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Abstract
We report on low-temperature (4–320 K) transport properties of TaxN thin films deposited on
an amorphous SiO2 substrate. In this work, TaxN thin films were restricted to a narrow range
of x: 0.72 � x � 0.83 yet show considerable and nonmonotonic variation of their transport
properties with Ta concentration. This behaviour is consistent with a local minimum in the
density of electronic states at the Fermi level, as calculated for the rock salt intermetallic
Ta4N5, and a rigid band model for describing the transport. The temperature dependence of the
resistivity is best fit to the unusual form exp(−T/T0). Interestingly enough, the fit parameter
T0 correlates well with the temperature of the maximum of the corresponding thermopower.
Both of these characteristics, the fit and the correlation with the thermopower, are consistent
with the Jonson–Mahan many-body formalism for charge and thermal transport when one has
a nontrivial temperature dependence of the chemical potential. At the lowest temperatures
measured, we have also found that the resistivity and thermopower show signatures of
electron–electron interactions. We discuss also our results in the light of some theories usually
used for describing transport of thin films and to other experimental investigations that have
been performed on TaxN.

1. Introduction

Investigations of the metal–insulator transition (MIT), an as
yet unsolved problem in solid state physics, are stimulated
by an increase in the availability of various kinds of thin-film
samples. Some of these thin films already serve in various
applications and newly produced ones have, by properly
tailoring their electronic and topological structures, potential
to be used in new applications. The vicinity of the MIT is
interesting in applications because a small change of the film
parameters can considerably change the electronic properties,
thereby allowing for externally tuneable devices. Hence, it
is important to understand the underlying physics in order to
produce desired characteristics of thin films.

In the work presented here, we examine transport
properties on a number of different samples of TaxN, and we

find anomalous behaviour which does not fit within the realm
of most conventional theoretical descriptions of disordered and
strongly correlated materials. Similar effects have been seen
before in some amorphous materials where mainly resistivity
was measured and discussed. Here, we added the thermopower
measurements to give a better insight into underlying physical
mechanisms governing the interesting properties we revealed.

TaxN is already used as a diffusion barrier in copper
interconnects on Si chips [1] and as compact thin-film
resistors [2]. Also, it has been shown to hold promise
as a barrier material in NbN-based Josephson junctions for
use in superconducting digital circuits, when it is grown
with a resistivity near the MIT [3, 4]. A theoretical
understanding of what governs the behaviour of Ta vacancies
(which are pentavalent acceptors) and how they affect the
physical characteristics of disordered TaxN was recently
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completed [4–6]. It was concluded that the doping and disorder
due to the Ta vacancy trigger the MIT transition. These
investigations were performed on TaxN thin films grown on
a crystalline sapphire substrate and on SiO2-coated Si wafer,
which is an amorphous substrate. The transport properties
were reported only for the thin films grown on top of sapphire.
Here, we present measurements of the transport properties
of the thin films grown on the SiO2-coated Si wafers. A
complete comparison between these two sets of experimental
data cannot be performed, because the concentration range
of Ta on the sapphire substrate was from x = 1.2 to
x = 0.43, which spans the critical concentration, x = 0.6,
of the MIT, while those on the amorphous substrate vary
over a much narrower range of concentrations; from x =
0.72 up to x = 0.83 which does not include the critical
concentration. In addition, the thermopower, which shows
interesting temperature dependence, was not measured below
room temperatures down to 4 K. Nevertheless, even in such
a small range, the concentration variation of the measured
physical quantities is considerable and quite interesting. It
should be noted that, by varying the growth conditions (the
partial pressure of N2), as it was described in [4–6] and
here in short in section 2.1, the concentration range where
the monocrystalline TaxN rock salt structure was formed in
the samples is much narrower if deposition was done on
amorphous SiO2 substrate than if it was done on crystalline
sapphire substrate.

In this work, we present measurements of the resistivity
and thermopower in the temperature range spanning
∼4–320 K. The results are surprising because we find
both a strong concentration dependence to the transport and
we find a temperature dependence of the resistivity that
is fit well by an exponential in temperature exp(−T/T0).
This is an unusual functional form for describing resistivity,
but it can be further correlated with the maximum in the
temperature variation of the corresponding thermopower.
Namely, although the resistivity is a monotonic function of
temperature, the thermopower shows a more complicated
variation. But, interestingly enough, it assumes a broad
maximum near the temperature T0 used as a parameter in the
resistivity fits. Moreover, the derivative of the conductivity
(σ = 1/ρ) with respect to temperature also correlates well
with the thermopower: showing a maximum near T0 ≈ 100 K
and showing a minimum at the lowest temperatures, just as
the measured thermopower does. Such a close and simple
correlation between resistivity and thermopower in so wide a
temperature range (from 4 K to 330 K) is one of our interesting
observations, to our knowledge, not seen so far. It should
be emphasized that there is not much thermopower data for
similar systems (below room temperature), hence this work
presents an opportunity to try to explain both the resistivity
and thermopower by the same theory. We show that within
the general Jonson–Mahan many-body formalism [7, 8] for
charge and thermal transport, such an exponential dependence
on temperature for the resistivity and the broad maximum for
the thermopower are consistent with each other, if one chooses
a special temperature dependence to the chemical potential
with temperature.

To put our results in the context of conventional
approaches, and because we do not have a microscopic
model that yields the required temperature dependence of the
chemical potential, we also discuss our data within standard
theoretical models for thin films, for, so-called, dirty metals and
for heavily doped semiconductors near MIT. In particular, we
find that at the lowest temperatures measured, below 20 K, the
resistivity and thermopower are governed by electron–electron
interactions.

We also show that the nonmonotonic concentration
dependence of the transport can be understood by examining
the density of states of Ta4N5 calculated from first principles
[5, 6], assuming a rigid band model for concentrations close to
x = 0.8 and assuming that the density of states of the samples
is similar to that of the periodic Ta4N5 phase at x = 0.8.

