapolate our
third-order power-series expansion into a functional form
that is appropriate for the Mott or CDW lobes, and compare
these results with the mean-field ones in Sec. IV. A brief
summary of our conclusions is presented in Sec. V.
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II. EXTENDED BOSE-HUBBARD MODEL

We consider the following extended BH Hamiltonian with
on-site and nearest-neighbor boson-boson repulsions:

H = − �
i,j

tijbi
†bj +

U

2 �
i

n̂i�n̂i − 1� + �
i,j

Vijn̂in̂j − ��
i

n̂i,

�1�

where tij is the tunneling �or hopping� matrix elements be-
tween sites i and j, bi

† �bi� is the boson creation �annihilation�
operator at site i, n̂i=bi

†bi is the boson number operator, U
�0 is the strength of the on-site repulsion and Vij is the
longer-ranged boson-boson repulsion between bosons at sites
i and j, and � is the chemical potential. In this paper, we
assume tij is a real symmetric matrix with elements tij = t for
i and j nearest neighbors and 0 otherwise and similarly for
Vij �equal to V�0 for i and j nearest neighbors and zero
otherwise�, and consider a �d�1�-dimensional hypercubic
lattice with M sites �23�. Note that we work on a periodic
lattice with no external trap potential.

We also assume U�zV, where z=2d is the lattice coordi-
nation number �number of nearest neighbors�. In this case,
the boson occupancy of the nearest-neighbor sites in the
CDW phase can only differ by 1. For instance, the first CDW
phase is such that every other site is occupied by one boson
and the remaining sites are left unoccupied. When U�zV,
additional CDW phases can be present in the phase diagram.
For instance, a CDW phase in which every other site is oc-
cupied by two bosons and the remaining sites are left unoc-
cupied is energetically more favorable than a Mott phase in
which every lattice site is occupied by one boson. Our re-
sults, with minor changes, can also be used to analyze these
additional CDW phases if desired, but more work would be
needed to examine other types of CDW order, such as co-
lumnar �stripes�, which can arise from longer-range interac-
tions.

A. Atomic (t=0) limit

To understand the zero-temperature �T=0� phase diagram
of the extended BH model given in Eq. �1�, we start by
analyzing the atomic �t=0� limit. In this limit, since the ki-
netic energy vanishes, the boson number operator n̂i com-
mutes with all of the remaining terms of the Hamiltonian.
Therefore, every lattice site is occupied by a fixed number ni
of bosons and the system is insulating.

When V=0, the ground-state boson occupancy is the same
for every lattice site such that �n̂i�=n0, where �¯� is the
thermal average, and the average boson occupancy n0 is cho-
sen to minimize the ground-state energy for a given �. �The
symbol n0 is an integer here and should not be confused with
the condensate fraction of a superfluid.� It turns out that the
ground-state energy of the n0 state is degenerate with that of
the n0+1 state at �=Un0. This means that the chemical-
potential width of all Mott lobes is U, and that the boson
occupancy increases from n0 to n0+1 when �=Un0+0+. For
instance, the ground state is a vacuum with n0=0 for ��0;
it is a Mott insulator with n0=1 for 0���U; it is a Mott
insulator with n0=2 for U���2U; and so on.

When V�0, the ground state has an additional CDW
phase which has crystalline order in the form of staggered
boson densities, i.e., �n̂i�=nA and �n̂j�=nB for i and j nearest
neighbors. Therefore, to describe the CDW phases, it is con-
venient to split the entire lattice into two sublattices A and B
such that the nearest-neighbor sites belong to a different sub-
lattice. �A lattice for which this can be done is called a bi-
partite lattice—we assume the number of lattice sites in each
sublattice is the same here.� We assume that the boson occu-
pancies of sublattices A and B are nA and nB, respectively,
such that nA�nB. We remark that the nA=nB=n0 states cor-
respond to the Mott phase. It turns out that the ground-state
energy of the �nA=n0+1 , nB=n0� state is degenerate with
those of the �nA=n0 , nB=n0� and �nA=n0+1 , nB=n0+1�
states at �=Un0+zVn0 and �=Un0+zV�n0+1�, respectively.
This means that the chemical-potential width of all Mott and
CDW lobes are U and zV, respectively, and that the ground
state alternates between the CDW and Mott phases as a func-
tion of increasing �. For instance, the ground state is a
vacuum �nA=0, nB=0� for ��0; it is a CDW with
�nA=1, nB=0� for 0���zV; it is a Mott insulator with
�nA=1, nB=1� for zV���U+zV; it is a CDW with
�nA=2, nB=1� for U+zV���U+2zV; it is a Mott insula-
tor with �nA=2, nB=2� for U+2zV���2U+2zV; and so
on.

