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The formalism for a linear-response many-body treatment of the electronic contributions to thermal transport
is developed for multilayered nanostructures. By properly determining the local heat-current operator, it is
possible to show that the Jonson-Mahan theorem for the bulk can be extended to inhomogeneous problems, so
the various thermal-transport coefficient integrands are related by powers of frequency �including all effects of
vertex corrections when appropriate�. We illustrate how to use this formalism by showing how it applies to
measurements of the Peltier effect, the Seebeck effect, and the thermal conductance.
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I. INTRODUCTION

As materials and device growth techniques mature and
improve, it becomes more possible to create artificial sys-
tems, composed of well-defined numbers of flat planes of
one material grown on top of another material. A device can
be engineered by determining the different kinds of materials
to grow and the thicknesses of the different multilayers. If
we assume the growth process is perfect, so the planes are
atomically flat, with no interface roughness, then we have an
inhomogeneous quantum-mechanical problem to solve for
the behavior of electrons in the system, where the inhomo-
geneity lies in one dimension only.

The properties of devices grown in this fashion are more
complicated if some or all of the materials that make up the
device are composed of strongly correlated electron materi-
als, where the properties of the electrons cannot be described
solely by an independent-particle picture like band theory.
These systems are increasing in interest because bulk
strongly correlated materials exhibit exotic phenomena, and
show promise in demonstrating high tunability of their prop-
erties. What is less studied is how these properties can be
modified by confinement and/or deconfinement effects that
are possible in multilayered nanostructures.

In addition, there has been little theoretical development
of the thermal transport effects in such multilayered systems.
Some evidence from examining the interface between two
materials, indicates that thermal transport effects in inhomo-
geneous systems can create large enhancements to the
performance,1 but the theory has not been fully developed
within a Kubo-like context which allows the many-body as-
pects to be treated fully. Semiclassical approaches have also
been employed,2 but that theory is also inadequate to treat
strongly correlated materials. Finally, the important problem
of phonon transport in such systems has been examined ex-
tensively, but is beyond the scope of what we cover in this
work.

One of the most important results in bulk thermal trans-
port is the Jonson-Mahan theorem,3,4 which provides an ex-

act relationship between different thermal transport coeffi-
cients. Using the Jonson-Mahan theorem makes calculation
of the thermal transport only slightly more complicated than
the calculation of the charge transport, and has enabled much
of the theoretical work in strongly correlated thermoelectrics.
Here we show how to generalize the Jonson-Mahan theorem
to multilayered nanostructures, which also greatly simplifies
the calculation of the thermal transport coefficients.

The idea to use multilayered nanostructures, or more
complicated geometries, for enhancing thermoelectric perfor-
mance of refrigerators or power generators was proposed5 in
the 1990s and enhancements have been seen recently.6 The
focus in that work was along the ideas of an electron-crystal-
phonon-glass approach, where the nanostructures are engi-
neered to preserve the electronic properties, while making
the phonon transport similar to that in a disordered glass. It is
possible that one can actually employ the nanostructure en-
gineering to produce enhancements to the electronic trans-
port properties, while simultaneously reducing the phonon
thermal transport, so this basic approach may be pushed fur-
ther than theorized in the original presentations. One key to
being able to enhance the electronic properties, is to be able
to tune the electron correlation properties with a proper en-
gineering of the nanostructure and to engineer the charge
redistribution at the interfaces. Before initiating such a pro-
gram, one needs to be able to properly calculate the thermal
transport in a strongly correlated device, and we derive the
formalism for how to do this here.

The systems we describe in this work involve multilay-
ered devices constructed of atomically flat planes which can
be composed of different materials. Each system is inhomo-
geneous in the z direction, which is the direction where the
planes are stacked. We take the left lead to be identical to the
right lead, so the system will have a “mirror symmetry,” and
the device will have its chemical potential determined by that
of the bulk leads. We use italic letters �i , j , . . . � to denote the
lattice sites within each plane �i.e., the x-y coordinates�, and
greek letters �� ,� , . . . � to denote the individual planes �i.e.,
the z coordinate�. We require the system to be translationally
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invariant within each plane, and for the lattice structure of
each plane to be identical, so that the connection between
planes is between corresponding sites in the two planes, and
is the same for each site. The latter requirement is by no
means necessary, but it greatly simplifies the notation for the
formalism, so we adopt it here.