2. Experimental methods

2.1. Deposition details

TaxN is synthesized in a high-vacuum sputtering system
equipped with a dc magnetron sputter gun (model Torus 2C,
Kurt Lesker Co.) containing a 99.5%-pure 5.1 cm diameter
Ta target. Two types of substrates are used: 1 cm2 (0 0 0 1)
sapphire and 10.2 cm diameter (1 0 0) Si wafers coated with a
140 nm thermal SiO2 layer. In our experiment, a mixture of N2

and Ar is used as the sputtering gas. The concentration of Ta
in these thin films depends mainly on the partial pressure of N2

and on the temperature of the substrate during the deposition
process. In the case of the Si wafers, the partial pressure was
varied from 50 to 100 mTorr while the temperature was kept
constant at 450 ◦C. Thus, we expect that the dynamics of the
processes during the cooling to room temperature were the
same for each thin-film sample even though the concentration
varied. Rutherford backscattering spectroscopy was used to
determine the chemical composition and film thickness.

2.2. Room temperature resistivity

For the resistivity measurements, the samples were cut into
pieces of size 5 mm × 1 mm. The voltage probe and current
sourcing Cu wires (� = 40 µm) were affixed to the sample
with silver paint. The width of the silver paint was up to
0.5 mm and introduced the greatest error in the determination
of the resistivity calculated according to Ohm’s law: ρ =
(V/I)(ab/l), where ρ is the resistivity of the sample, V is the
voltage, I is the current, l is the distance between the voltage
contacts, b is the width and a is the thickness of the sample.

The resistivity was also measured by a commercial four
point probe instrument with a probe spacing of 0.1 cm (Kulicke
and Soffa (Jandel)). The current was linearly increased in 5 mA
steps up to 60 mA and the mean value of the sheet resistance,
Rsq, was calculated for a given concentration. In this interval
of current, Ohm’s law was also satisfied. The resistivity was
then calculated by the following relation: ρ = Rsqa. The
experimental procedure with a comparison between the two
described methods was recently used in investigations of Si : B
thin films [9]. Independently, the resistivity was also measured
on another cut sample but in the van der Pauw geometry. All

2



J. Phys. D: Appl. Phys. 43 (2010) 445405 M Očko et al

Figure 1. Room temperature resistivity, ρRT, versus concentration,
x, measured by the four contact method (open down triangles), four
point probe (closed up triangles) and in the van der Pauw geometry
(open up-triangles). Note the agreement between the data for the
two commercial methods. The four point method is also in good
agreement, although the sizes of the samples were much smaller
than those used for the first two methods.
The open points plot the negative temperature coefficient of
resistivity (TCR) (1/ρ)(�ρ/�T ) at room temperature versus the
concentration x. They show almost the same concentration
dependence as ρRT. In the upper inset, we show how the film
thickness a depends on the concentration (closed squares—the
left-hand scale). The N2 partial pressures for each concentration
obtained (open squares—the right hand scale) are shown with open
symbols.

three sets of the room temperature resistivity measurements are
displayed in figure 1 (lower part). Good agreement amongst
the data is obtained and we can infer, considering all the
sets of the data, that the resistivity depends on the chemical
composition with a maximum near x = 0.78. The differences
amongst the data for a given concentration/sample come from
the different measurement methods used for the resistivity
and they are not due to the inhomogeneity of the electrical
properties across the different wafers.

In the upper inset of figure 1, the thickness a versus the
chemical concentration is also shown. The N2 partial pressure
used in the sample preparation for each sample chemical
composition is also illustrated.

2.3. Microstructural investigations

As reported in earlier publications [5, 6], x-ray diffraction
and high-resolution cross-sectional transmission electron
microscopy (TEM) were used in the investigation of both kinds
of samples: the samples where the deposition of TaxN is done
on the sapphire (Al2O3) substrate and on the SiO2 one. X-ray
diffraction indicates that the synthesized films are composed
of TaxN in a rock salt structure oriented along the 〈1 1 1〉
growth direction. It was observed that the Bragg reflections
are broader for concentrations on the N-rich side with respect

to the ones on the Ta-rich side. This fact is consistent with
the TEM analysis. Samples on the N-rich side have a ∼5 nm
subgrain mosaic structure with misorientations on the order of
∼5◦. The TEM images of the sample for x = 0.66 where
the deposition is done on sapphire (Al2O3) and for x ′ = 0.8,
nominally, i.e. x = 0.81, as measured, where the deposition
is done on the SiO2 substrate, are shown in figures 2(a) and
(b) respectively. Here we point out that the crystal structure
and even the subgrain structure of these two very different
samples of the TaxN thin films are surprisingly similar [6].
As we had investigated the samples with the concentrations
below x = 1, these results of the structure and microstructure
investigations lead us to conclude that the transport properties
measured depend mainly on the concentration x, i.e. on the
chemical composition and not on the substrate.

2.4. Measurements of the transport properties

For the thermopower measurements, the films were cut into
pieces of size 5 mm long and 1 mm wide with each end in
direct thermal contact with a heater. The samples for the
resistivity measurements were already described earlier. The
thermovoltage Cu wires (� = 40 µm) were sealed onto
each sample with silver paint. Both samples, usually of the
same concentration, were mounted in a calorimeter, which is
then put into a liquid He/N cryostat for the low-temperature
measurements. The temperature dependence of the resistance
from 320 K down to 2 K was measured by the dc technique
(Keithley nanovoltmeter K-181, Yokogava current source).
The temperature was read from a RhFe thermometer and the
measurements were fully automated. More details on the
thermopower and resistivity measurement techniques are given
in [10].

Measurements of the thermopower on these samples
were more difficult, especially at the lowest temperatures,
when compared with thermopower measurements of ordinary
metallic alloys with much lower resistivities. Therefore, for
some concentrations, we do not show any low-temperature
data, because the results are not trustworthy. In addition, the
magnitude of the thermopower of TaxN is quite small below
100 K and, for some concentrations, in the whole temperature
interval measured (see, for example, for x = 0.72). In
these cases, the data are not as reliable as in cases when the
thermopower is larger in magnitude. One has to recall that
the measured thermovoltage consists of the thermovoltages
generated in the sample and in the thermovoltage wires (in our
case they were pure, well calibrated Cu wires): Umeasured =
UCu − Usample. The thermovoltages of the Cu wires are small
(increasing nonlinearly from 0 µV K−1 at zero temperature to
1.8 µV K−1 at room temperature). The measured thermopower
for x = 0.72 is even lower in magnitude. Therefore, this
sample has a much reduced signal-to-noise ratio than the other
samples, which is likely to be the reason why the measured
temperature dependence of the thermopower of this sample
differs from the results of the other concentrations.
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Figure 2. (a) Cross-sectional TEM image and selected area diffraction pattern (inset) of a nitrogen-rich Ta0.66N film grown on sapphire. The
material has a ∼5 nm subgrain mosaic structure with misorientations on the order of ±5◦ (as most easily seen in the diffraction pattern). The
predominant in-plane epitaxial orientations are TaN(1 1 1)||Al2O3(0 0 1) and TaN(1 1̄ 1 0)||Al2O3(1 1̄ 0 0). In the figure, one can see both the
substrate and the deposited TaxN film. (b) Cross-sectional TEM image of a nitrogen-rich Ta0.80N film grown at 450 ◦C in 4.9 mTorr N2

partial pressure on an oxidized Si wafer. The material also has a ∼5 nm subgrain mosaic structure.