Having discussed the t=0 limit, now we are ready to ana-
lyze the competition between the kinetic- and potential-
energy terms of the Hamiltonian when t�0. As t increases,
one expects that the range of � about which the ground state
is insulating �incompressible� decreases, and that the Mott
and CDW phases disappear at a critical value of t, beyond
which the system becomes compressible.

B. Transition from an incompressible to a compressible phase

To determine the phase boundary between the incom-
pressible �Mott or CDW insulators� and the compressible
�superfluid or supersolid� phases, we need the energies of the
Mott and CDW phases and of their defect states as functions
of t. The defect states are characterized by exactly one extra
particle or hole which moves coherently throughout the lat-
tice. At the point where the energy of the incompressible
state becomes degenerate with its defect state, the system
becomes compressible assuming that the compressibility ap-
proaches zero continuously at the phase boundary. Therefore,
the phase boundary between the Mott and superfluid phases
is determined by

EMott
ins �n0� = EMott

par �n0� , �2�

EMott
ins �n0� = EMott

hol �n0� , �3�

where EMott
ins �n0� is the energy of the Mott phase with n0

bosons on every lattice site, and EMott
par �n0� and EMott

hol �n0� are
the energies of the Mott-defect phases with exactly one extra
particle or hole, respectively. These conditions determine the
phase boundaries of the particle and hole branches of the
Mott insulating lobes, �Mott

par and �Mott
hol , respectively, as func-

tions of t, U, V, and n0. Similarly the phase boundary be-
tween the CDW and supersolid phases is determined by
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ECDW
ins �nA,nB� = ECDW

par �nA,nB� , �4�

ECDW
ins �nA,nB� = ECDW

hol �nA,nB� , �5�

where ECDW
ins �nA ,nB� is the energy of the CDW phase with nA

and nB bosons on alternating lattice sites, and ECDW
par �nA ,nB�

and ECDW
hol �nA ,nB� are the energies of the CDW-defect phases

with exactly one extra particle or hole, respectively. These
conditions determine the phase boundaries of the particle and
hole branches of the CDW insulating lobes, �CDW

par and �CDW
hol ,

respectively, as functions of t, U, V, nA, and nB. Next, we
calculate the energies of the Mott and CDW phases and of
their defect states as a perturbative series in the hopping t.

III. STRONG-COUPLING PERTURBATION THEORY

We use the many-body version of Rayleigh-Schrödinger
perturbation theory in the kinetic-energy term �24� to per-
form the expansion �in powers of the hopping� for the differ-
ent energies needed to carry out our analysis. The perturba-
tion theory is performed with respect to the ground state of
the system when the kinetic-energy term is absent. This tech-
nique was previously used to discuss the phase diagram of
the on-site BH model �7,8�, and its results showed excellent
agreement with the quantum Monte Carlo simulations �in-
cluding the most recent numerical work �25,26��. Here, we
generalize this method to the extended BH model, hoping to
develop an analytical approach which could also be as accu-
rate as the numerical ones. However, we remark that our
strong-coupling perturbation theory cannot be used to calcu-
late the phase boundary between two compressible phases,
e.g., the supersolid-to-superfluid transition. In addition, we
cannot even tell whether the compressible phase is a super-
solid or a superfluid.

A. Ground-state wave functions at zeroth order in t

For our purpose, we first need the ground-state wave
functions of the Mott and CDW phases and of their particle
and hole defects when t=0. To zeroth order in t, the Mott and
CDW wave functions can be written as

��Mott
ins�0�� = 	

k=1

M �bk
†�n0


n0!
�0� , �6�

��CDW
ins�0�� = 	

i�A,j�B

M/2
�bi

†�nA


nA!

�bj
†�nB


nB!
�0� , �7�

where M is the number of lattice sites, and �0� is the vacuum
state �here, we recall that the lattice is divided equally into A
and B sublattices�. We use here and throughout the index k to
refer to all lattice sites, while the indices i and j are limited to
the A and B sublattices, respectively.

On the other hand, the wave functions of the defect states
are determined by degenerate perturbation theory. To zeroth
order in t, the wave functions for the particle-defect states
can be written as

��Mott
par�0�� =

1

n0 + 1

�
k=1

M

fk
Mottbk

†��Mott
ins�0�� , �8�

��CDW
par�0�� =

1

nB + 1

�
j�B

M/2

f j
CDWBbj

†��CDW
ins�0�� , �9�

where fk
Mott is the eigenvector of the hopping matrix tkk� with

the highest eigenvalue �which is zt� such that �k�tkk�fk�
Mott

=ztfk
Mott, and f j

CDWB is the eigenvector of �itjitij� �this matrix
lives solely on the B sublattice� with the highest eigenvalue
�which is z2t2� such that �ij�tjitij�f j�

CDWB=z2t2f j
CDWB. Notice

that we choose the highest eigenvalue of tij because the hop-
ping matrix enters the Hamiltonian as −tij, and we ultimately
want the lowest-energy states. Similarly for the CDW
phases, the coefficient of the t2 matrix that enters the
perturbation theory is negative, so we want the highest
eigenvalue again. The normalization condition requires that
�k=1

M �fk
Mott�2=1 and � j�B

M/2 �f j
CDWB�2=1. Similarly, to zeroth or-

der in t, the wave functions for the hole-defect states can be
written as

��Mott
hol�0�� =

1

n0

�
k=1

M

fk
Mottbk��Mott

ins�0�� , �10�

��CDW
hol�0�� =

1

nA

�
i�A

M/2

f i
CDWAbi��CDW

ins�0�� , �11�

where f i
CDWA is the eigenvector of � jtijtji� �this matrix lives

solely on the A sublattice� with the highest eigenvalue
�which is z2t2� such that � ji�tijtji�f i�

CDWA=z2t2f i
CDWA. The nor-

malization condition requires that �i�A
M/2�f i

CDWA�2=1.

B. Ground-state energies up to third order in t

Next, we employ the many-body version of Rayleigh-
Schrödinger perturbation theory in t with respect to the
ground state of the system when t=0, and calculate the en-
ergies of the Mott and CDW phases and of their particle- and
hole-defect states. To third order in t, the energy of the Mott
state is obtained via nondegenerate perturbation theory and it
is given by

EMott
ins �n0�

M
= U

n0�n0 − 1�
2

+ zV
n0

2

2
− �n0 − n0�n0 + 1�

zt2

U − V

+ O�t4� , �12�

which is an extensive quantity, that is, EMott
ins �n0� is propor-

tional to the total number of lattice sites M. The odd-order
terms in t vanish for the d-dimensional hypercubic lattices
considered in this paper; they enter on nonbipartite lattices
such as the triangular lattice. Notice that Eq. �12� recovers
the known result for the on-site BH model when V=0 �7,8�.
Similarly, to third order in t, the energy of the CDW state is
also obtained via nondegenerate perturbation theory and it
can be written as
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ECDW
ins �nA,nB�

M
= U

nA�nA − 1� + nB�nB − 1�
4

+ zV
nAnB

2
− �

nA + nB

2

+ � nA�nB + 1�
U�nA − nB − 1� + V�znB − znA + 1�

+
nB�nA + 1�

U�nB − nA − 1� + V�znA − znB + 1�� zt2

2
+ O�t4� , �13�

which is also an extensive quantity, and the odd-order terms in t also vanish. Notice that Eq. �13� reduces to Eq. �12� when
nA=nB=n0 as expected.

The calculation of the defect state energies is more involved since it requires using degenerate perturbation theory. This is
because when exactly one extra particle or hole is added to the Mott phase, it could go to any of the M lattice sites and all of
those states share the same energy when t=0. Therefore, for both Mott-defect states with exactly one extra particle or hole, the
initial degeneracy is of order M and it is lifted at first order in t. A lengthy but straightforward calculation leads to the energy
of the Mott particle-defect state up to third order in t as