3. Experimental results

In figure 1, we also plot the negative value of the TCR at
room temperature, (1/ρ)(�ρ/�T )|RT, versus concentration x

(open circles). Note that there exists a correlation between
the resistivity at room temperature and the TCR at room
temperature. This correlation is called the Mooji empirical
rule for disordered systems [11]: namely for room temperature
resistivities larger than 150 µ� cm, the TCR is negative and
the absolute value increases with resistivity. The accordance
of our data with the Mooji rule (in such a small concentration
interval with relatively small resistivity change) indicates that
the samples are of good quality. The discrepancy at x = 0.81
is much smaller if we instead use the results for the resistivity
at room temperature that are obtained by the two commercial
methods of measurement as discussed in section 2.2.

In figure 3, we plot the ratio of the temperature dependent
resistivity to the resistivity at room temperature, ρ(T )/ρRT, for
TaxN as a function of temperature. For all concentrations, the
resistivities show a nonmetallic temperature dependence, i.e.
they are, as expected, in an insulating regime of the MIT where
the resistivity decreases as the temperature increases (although
it does not appear to diverge as the temperature approaches zero
as expected for a true insulator). We show that a function of
the form

ρ(T )/ρRT = A + B exp(−T/T0) (1)

describes well the resistivity data of TaxN in a wide
temperature interval. The extracted parameters are given in
the inset of figure 3. Interestingly enough, this expression
(1) can also fit the resistivity data of amorphous ZrxNi1−x

alloys from the room temperature down to about 4 K [12].
It was shown that the same function also fits the resistivity
of FexNi1−xP14B6 amorphous alloys below the resistivity
minimum [13]. The similarity of our system to amorphous
ZrxNi1−x and FexNi1−xP14B6 also holds with respect to the
Mooji rule. Mizutani suggested that amorphous materials

Figure 3. Temperature dependence of the resistivities represented
by the relative resistivities ρr(T ) = ρ(T )/ρRT of TaxN thin films.
Open circles are the experimental data while the solid lines are the
best fits to the exponential function: ρr(T ) = A + B exp(−T/T0).
In the inset, the fitting constants A, B and T0 are plotted versus
concentration.

with high resistivity could be and should be fit by equation (1)
[14]; one major pitfall to this procedure is there is no known
microscopic mechanism that generically yields such a form.
In section 4.7, we show that equation (1) is consistent with an
exact Jonson–Mahan formalism for transport, but only when
the chemical potential has a rather special dependence on
temperature [7, 8].

At the lowest temperatures, the resistivity shows
signatures of electron–electron interactions, which are
discussed in section 4.5.
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Figure 4. Thermopower of TaxN thin films. In the inset, the
derivatives of the conductivities (σ = 1/ρ) of TaxN are presented in
order to show the connection between the resistivity and
thermopower. The derivative of the conductivity produces all the
main features of the thermopower: a wide maximum at higher
temperatures and a minimum at low temperatures.

In figure 4, the thermopower of the TaxN thin
films versus temperature is displayed. The temperature
dependence of the thermopower appears quite different from
the temperature dependence of the corresponding resistivity.
A maximum around 100 K appears, while the resistivity
increases monotonically with temperature down to the lowest
temperatures measured. However, interestingly enough, one
can note that the extracted constants T0 for the exponential
fit to the resistivity data correspond well to the thermopower
maxima. Furthermore, from the inset of figure 4, where
the derivative of the conductivity (dσ/dT ) is shown, one
can conclude that there exists a correspondence between
the conductivity and thermopower data. The maximum of
the derivative of the conductivity, (dσ/dT )M, is, however,
somewhat shifted from the thermopower maximum. The
position of the maximum can be obtained from the expression
d2[1/(A + B exp(−T/T0)]/dT 2 = 0. Solving for the
temperature of the maximum yields T ≈ T0 ln(B/(A + B)).
Using the parameters from the inset of figure 3 in this
relation shows that the maximum should be larger for lower
concentrations just as shown in figure 4 (and in the inset).

In addition, the derivative dσ/dT displays minimum at the
lowest temperatures, as the thermopower does. This behaviour
is attributed to electron–electron interactions as discussed in
section 4.5.

Still another correlation between the resistivity and
thermopower data can be seen from figure 5. Here, the
correspondence is with respect to the chemical concentration.
In the inset of figure 5, we show the ratio of the resistivity at
4.2 K, ρ4.2 to the resistivity at room temperature, ρRT, (circles)
together with the negative value of the thermopower at room
temperature, αRT, (squares) versus the concentration x. Both

Figure 5. Temperature dependence of the resistivity versus
concentration. Note the much stronger temperature dependence of
the resistivity for x = 0.78 and 0.81 versus other concentrations. In
the inset, we plot the ratio of the resistivity at 4.2 K, ρ4.2, to the
resistivity at room temperature, ρRT, (circles) together with the
negative value of the thermopower at room temperature, αRT,
(squares) versus concentration.

of these quantities have maxima at x = 0.78, just as the room
temperature resistivity does. In the main panel of figure 5, we
also plot the resistivities in order to point out the difference
between the resistivities for x = 0.78 and 0.81 and the other
concentrations.