EMott
par �n0� = EMott

ins �n0� + Un0 + zVn0 − � − �n0 + 1�zt + n0�n0 + 1��1 − z

U
+

2�1 − z�
U − 2V

+
2z

U − V
� −

n0 + 2

2�U − V��zt2 − n0�n0 + 1�

�n0� z − 2

U2 +
z2 − 3z + 3

�U − V�2 � + �n0 + 1�� z�1 − z�
U2 −

2z2 − 6z + 6

�U − V�2 +
2z�1 − z�
�U − 2V�2 +

2�z2 − 3z + 3�
U�U − V�

+
4�z − 2�

U�U − 2V�

+
4�z2 − 3z + 3�

�U − V��U − 2V�� + �n0 + 2�� z − 1

U�U − V�
−

z

4�U − V�2��zt3 + O�t4� . �14�

This expression is valid for all d-dimensional hypercubic lattices, and it recovers the known result for the on-site BH model
when V=0 �7,8�. To third order in t, we obtain a similar expression for the energy of the Mott hole-defect state given by

EMott
hol �n0� = EMott

ins �n0� − U�n0 − 1� − zVn0 + � − n0zt + �n0 + 1�n0�1 − z

U
+

2�1 − z�
U − 2V

+
2z

U − V
� −

n0 − 1

2�U − V��zt2

− n0�n0 + 1��n0 + 1�� z − 2

U2 +
z2 − 3z + 3

�U − V�2 � + n0� z�1 − z�
U2 −

2z2 − 6z + 6

�U − V�2 +
2z�1 − z�
�U − 2V�2 +

2�z2 − 3z + 3�
U�U − V�

+
4�z − 2�

U�U − 2V�

+
4�z2 − 3z + 3�

�U − V��U − 2V�� + �n0 − 1�� z − 1

U�U − V�
−

z

4�U − V�2��zt3 + O�t4� , �15�

which also is valid for all d-dimensional hypercubic lattices, and recovers the known result for the on-site BH model when
V=0 �7,8�.

On the other hand, for d�1 dimensions, when an extra particle or hole is added to the CDW phase, it could go to any of
the M /2 sites in sublattice B or A, respectively. �Here, we recall that nA�nB is assumed in this paper.� Therefore, for both
CDW-defect states with an extra particle or hole in d�1 dimensions, the degeneracy is of order M /2 and it is lifted at second
order in t. This is because the states occupy one of the sublattices, and they cannot be connected by one hop, but rather require
two hops to be connected. Another lengthy but straightforward calculation leads to the energy of the CDW particle-defect state
up to third order in t as

ECDW
par �nA,nB� = ECDW

ins �nA,nB� + UnB + zVnA − � + � �nA + 1��nB + 1�z
U�nB − nA� + V�znA − znB�

−
nA�nB + 1�z

U�nA − nB − 1� + V�znB − znA + 1�

−
nB�nA + 1�z

U�nB − nA − 1� + V�znA − znB + 1�
+

nA�nB + 2�
U�nA − nB − 2� + V�znB − znA + 2�

+
nB�nA + 1��z − 1�

U�nB − nA − 1� + V�znA − znB�

+
2nA�nB + 1��z − 1�

U�nA − nB − 1� + V�znB − znA + 2��zt2 + O�t4� . �16�

This expression is valid for �d�1�-dimensional hypercubic lattices. Notice that the odd-order terms in t vanish for these
lattices. To third order in t, we obtain a similar expression for the energy of the CDW hole-defect state given by
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ECDW
hol �nA,nB� = ECDW

ins �nA,nB� − U�nA − 1� − zVnB + � + � nAnBz

U�nB − nA� + V�znA − znB�
−

nA�nB + 1�z
U�nA − nB − 1� + V�znB − znA + 1�

−
nB�nA + 1�z

U�nB − nA − 1� + V�znA − znB + 1�
+

�nA − 1��nB + 1�
U�nA − nB − 2� + V�znB − znA + 2�

+
nB�nA + 1��z − 1�

U�nB − nA − 1� + V�znA − znB�

+
2nA�nB + 1��z − 1�

U�nA − nB − 1� + V�znB − znA + 2��zt2 + O�t4� . �17�

This expression is also valid for �d�1�-dimensional hyper-
cubic lattices where the odd-order terms in t vanish.

Notice that because the Mott-defect states have correc-
tions to first order in the hopping, while the CDW defects
have corrections to second order in the hopping, the slopes of
the Mott phase will be finite as t→0, but they will vanish for
the CDW lobes. Hence, the shapes of the different types of
insulating lobes are always different.

In one dimension �d=1�, however, when exactly one extra
particle or hole is added to the CDW phase, the degeneracy
of both of the CDW-defect states is of order �M /2�2 and it is
lifted at first order in t. This difference between d�1 and
d=1 makes one dimension unique, and it is the reason that
the supersolid phase exists in higher dimensions but not in
one �15,16�. In other words, due to this large degeneracy, an
extra particle or hole immediately delocalizes the bosons in
d=1, and the crystalline order disappears. Since d=1 re-
quires special attention, it will be addressed elsewhere, and
we restrict the analysis here to higher dimensions.

We would like to remark in passing that the energy dif-
ference between the Mott and CDW phases with their defect
states determine the phase boundary of the particle and hole
branches. While all EMott

ins �n0�, EMott
par �n0�, and EMott

hol �n0� depend
on the lattice size M, their difference does not. Therefore, the
chemical potentials that determine the particle and hole
branches, �Mott

par and �Mott
hol , respectively, are independent of M

at the phase boundaries. Similarly, while all ECDW
ins �nA ,nB�,

ECDW
par �nA ,nB�, and ECDW

hol �nA ,nB� depend also on the lattice
size M, their difference does not. Therefore, the chemical
potentials that determine the particle and hole branches,
�CDW

par and �CDW
hol , respectively, are also independent of M at

the phase boundaries. These observations indicate that the
numerical quantum Monte Carlo simulations which are
based on Eqs. �2�–�5� should not have too strong a depen-
dence on M. It also shows that exact diagonalization on finite
clusters of a sufficiently large size can also yield these ex-
pressions if properly analyzed to extract the coefficients of
the power series.

C. Extrapolation to infinite order via scaling theory

As a general rule, the third-order strong-coupling pertur-
bation theory appears to be more accurate in lower dimen-
sions. For this reason, an extrapolation technique to infinite
order in t is highly desirable to determine more accurate
phase diagrams. Here, we propose a chemical-potential ex-
trapolation technique based on scaling theory to extrapolate

our third-order power-series expansion into a functional form
that is appropriate for the Mott and CDW lobes.

It is known that the critical point at the tip of the Mott and
CDW lobes has the scaling behavior of a �d+1�-dimensional
XY model, and therefore the lobes have Kosterlitz-Thouless
shapes for d=1 and power-law shapes for d�1. For the lat-
ter case considered in this paper, we propose the following
ansatz for the Mott and CDW lobes which includes the
known power-law critical behavior of the tip of the lobes

�Mott,CDW
par,hol

U
= AMott,CDW�x� 	 BMott,CDW�x��xMott,CDW

c − x�z
,

�18�

where AMott,CDW�x�=aMott,CDW+bMott,CDWx+cMott,CDWx2

+dMott,CDWx3+¯ and BMott,CDW�x�=�Mott,CDW+�Mott,CDWx
+Mott,CDWx2+�Mott,CDWx3+¯ are regular functions of x
=dt /U, xMott,CDW

c is the critical point which determines
the location of the Mott and CDW lobes, and z
 is the
critical exponent for the �d+1�-dimensional XY model which
determines the shape of the Mott and CDW lobes near
xMott,CDW

c . In Eq. �18�, the plus sign corresponds to the par-
ticle branch, and the minus sign corresponds to the hole
branch. The parameters aMott,CDW, bMott,CDW, cMott,CDW, and
dMott,CDW depend on U, V, and n0 or �nA ,nB�, and they are
determined by matching them with the coefficients given by
our third-order expansion such that AMott,CDW�x�
= ��Mott,CDW

par +�Mott,CDW
hol � /2U. To determine the U, V, and n0

or �nA ,nB� dependence of the parameters �Mott,CDW,
�Mott,CDW, Mott,CDW, �Mott,CDW, xMott,CDW

c , and z
, we first
expand the left-hand side of BMott,CDW�x��xMott,CDW

c −x�z


= ��Mott,CDW
par −�Mott,CDW

hol � /2U in powers of x, and match the
coefficients with the coefficients given by our third-order
expansion. Then we fix z
 at its well-known values such that
z
�2 /3 for d=2 and z
=1 /2 for d�2, and set
�Mott,CDW=0 to determine �Mott,CDW, �Mott,CDW, Mott,CDW,
and xMott,CDW

c self-consistently.
Having discussed the strong-coupling perturbation theory,

next we present the ground-state phase diagrams for �d=2�-
and �d=3�-dimensional hypercubic lattices.