4. Theoretical discussion

4.1. Concentration dependence

Besides the temperature dependence of the resistivities and
thermopowers of TaxN (0.72 � x � 0.83) they show
interesting dependence on concentration. Namely, one expects
that the resistivity would increase with decreasing x, i.e. with
increasing the number of Ta vacancies leading finally to the
MIT transition at x = 0.6 [5, 6]. In addition, the number
of available conducting electrons decreases with x. However,
our experiments in the narrow concentration range investigated
do not show this generic behaviour. Neither the resistivity
(figures 3 and 5) nor the rate of temperature change of the
resistivity (figures 1, 3 and 5) is monotonic functions of x. It is
interesting, further, that both of these physical quantities have
the same concentration dependence and have a maximum at
about x = 0.8.

To explain such behaviour, we argue that near x = 0.8 a
‘commensuration effect’ exists: if the tantalum vacancies order
themselves in a periodic fashion, a sharp dip in the density
of states g(ε) is then formed near the Fermi energy, EF, as is
often seen in the band structure of stoichiometric intermetallics
calculated by density functional theory (rigorously speaking,
we only need the system to be described by a rigid band
model with a dip in the density of states near x = 0.8 for
this argument to hold; the presence of actual periodic order
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is not a requirement). It is known that Ta4N5 (x = 0.8) is
a stoichiometric intermetallic compound which crystallizes in
the rock salt structure.The band structure calculations show a
sharp dip in g(ε) at EF (see figure 2(e) in [5]). One may expect
that, in the TaxN alloy system near x = 0.8, the band structure
is similar. The effect of reducing the electron number due to
the dip in g(ε) is responsible for a larger resistivity according
to the simple Drude picture for conduction:

ρ = me/Ne2τ , (2)

whereN is the electron concentration, me and e are the effective
electronic mass and charge, respectively, and τ is the relaxation
time. Note that the samples do not need to actually form the
periodically ordered phase for this explanation to hold. It will
also hold if the system is described well by a rigid band model
for doping about the commensuration point, as one fixes the
density of states in that case and changes the chemical potential
to describe the doping. Such a simple physical picture can
explain the experimental results: the resistivity is the largest
when the Fermi energy EF is near the minimum of the density
of states g(ε), i.e. for x = 0.8.

It is more difficult to explain the thermopower in such a
simple fashion because the thermopower is very small and it
changes the sign as the temperature is increased. According
to Mott’s relation for thermopower one has

α ∝ 1

g(ε)

dg(ε)

dε
,

for the low-temperature limit, so one would conclude for this
TaxN system that the minimum of the density of states is also
near x = 0.80, but it is difficult to quantify this because the
low-temperature thermopower becomes too small at the lowest
temperatures to see the concentration range for the sign change.
In addition, one might think that the results for x = 0.72,
which also has a negative thermopower, has the wrong sign
to fit the rigid band model. We think this sample is probably
doped too far for the rigid band model to hold any more, as
we expect the thermopower to once again be negative as we
approach the MIT from concentrations above x = 0.6. Since
the temperature range for the sign change is low, one would
need the rigid band model to have a sharp dip in the density of
states near the minimum, and indeed the calculated g(ε) does
have a very sharp dip in g(ε) at EF (see figure 2(e) in [5]).

As we discuss below (equations (18) in section 4.7), a
simple analysis provides the following general rule: if the
resistivity is large, then the higher temperature thermopower
is large. This rule may explain the fact that the maximal
thermopowers in our case are for x = 0.78 and 0.81. The large
thermopower arises from finite-temperature effects where the
asymmetry of the density of states plays a significant role (at
low temperatures, the thermopower is small near the minimum
of the density of states). Hence, under the assumption of
a rigid band model near x = 0.8, we can explain the gross
features of the concentration dependence of the resistivity and
thermopower of TaxN (0.72 � x � 0.83) as being primarily
due to a dip in the density of states near the Fermi level.

Figure 6. In this plot, we show that the resistivity of TaxN thin films
cannot be explained by an activation process: ρ ∝ exp(�/T ), by a
tunnelling process (CELT): ρ ∝ exp[(W/T )1/2] or by the VRH
theory: ρ ∝ exp[(TVRH/T )1/4]. The resistivity data for the alloy
with x = 0.83 are shown on a plot withln ρon the vertical axis
plotted against 1/T (the full line), 1/T 1/2 (the dashed line) or
against 1/T 1/4 (the dotted line) on the horizontal axis. The two
insets show Arrhenius plots over different temperature ranges to see
if activated behaviour ever occurs in the system.

4.2. Negative TCR and the thermopower

For all concentrations of TaxN investigated, the resistivities
show insulating behaviour with respect to temperature, i.e. the
resistivity increases with decreasing temperature or the TCR:

TCR = 1

ρ

�ρ

�T
(3)

is negative for all concentrations and temperatures measured.
In what follows, we discuss some theories that yield a negative
TCR and the application of those theories to our experimental
results.

Even though our resistivity data all show a negative TCR,
the temperature dependence does not show activated behaviour
from an insulating gap:

ρ ∼ exp(−�/T ). (4)

An Arrhenius plot is shown in figure 6 for x = 0.83. The
plot of ln ρ versus 1/T indicates that the standard activated
transport in equation (4) cannot fit the data for a similar
range of temperatures as equation (1) can. In the insets we
show that activated behaviour is also not seen for higher and
lower temperatures. In addition, if equation (4) was valid, the
thermopower would behave according to

α ∼ �/T, (5)

which has a strong temperature dependence at low
temperatures. Figure 4 shows that the thermopower does not
have this form for its temperature dependence.

A negative TCR can also be obtained within Ziman’s
theory primarily devoted to liquid metals [15]. This theory
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is also applicable to amorphous metals, for which the Mooji
empirical rule is valid. From this theory, one finds that
corresponding thermopower becomes positive and has linear
temperature dependence when the TCR becomes negative [16].
Thus, it is obvious that this theory is not applicable to our case
even though TaxN certainly has disorder.

Ta is a transition metal element with an open d shell,
but it is unlikely that TaxN has significant Kondo scattering.
While the Kondo effect does yield a negative TCR, it also
usually produces sharp peaks in thermopower. In our case, the
thermopower is moderate in magnitude, with broad peaks, and
hence unlikely to be caused by Kondo physics.