D. Numerical results

In Fig. 1, the results of the third-order strong-coupling
perturbation theory �dotted lines� are compared to those of
the extrapolation technique �circles� when V=0.1U. At t=0,
the chemical-potential widths of all Mott and CDW lobes are
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U and 0.1zU, respectively, where z=2d, and that the ground
state alternates between the CDW and Mott phases as a
function of �. For instance, the ground state is a vacuum
�n0=0� for ��0; it is a CDW with �nA=1, nB=0� for
0���0.1zU; it is a Mott insulator with �n0=1� for
0.1zU��� �1+0.1z�U; it is a CDW with �nA=2, nB=1�
for �1+0.1z�U��� �1+0.2z�U; and it is a Mott insulator
with �n0=2� for �1+0.2z�U��� �2+0.2z�U.

As t increases from zero, the range of � about which the
ground state is a Mott insulator or CDW decreases, and the
Mott insulator and CDW phases disappear at a critical value
of t, beyond which the system becomes a superfluid near the
Mott lobes or a supersolid near the CDW lobes. In addition,
similar to what was found for the on-site BH model �7,8�, the
strong-coupling expansion overestimates the phase bound-
aries, and it leads to unphysical pointed tips for all Mott and

CDW lobes. This is not surprising since a finite-order pertur-
bation theory cannot describe the physics of the tricritical
point correctly.

In Fig. 2, we show the critical points �location of the tips�
xc=dtc /U versus zV /U. In Fig. 2�a�, xc of the Mott lobes are
scaled with their V=0 value. The critical points are calcu-
lated with the chemical-potential extrapolation technique that
is based on the scaling theory with the exponent z
 fixed to
its known value. It is expected that the locations of the tips of
the CDW lobes increase as a function of V, because the
presence of a nonzero V is what allowed these states to form
in the first place. �The Mott insulator critical points tend to
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FIG. 1. Chemical potential � �in units of U� versus x=dt /U
phase diagrams for �a� two-dimensional �d=2� and �b� three-
dimensional �d=3� hypercubic lattices. We choose the nearest-
neighbor repulsion as V=0.1U. The dotted lines correspond to
phase boundaries for the Mott insulator to superfluid and CDW
insulator to supersolid states as determined from the third-order
strong-coupling perturbation theory �s-c�. The circles correspond to
the extrapolation fit �ext� discussed in the text.
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FIG. 2. �Color online� Critical points �location of the tips� xc

=dtc /U found from the chemical-potential extrapolation technique
described in the text versus zV /U, where z=2d. In panel �a�, xc are
scaled with their V=0 value; in infinite dimensions the exact critical
hoppings for the Mott lobes are independent of V. In panel �b�,
comparing the extrapolated strong-coupling and exact mean-field
results for the d→� limit shows that the critical points for the
CDW lobes become less accurate as V increases. This is because the
coefficient of the O�t4� term in the power series becomes very large
when zV�0.7U, which also causes an unphysical decrease in xc for
zV�0.7U after an initial increase.
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move in as V increases.� Comparing the extrapolated strong-
coupling and exact mean-field �to be discussed below� re-
sults for the d→� limit shows that the critical points for the
CDW lobes become less accurate as V increases. It turns out
that the coefficient of the O�t4� term in the power series is
generally small for the Mott lobes, but it can become very
large for the CDW lobes when zV�U. We recall that we
assume U�zV in this paper. As shown in Fig. 2�b�, this also
causes an unphysical decrease in xc for zV�0.7U after an
initial increase. Therefore, inclusion of the O�t4� terms in the
expansion is necessary to improve the accuracy of the phase
boundaries near the tips of the CDW lobes when zV�U. In
addition, we present a short list of V /U versus the critical
points xc=dtc /U in Table I for �d=2�- and
�d=3�-dimensional lattices.

As a further check of the accuracy of our perturbative
expansion, next we compare the d→� limit of our results to
the mean-field one which corresponds to the exact solution
on an �d→��-dimensional hypercubic lattice.

IV. MEAN-FIELD DECOUPLING THEORY

In the large-dimensional case, mean-field theory becomes
exact. Thus examining the mean-field theory for the ex-
tended BH model provides another way to validate the
strong-coupling expansion and to test to see how well the
scaling result produces the correct phase diagram.