4.3. Inhomogeneity of samples

It is common when working with thin films that experimental
results have more sample-to-sample dependence because the
properties of the films depend on the process of sample
preparation, on the temperature of deposition, on the way the
crystal grows, on the sample thickness, the sample profile, its
homogeneity, etc. The profile of a sample typically consists
of two different zones: the chill zone near the surface and the
columnar zone which stretches perpendicularly to the surface
inside the sample. In the chill zone, samples are usually
homogeneous, but there might be amorphous material between
the columns. Therefore, electrons should tunnel from column
to column which produces a negative TCR; this may be treated
as an inhomogeneity on the mesoscopic scale. The resistivity
due to such tunnelling can be described by the charge-energy-
limited-tunnelling (CELT) model [17]:

ρ ∼ exp[(W/kBT )1/2], (6)

where W is the charging energy. In [18], it is shown that this
function describes the resistivity of their TaxN samples above
20 K. In figure 6, we show that this function does not fit our
data. This suggests that, for our samples, columnar zones, if
they exist, are not significantly important in the transport. In
addition, the upper part of figure 1 shows that the thickness
a of our samples increases with decreasing x. If the CELT
model was appropriate for our samples, one would expect that
resistivity to increase with decreasing x according to the CELT.

In section 2.3, it is shown that our samples are
inhomogeneous on a nanoscopic scale. One can expect in
such a case that the resistivity can be fit by some variation of
Mott’s variable range hopping (VRH) model [18, 19]:

ρ ∼ exp[(TVRH/T )s], (7)

where the exponent s satisfies s = 1/4 if one is dealing with a
three-dimensional material. The exponential behaviour comes
from the assumption that there is a difference between the
energies of the initial and final state of a scattered electron.
Figure 6 shows that equation (7) does not fit our data. This
means that the electronic mean free path is smaller than the size
of the inhomogeneity. In figure 6, we show that the resistivity
cannot be fit by equation (4) (full line), by equation (6) (dashed
line) or by equation (7) (dotted line). This is illustrated
explicitly for the x = 0.83 alloy, but also holds for all the
concentrations investigated. Hence the transport must be
described by a different microscopic model.

4.4. Weak localization

In cases where disorder dominates the transport, the system is
typically described by weak localization theory if the disorder
is not too strong. The existence of a negative TCR can be
attributed to the interplay of localization and delocalization
processes. Anderson showed that, in a sample with disorder
where the size of the sample was large enough (L → ∞),
electrons would be localized due to quantum coherence.
Hence, the net conduction at zero temperature would be zero
even in the case when the density of states at the Fermi level
is not zero [20]. But in real systems, the size of the samples
is limited and electrons can reach the second electrode after a
finite number of scattering events. The scaling theory for weak
localization deals with the relation between the sample size (L)
and the dimensionality (d) of a sample and how they determine
the conductivity of the sample when quantum coherence is
taken into account [21, 22]. The conductivity in the 3D case
can be expressed for L > 	 in the form [23]

σ3D(L) = σ0 − e2

h̄π3

[
1

	
− 1

L

]
, (8)

Where 	 is the elastic mean free path and σ0 is the
contribution to the conductivity calculated in a classical way
(equation (2)). According to relation (8) and a simple
mathematical calculation, with increasing L, σ would be
decreased. The second term (the first one in the bracket)
arises from quantum interference effects; it decreases the
conductivity. Equation (8) is valid at T = 0. With increasing
temperature, inelastic scatterings appear which destroy the
quantum coherence. If τin 
 τe (9), an electron diffuses the
distance

LTh = (Dτin)
1/2, (9)

where LTh is Thouless distance. Within LTh, coherence is
maintained. D is the diffusion constant, τin is the inelastic
relaxation and τe the elastic relaxation time. We note here
that the effective dimensionality of a system is the number
of dimensions for which the sample size is larger than the
Thouless distance:

L > LTh. (10)

Assuming
τin ∝ T −p, (11)

where p depends on scattering mechanism, taking L ∝ LTh ∝
τ

1/2
in ∝ T −p/2 one then finds

σ3D(T ) = σ(0) +
e2

h̄π3

1

c
T p/2, (12)

where c is a constant and σ(0) is the conductivity at
zero temperature comprising the first and second terms
of the equation. According to equation (12), assuming
that weak localization is the underlying physics which
governs the observed temperature dependence of the
resistivity/conductivity, it is customary to fit the experimental
data to the form

σ = σ(0) + bT n. (13)
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Figure 7. Conductivity of the TaxN thin films versus temperature.
The lines represent the fit of the experimental results to the
functional form σ = σ ′′

o + b′′T n. In the inset table, the fitting
constants σ ′′

o , b′′ and n are shown.

The value of the exponent n determines the dephasing
mechanism, which primarily destroys the coherence of the
elastic scattering, thereby destroying weak localization. There
are many theories predicting various dephasing processes
under various conditions but here we mention only some
which could be candidates to explain the TaxN resistivity data.
When the dominant dephasing mechanism is electron–phonon
scattering, the expected value of p is 3 (n = 3/2) [24], while in
the case of inelastic electron–electron collisions, p is 2 and 3/2
for the clean and dirty limits [24], respectively. Furthermore,
values of n equal to 0.5, 1 and 1.5 have been predicted by
Kaveh and Mott for transport dominated by electron phonon
scattering for T 
 TDeby, electron–electron scattering and
electron phonon scattering for T < TDeby, respectively [25],
However, Dodson et al associate p = 2 with electron–phonon
scattering [26]. Clearly, a consensus has not been reached as
to the value of n expected for each dephasing mechanism.

Fitting the TaxN data to equation (13), [5, 6] found that n

lies between 1 and 1.2 for most films deposited on sapphire.
These values fall within a range found for a number of films
reported in the literature, including 0.84 for AuGe alloys [26],
1.2–1.65 for composite Al–Ge films [27], 0.3–0.7 for Si doped
with P [28, 29] and 0.5 for Y–Al metallic glasses [30].

In figure 7, we present our data together with the values
of the best fits obtained from the relation in equation (6).
The exponent n is slightly smaller than 1 implying that the
dephasing for the inelastic scattering mechanism might be
electron–phonon scattering according to Dodson et al [26].
Like the other parameters extracted from our data, n does
not show a monotonic change with the concentration, but
an extremum near the middle of the concentration interval
investigated. The values in this case are very close to 1, within
5%, being 0.95 and 0.99 for x = 0.81 and 0.78, respectively.

Typically, an integer value for p is rarely found
in experiments. The theoretical relations are certainly
oversimplified for application in a wide temperature range.
For example, the relation in equation (9), τin 
 τe or 	in 
 	

might not be completely fulfilled at higher temperatures. This
does not imply that there is no quantum coherence and thereby
no localization at higher temperatures. This means just that the
theoretical description is more complicated. A negative TCR
generally indicates that localization still persists, but such a
simple relation (as shown in equation (11)) between τin and T

does not. One may argue that just this fact and localization
lead to the exponential relation in equation (1), which can fit
our resistivities. Namely, figure 7 shows that equation (13) can
describe our data relatively well, and with some corrections to
equation (13) by changing equation (11) one could eventually
lead to equation (1).

We saw in section 4.2 that the thermopower served to
further discriminate the applicability of models which could
describe the resistivity data. It is not clear how to determine the
temperature dependence of the thermopower corresponding to
the resistivity in equation (13) as we are unaware of any theory
for the thermopower in weak localization. Hence, we now use
some different physical models to obtain equation (1), but with
the additional requirement that the thermopower must also be
explained by the same model (see sections 4.6 and 4.7).

4.5. Electron–electron scattering

Equation (12) was derived under the assumptions of
noninteracting particles. Altshuler et al [31] took into account
the influence of the electron–electron interaction (e–e) in a
disordered system. Besides the influence on coherency of
elastic processes, there exists an additional contribution of the
e–e interaction (like the T 2 term in crystalline systems):

σ = σ(0) + mT 1/2 + bT n, (14)

where m can be negative as it is in some highly doped
semiconductors [9, 31], but in disordered metallic systems it is
usually positive like the third term in equation (14). Plotting
the transport data versus T 1/2 (figure 8) shows the presence of
the T 1/2 term at the lowest temperatures. For x = 0.83, the
interval of this term stretches to about 20 K (see also figure 9),
but for x = 0.81 and 0.78 the interval is only up to 11 K. For the
data with x = 0.72 and 0.76, the lowest measured temperature
is too high to see the electron–electron interaction term. The
extracted values of m are plotted in the inset to figure 8.

Our data (closed circles) are compared with the results
from [18]. Both sets of the data show that the data are mutually
comparable and that m decreases with decreasing x. Moreover,
both sets of data can be scaled to a theoretical curve for m.
In [31], an expression for m is given which was compared
with the experimental results in [29]:

m ∝ 1 − (3/2X) ln(1 + X), (15)

X = (2kF/κ)2, (16)

where kF is the Fermi wave number and κ−1 the Thomas–Fermi
screening length.
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Figure 8. Conductivity at the lowest temperature measured for the
x = 0.78, 0.81 and 0.83 alloys plotted against 1/T 1/2 in order to
reveal the existence of electron–electron scattering. The extracted
parameters m are displayed in the inset together with the ms
from [18]. The dashed line represents the function f coming from
theory which accounts for the contributions of electron–electron
scattering to the conductivity ([31]).

Figure 9. Thermopower and conductivity of the x = 0.83 sample
plotted against 1/T 1/2 in order to show the temperature range where
the electron–electron interaction dominates the transport properties.

The main puzzle that might remain with this conventional
analysis is that if localization is the driving physics of these
samples, governing the high-temperature behaviour, then why
does not the resistivity diverge as the temperature goes to
zero? A standard answer within weak localization theory
is that the coherence length, ξ , is larger than the dimension
of a sample, L. The almost abrupt evolution to the T 1/2

dependence in the resistivity and the abrupt evolution to the
thermopower minimum (figure 9) suggest that the inelastic
electron–electron interaction is the mechanism which hinders
Anderson localization in the samples we have investigated.

In figure 9, we also plot the thermopower. One can clearly
see that the low-temperature peak is occurring in precisely the

temperature range where the system is dominated by electron–
electron scattering.

Here we note that [18] also found that the resistivity
of the TaxN thin films was determined by electron–electron
interactions at low temperature (described by the form ρ =
ρ(0) + m′T 1/2). At higher temperatures, the resistivity was
described by the CELT model by equation (6). It is not clear
to us how the divergence in the resistivity as the temperature
goes to zero is avoided or removed by the electron–electron
interactions in their samples.

We have one cautionary note to make about how to apply
weak localization theory. In many papers, equations (13)
and (14) are written in terms of the resistivity instead of the
conductivity. The relations have the same form when one
assumes ρ(0) 
 m′T 1/2, b′T n. However, such an approach is
flawed because the theoretical equations of weak localization
and of electron–electron scattering are inferred in terms of σ

and the theoretical interpretations of the exponent m is given
in terms of σ ; if one instead performs the analysis in terms of
resistivity, one can reach incorrect conclusions. For example,
in [18], the low-temperature data were fit by ρ = ρ(0)+m′T 1/2

and the extracted ms were not found to be a monotonic function
of x. However, if one calculates m from their data using
the power law behaviour for the conductivity (it is easy to
show that m = −m′/ρ(0)2), then the inset to figure 8 shows
that m is a monotonic function of x. Moreover, these values
are in accordance with ours and both data are in accordance
with the theory of electron–electron interactions in disordered
systems [31].

4.6. Falicov–Kimball model

An alternative picture for describing the scattering due to the
Tantalum vacancies is to use the Falicov–Kimball model [32],
where the heavy particles are Ta ions and the light particles
are the conduction electrons. Since the electrons have a
different local site energy when they are on a site with a Ta
vacancy versus on a site where a Ta ion lies, the local Coulomb
interaction is just between the conduction electrons at site iand
the ion at site i;it represents the difference in the site energies
between an electron and a Ta ion versus an electron and a Ta
vacancy. The local electrons also hop between neighbouring
sites in the Falicov–Kimball model, whose Hamiltonian is then