In constructing the mean-field theory, one first defines the
superfluid order parameter as �k= �bk�, where �¯� is the
thermal average, and then replaces the operator bk with
�k+�bk in the hopping term of Eq. �1�. This approximation
decouples the two-particle hopping term into single-particle
ones, and the resultant mean-field Hamiltonian can be solved
via exact diagonalization in a power series of �k. The order
parameter is finite ��k�0� for the superfluid and supersolid
ground states, and it vanishes ��k=0� for the Mott and CDW
phases. Therefore, �k→0+ signals the phase boundary be-
tween an incompressible and a compressible phase. The gen-

eralized order-parameter equation to the case of V�0 can be
written as �27�

�k = �̄kt� nk + 1

Unk + Vk
dip − �

−
nk

U�nk − 1� + Vk
dip − �

� , �19�

where �̄k=��k��k
�k� is the sum of the order parameters at

sites k� neighboring to site k, and Vk
dip=V��k��k

nk� is the in-
teraction of one atom with sites k� neighboring to the site k.

To determine the phase boundary between the Mott and
superfluid phases from Eq. �19�, we set �k=�0, �̄k=z�0, and
Vk

dip=zVn0. Since �0→0+ near the phase boundary, Eq. �19�
can be satisfied only if

1

zt
=

n0 + 1

Un0 + zVn0 − �
−

n0

U�n0 − 1� + zVn0 − �
, �20�

which gives a quadratic equation for �. Notice that this equa-
tion recovers the known result for the on-site BH model
when V=0 �6,28�, and it can be easily solved to obtain

�Mott
par,hol = U�n0 − 1/2� + zVn0

− zt/2 	 
U2/4 − U�n0 + 1/2�zt + z2t2, �21�

where the plus sign corresponds to the particle branch, and
the minus sign corresponds to the hole branch. In the
d→� limit, we checked that our strong-coupling perturba-
tion results for the Mott lobes agree with this exact solution
when the latter is expanded out to third order in t, providing
an independent check of the algebra. �One must note that the
terms V and 2V that appear in the denominator vanish in the
limit when d→� because V�1 /d.� Equation �21� also
shows that the Mott lobes are separated by zV, but their
shapes are independent of V. In particular, the critical points
for the Mott lobes are independent of V.

To determine the phase boundary between the CDW and
supersolid phases from Eq. �19�, we set �i=�A, �̄i=z�B, and
Vi

dip=zVnB for i�A sublattice, and we set � j =�B, �̄ j =z�A,

TABLE I. List of the critical points �location of the tips� xc=dtc /U that are found from the chemical-
potential extrapolation technique described in the text.

V /U

Two dimensions Three dimensions

CDW�1,0� Mott�1� CDW�2,1� Mott�2� CDW�1,0� Mott�1� CDW�2,1� Mott�2�

0.00 0.117 0.0691 0.0981 0.0578

0.01 0.00929 0.117 0.00465 0.0689 0.0143 0.0977 0.00717 0.0576

0.02 0.0183 0.116 0.00916 0.0687 0.0278 0.0974 0.0139 0.0574

0.03 0.0270 0.116 0.0135 0.0684 0.0405 0.0970 0.0203 0.0571

0.04 0.0354 0.116 0.0178 0.0682 0.0522 0.0966 0.0263 0.0569

0.05 0.0434 0.115 0.0219 0.0680 0.0630 0.0962 0.0317 0.0567

0.06 0.0512 0.115 0.0258 0.0678 0.0723 0.0958 0.0367 0.0564

0.07 0.0586 0.115 0.0295 0.0676 0.0814 0.0955 0.0411 0.0562

0.08 0.0656 0.114 0.0331 0.0673 0.0888 0.0951 0.0449 0.0559

0.09 0.0721 0.114 0.0365 0.0671 0.0947 0.0947 0.0480 0.0557

0.10 0.0783 0.114 0.0396 0.0669 0.0990 0.0942 0.0502 0.0555
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and Vj
dip=zVnA for j�B sublattice. This leads to two coupled

equations for �A and �B. Since ��A ,�B�→0+ near the phase
boundary, Eq. �19� can be satisfied only if

1

z2t2 = � nA + 1

UnA + zVnB − �
−

nA

U�nA − 1� + zVnB − �
�

�� nB + 1

UnB + zVnA − �
−

nB

U�nB − 1� + zVnA − �
� ,

�22�

which gives a quartic equation for �. Since a simple closed-
form analytic solution for � is not possible, we solve Eq.
�22� with MATHEMATICA for each of the CDW lobes sepa-
rately. In the d→� limit, we also checked that our strong-
coupling perturbation results for the CDW lobes agree with
this exact solution when the latter is expanded out to third
order in t, providing again an independent check of the alge-
bra.