HFK = −
∑
〈ij〉

tij c
+
i cj + U

∑
i

c+
i ciwi, (17)

where we assume for simplicity, just spinless electrons (spin is
trivial if the conduction electrons have negligible electron–
electron interactions between themselves). The hopping
matrix element −t is between nearest neighbours and the
symbol wi denotes the Ta ion concentration at site i. Because
the presence of a vacancy reduces the number of electrons in the
system, we relate the ion fillings to one minus the concentration
of vacancies as wi = x and the electron concentration as
ρe = 0.5−wi/6 = 0.5−x/6, so the system, with repulsive U ,
will have a Mott-like MIT at x = 0.6 when the interaction
is large enough and will be a good metal at x = 1; note
that there are many different ways one can choose to vary the
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fillings with the Ta concentration (especially for the mapping
onto an effective spinless single-band model), one just needs
to have the electron concentration equal to 0.4 when the Ta
concentration is 0.6 to obtain a MIT when the interaction
is large enough. This model, including all of its transport
properties, can be solved exactly in the infinite-dimensional
limit using dynamical mean-field theory and it corresponds
to examining annealed averages over the disorder rather than
quenched averages of weak localization theory. Details for
how this is done appear elsewhere [33]. Unfortunately, it is
difficult to get this model to describe the shape of the resistivity
versus temperature that is seen in experiment. The insulating
behaviour exists only exactly at the critical Ta concentration
(x = 0.6), and the resistivity will be orders of magnitude
higher there than at other concentrations in the numerical
calculations (if U is large enough to be beyond the Mott
transition). The model does not typically have an exponential
dependence of the resistivity on temperature; such a shape is
possible to find with finely tuned parameters near the critical
interaction for the MIT, but does not remain when doped
far enough away from the critical doping (as in the current
experimental data). It is possible that the failure of the Falicov–
Kimball model to describe this system arises from the lack of
localization physics in the model (the Falicov–Kimball model
involves an annealed average over the Ta vacancy sites). An
insulator is formed only when there is a gap in the density
of states, and that always gives rise to thermally activated
resistivities, which are huge compared with the nearby metallic
cases. The model can produce an insulator-like temperature
dependence to the resistivities (negative TCR), where the
resistivity decreases as the temperature increases, but not with
the correct functional form seen in experiment unless the
parameters are fine-tuned. The experimental systems appear
to be more like anomalous (non-Fermi liquid) metals—the
resistivity rises as T falls, but it does not diverge at T = 0,
and hence remains conducting (albeit with a large resistivity).
This strange temperature dependence along with the fact that
the resistivity can be above the minimum metallic resistivity
implies the system, if it remains conducting, is an anomalous
metal.

4.7. Jonson–Mahan formalism

Our next step in trying to formulate a general theory for the
transport proceeds along more basic grounds using the many-
body formulation of transport theory via the current–current
correlation function and the Kubo formula. Our philosophy
is to determine the exact functional form for the transport
in terms of the many-body relaxation time. We then use a
phenomenological expansion for the relaxation time, based on
a simple Taylor-series expansion, to analyse the data. This does
not provide a microscopic description of the transport but does
show how the charge and heat transport must be interrelated.

When one calculates the charge and heat transport, one
can relate the thermopower to the resistivity via the transport
integrals and the Jonson–Mahan theorem [7, 8]. Here we find
that the resistivity satisfies

ρ = h

e2L11
; L11 =

∫
dω

[
−df (ω − µ)

dω

]
τ(ω), (18)

with f (ω − µ) = 1/[1 + exp{(ω − µ)/T }] the Fermi–Dirac
distribution function and τ(ω) the number current–number
current correlation function (effective many-body transport
relaxation time) including all vertex corrections and summed
over momentum. Similarly, the exact expression for the
thermopower is

α = − kB

|e|T
L12

L11
;

L12 =
∫

dω

[
−df (ω − µ)

dω

]
(ω − µ)τ(ω) (19)

with the same transport relaxation time τ(ω) as is used in the
L11 integral. Instead of developing a microscopic model for the
transport relaxation time, we assume that it takes a relatively
simple functional form, and then determine what constraints
are placed on the equations to yield the observed transport
behaviour. This is a phenomenological approach within the
confines of the exact many-body theory.

The basic idea underlying our approach is that the Ta
vacancies are static defects, and hence we do not expect the
transport relaxation time to vary much with temperature in
the low-temperature region (after all there is no low-energy
scale entering the problem). Using the density of states as
a guide, we would find that the transport relaxation time
behaves as a constant plus a quadratic in ω, if the imaginary
part of the self-energy was taken as a constant. A similar
functional form occurs for solutions of the Falicov–Kimball
model, where the Ta vacancy positions are annealed over,
and the transport relaxation time shape is independent of
temperature. Hence, we take as a working ansatz that τ(ω)

is independent of temperature and behaves like a constant
plus a quadratic piece. Then the integrals for the transport
can be performed immediately, and they yield the following
results:

L11 = τo +
µ2

2
τ ′′

o +
π2

6
T 2τ ′′

o , L12 = π2

3
T 2µτ ′′

o , (20)

which hold as long as the Fermi temperature window is
much smaller than the frequencies where the quadratic
approximation τ(ω) = τo + τ ′′

o ω2/2 holds for the transport
relaxation time. The chemical potential µ will be equal to
zero at the minimum of the relaxation time, which occurs near
x = 0.78. Since the chemical potential in a metal approaches
its zero temperature limit quadratically, we immediately learn
that at low enough temperature, if the system is metallic,
then we must have the resistivity approach a constant value
quadratically in temperature, and the thermopower approaches
zero linearly in temperature (note that this does not require
the metal to be a Fermi liquid or to have a positive TCR).
We expect there to be a sign change in the low-temperature
thermopower at the critical concentration (x = 0.78) where
the transport relaxation time has a minimum. The data are not
inconsistent with this observation, although the thermopower
is so small, it is difficult to achieve trustworthy experimental
results in this regime. We should also note that the simplified
form of the transport relaxation time does not describe the low-
temperature electron–electron interaction regimes described
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in section 4.5. One might ask why the thermopower at low
temperature is negative for both the x = 0.83 and x = 0.72
cases because we would expect one to be electron-like and
one to be holelike since they are on opposite sides of the point
where we expect to see a minimum in the effective density of
states. One possible explanation within this framework is that
the case with x = 0.72 is already close enough to the MIT at
x = 0.6 that it is beginning to show the electron-like behaviour
at low temperature. The other explanation is, of course, that the
many-body relaxation time has a much stronger dependence
on concentration than we assumed above (and it could also
have a temperature dependence due to the electron–electron
interaction).

If we now take a phenomenological point of view to
analyse the transport properties at intermediate temperatures,
then we must have the chemical potential behave like

µ(T ) = ±
√

2

τ ′′
o

[
h

e2

1

A + B exp(−T/T0)
− τo − π2

6
T 2τ ′′

o

]
(21)

in order to have a resistivity that is exponential in temperature
ρ = A + B exp(T /T0). The behaviour of the chemical
potential versus temperature is determined by the density of
states—the above form is approximately linear in temperature
for a wide range of temperature, which is how the chemical
potential behaves at high temperature, so such a form is
possible in a realistic system; it is the deviations from linearity
that determine the specific functional behaviour at these
intermediate temperatures and it is difficult to establish under
what conditions such a shape would occur for a given density
of states. Furthermore, since the linear behaviour is a high-
temperature limit and the exponential behaviour persists down
to liquid helium temperatures in the experiments, we find
these observations difficult to reconcile with the intermediate
temperature limit of the transport theory, especially because
the data show limited evidence of a crossover to the expected
quadratic temperature dependence for the resistivity at low
temperature.

The thermopower becomes

α(T ) = − kB

|e|
π2

3

T µτ ′′
o

τo + (µ2/2)τ ′′
o + (π2/6)T 2τ ′′

o

= − kB

|e|
π2

3
[A + B exp(−T/T0)]T µ. (22)

One immediately sees from this form for the thermopower, that
the sign of the thermopower is tied to the sign of the chemical
potential, since the other temperature-dependent terms are all
positive. Hence, if we see a high-temperature zero crossing,
then we should see the maximum in the thermopower occur at
a lower temperature from the arguments given below (indeed
this is seen in the data). With this form for the thermopower,
we can now estimate where the extremum of the thermopower
lies. Since the chemical potential is approximately linear in this
region of temperature, the thermopower has an extremum near
the point where the chemical potential vanishes as a function
of T if the high-temperature chemical potential has a different
sign than the chemical potential in the limit as T goes to zero.

The condition for the extremum is

A

B
[1 + exp(−z)]

[
2 − µ(z = 0)

µ(z)

]
= z exp(−z), (23)

with z = T/T0. The right-hand side is never larger than
0.368, while the left-hand side is close to 2A/B if the
chemical potential does not change sign, which is larger than
the maximum for the experimental data measured on these
samples. The chemical potential obviously changes sign when
the argument of the square root vanishes, which typically
has two roots or zero roots depending on the size of the
different parameters. Since we expect the exponential form
of the resistivity to change to a quadratic dependence at low
enough temperature, we should find the true resistivity at
T = 0 to be somewhat smaller than the limiting form of
the exponential dependence because it must turn over to have
vanishing slope (the true resistivity is inversely related to τo).
Then the low-temperature extremum of the thermopower will
be a constant of order unity multiplied by AT0/B. The other
root is at much higher temperature and is independent of T0

for the given small value of the curvature of the transport
relaxation time. Hence, it is likely that the maximum of the
thermopower is correlated with the exponential fit parameter
T0 when the resistivity takes this exponential dependence.
The larger temperature dependence, where the thermopower
starts to behave linearly, is probably a crossover to the Heikes
limit where the thermopower is proportional to the chemical
potential which is linear at high temperature.

To conclude, the analysis within the Jonson–Mahan
formulism shows (i) the maximum in the thermopower can
be related to the resistivity and to the fitting constant T0,
if the resistivity obeys equation (1) and (ii) that the α

is proportional to ρ when the L12 coefficient has small
temperature dependence; this can explain the maximal values
of the thermopower and resistivity for x = 0.78 and x = 0.81
(see the inset to figures 1 and 5).

5. Summary

We investigated the low-temperature transport properties of
TaxN (0.72 � x � 0.83) thin films deposited on the
SiO2 amorphous substrate. The transport properties show
considerable and nonmonotonic variation with x (figures 1,
5), which we attribute to the appearance of a local minimum
in the density of the electronic states at the Fermi level near
x = 0.8.

The temperature dependence of the resistivity is discussed
within the context of a number of different models (figure 6).
We find that the resistivity data can be fit by the weak
localization theory in equation (13) [21–23] (see figure 7). The
fitting parameters suggest that the dephasing scattering above
20 K is electron–phonon scattering. However, the parameter p

in equation (13) extracted from the data is not an integer as the
theory predicts (although it is close to 2). In addition, we could
not verify within the weak localization theory, or within any
other one we have also discussed, the following experimental
findings: (i) we find a much better fit of the resistivity
data with an exponential function, equation (1): exp(−T /T0)
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(figure 3); (ii) although equation (1) is a monotonic function,
the parameter T0 is closely related to the nonmonotonic
temperature dependence of the thermopower (at about T0,
there is a wide maximum of the thermopower) and (iii) the
derivative of 1/ρ, the conductivity, correlates well with the
thermopower showing both a maximum at about T0 ≈ 100 K
and a low-temperature minimum just as the thermopower does
(figure 4 and the inset to figure 4). Such a close and simple
connection between the resistivity and thermopower in so wide
a temperature range (from 4 K to 330 K) is one of the most
interesting results of our study; not seen elsewhere.

We show that a phenomenological approach based on
the Jonson–Mahan formalism (section 4.7) can describe the
resistivity by a complicated temperature dependence of the
chemical potential µ(T ) and can also describe the correlation
of the resistivity data with the maximum in the thermopower.

At the lowest temperatures measured (up to 20 K for x =
0.83), the conductivity data can be explained by Altshuler’s
theory of electron–electron interaction in disordered system
[31] (figure 8). The analysis of the data shows that the low-
temperature minimum in the thermopower also arises from
electron–electron scattering (figure 9).

Finally, we conclude that the observed transport properties
are not due to deposition on the SiO2-coated Si wafers, but are
an intrinsic property of TaxN. Nevertheless, it should be noted
that, by varying the growth conditions (the partial pressure of
N2), as described in section 2.1, the concentration range where
the monocrystalline TaxN rock salt structure was formed is
much narrower when the deposition was done on an amorphous
SiO2 substrate than if it was done on a crystalline sapphire
substrate. The reason seems obvious. The monocrystalline
structure is formed on the amorphous substrate only if the
concentration is around the stable intermetallic Ta4N5. The
periodicity of this structure giving the gap in the density of
states is responsible for the main features observed in the
transport properties of the TaxN thin films deposited on the
amorphous SiO2 substrate.
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