In Fig. 3, the results of the third-order strong-coupling
perturbation theory �dotted lines� is compared to those of the
exact mean-field theory �red solid lines� and of the extrapo-
lation technique �circles� for an infinite �d→��-dimensional
hypercubic lattice when zV=0.4U. Notice that in infinite di-
mensions, both t and V must scale inversely with d such that
dt and dV are finite. The extrapolated solutions are indistin-
guishable from the exact ones for the Mott lobes, and they
are within 5% of each other for the tips of the CDW lobes. It
turns out that this minor disagreement around the tips of the
CDW lobes is due to the large coefficient of the O�t4� term in

the power-series expansion. Therefore, we conclude that,
even in infinite dimensions, the agreement of the third-order
strong-coupling perturbation theory with the exact mean-
field theory is quite good.

V. CONCLUSIONS

We analyzed the zero-temperature phase diagram of the
extended BH model with on-site and nearest-neighbor
boson-boson repulsions in �d�1�-dimensional hypercubic
lattices. We used the many-body version of Rayleigh-
Schrödinger perturbation theory in the kinetic-energy term
with respect to the ground state of the system when the
kinetic-energy term is absent. This technique was previously
used to discuss the phase diagram of the on-site BH model
�7,8�, and its extrapolated results showed excellent agree-
ment with the recent quantum Monte Carlo simulations
�25,26�. Here, we generalized this method to the extended
BH model, hoping to develop an analytical approach which
could be as accurate as the numerical ones.

We derived analytical expressions for the phase bound-
aries between the incompressible �Mott or CDW insulators�
and compressible �superfluid or supersolid� phases up to
third order in the hopping t. However, we remark that the
strong-coupling perturbation theory developed here cannot
be used to calculate the phase boundary between two com-
pressible phases, e.g., the supersolid-to-superfluid transition.
We also proposed a chemical-potential extrapolation tech-
nique based on the scaling theory to extrapolate our third-
order power-series expansion into a functional form that is
appropriate for the Mott or CDW lobes.

We believe some of our results could potentially be ob-
served with ultracold dipolar Bose gases loaded into optical
lattices �27,29�. This is motivated by the recent success in
observing superfluid–to–Mott insulator transition with ultra-
cold pointlike Bose gases loaded into optical lattices. Such
lattices are created by the intersection of laser fields, and
they are nondissipative periodic potential-energy surfaces for
the atoms. An ultracold dipolar Bose gas can be realized in
many ways with optical lattices. For instance, heteronuclear
molecules which have permanent electric dipole moments,
Rydberg atoms which have very large induced electric dipole
moment, or chromiumlike atoms which have large intrinsic
magnetic moment can be used to generate sufficiently strong
long-ranged dipole-dipole interactions.

This work can be extended in several ways if desired. For
instance, our current results for the CDW phase are not di-
rectly applicable to the one-dimensional case. We are cur-
rently working on this problem and will report our results
elsewhere. In addition, it turns out that the coefficient of the
O�t4� term in the power series is generally small for the Mott
lobes, but it can become very large for the CDW lobes when
zV�U. Therefore, inclusion of the O�t4� is necessary to im-
prove the accuracy of the phase boundaries near the tips of
the CDW lobes when zV�U. One can also examine frustra-
tion effects by performing these calculations on nonbipartite
lattices. In addition, one can include the next-nearest-
neighbor repulsion term to the current model, which would
lead to additional striped CDW phases. Lastly, one can also
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FIG. 3. �Color online� Chemical potential � �in units of U�
versus x=dt /U phase diagram for a �d→��-dimensional hypercu-
bic lattice. Here the nearest-neighbor repulsion scales inversely
with d such that zV=0.4U. The dotted lines correspond to phase
boundaries for the Mott insulator to superfluid and CDW insulator
to supersolid states as determined from the third-order strong-
coupling perturbation theory �s-c�. The circles correspond to the
extrapolation fit �ext� discussed in the text. The red solid lines cor-
respond to phase boundaries for the Mott insulator to superfluid and
CDW insulator to supersolid states as determined from the mean-
field theory �m-f� which becomes exact for d→�.
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examine how the momentum distribution changes with
the hopping in the CDW phase or in the Mott phase
when there is a nearest-neighbor repulsion. This last calcula-
tion could have direct relevance for experiments on these
systems and would generalize recent results for the V=0 case
�30�.
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