We will consider three different types of Hamiltonians
here: �i� the Hubbard model;7 �ii� the Falicov-Kimball
model;8 and �iii� the periodic Anderson model.9 We use a
multiple index �i to denote the ith planar site on plane �. In
the Hubbard model, we have conduction electrons, whose
creation and annihilation operators are denoted c�i�

† and c�i�,
respectively, for electrons sitting at the lattice site denoted by
�i and with z component of spin �. The Falicov-Kimball
model has two kinds of electrons: conduction electrons
�which are described by similar operators as in the Hubbard
model, but without spin, for simplicity� and localized elec-
trons �also chosen to be spinless and created or destroyed by
the operators f�i

† and f�i�. The periodic Anderson model has
spin-one-half conduction and f-electrons, which are denoted
by the familiar operators, except now all operators will have
spin labels. All models can be expressed as the sum of two
terms in the Hamiltonian—an inhomogeneous hopping term
and an interaction-hybridization term. The inhomogeneous
hopping term is essentially the same for all three models. It
is

Hhop = − �
�

�
i,j�plane

�
�

t�ij
� c�i�

† c�j�

− �
�

�
i�plane

�
�

t��+1
� c�i�

† c�+1i�

− �
�

�
i�plane

�
�

t��+1
� c�+1i�

† c�i�, �1�

where we do not include a sum over spin for the spinless
Falicov-Kimball model. We assume the hopping matrices are
real symmetric matrices, and one should note that the hop-
ping between planes is only between neighboring planes and
between corresponding sites within the two planes. The mag-
nitudes of the hopping matrices within the planes and be-
tween the planes can vary, but the planar hopping matrices
must be translationally invariant to go to a mixed
momentum-space–real-space basis, which is commonly done
in these types of problems. If the planes are square-lattice
planes, then the underlying lattice topology will be that of a
simple cubic lattice, but the hopping need not be the same
everywhere.

The interaction-hybridization term is different for each
model. For the Hubbard model it is

Hint
Hub = �

�
�

i�plane
U�c�i↑

† c�i↑c�i↓
† c�i↓, �2�

for the spinless Falicov-Kimball model it is

Hint
FK = �

�
�

i�plane
U�c�i

† c�i f�i
† f�i, �3�

and for the periodic Anderson model it is

Hint
pam = �

�
�

i�plane
�
�

EF�f�i�
† f�i�

+ �
�

�
i�plane

U�f�i↑
† f�i↑f�i↓

† f�i↓

+ �
�

�
i�plane

�
�

V�
hyb�f�i�

† c�i� + c�i�
† f�i�� . �4�

For the Falicov-Kimball model, we often replace the term
f�i

† f�i by the symbol w�i which equals 0 if no localized elec-
trons are at site �i and equals 1 if a localized electron is at
site �i. All interaction and hybridization terms can vary from
plane to plane, but they must be the same for every lattice
site within the planes to preserve translational invariance
within the planes. The total Hamiltonian is then

H = Hhop + Hint − �N , �5�

for all of the models. The symbol � is the chemical potential,
and N denotes the electron number operator, chosen to be the
total conduction electron number operator for the Hubbard
and Falicov-Kimball models and the total electron number
operator for the periodic Anderson model �we work in a ca-
nonical ensemble for the f electrons in the Falicov-Kimball
model, so no site-energy or chemical potential is needed for
those particles�.

In Sec. II, we present a description of electronic charge
reconstruction, which naturally occurs in any multilayered
device that can be grown for thermoelectric properties. This
section briefly reviews the current status of such calculations,
and describes their impact on the thermal transport; in par-
ticular, it fixes the notation for the internal electrostatic po-
tentials associated with the electronic charge reconstruction.
Section III provides the main arguments for developing the
multilayered generalization of the Jonson-Mahan theorem.
Section IV applies the formalism to three classic
experiments—the Peltier effect, the Seebeck effect, and the
thermal conductivity. Section V presents our conclusions and
describes areas for further work.

II. ELECTRONIC CHARGE RECONSTRUCTION IN
MULTILAYERED NANOSTRUCTURES

The Schottky effect,10 is a well-known effect in the semi-
conductor community, where charge is redistributed between
a semiconductor and a metal at a semiconductor-metal inter-
face due to a bulk chemical potential mismatch between the
two materials. The charge rearrangement creates a screened
dipole layer at the interface resulting in a final state with a
static inhomogeneous redistribution of charge through the
system. Recently, the phenomenon has been revisited in the
context of strongly correlated materials,11 where it has been
called electronic charge reconstruction.12,13 If we imagine a
multilayered nanostructure, composed of metallic leads sand-
wiching a barrier region, which is a strongly correlated ma-
terial, then the chemical potential of the device is fixed by
the chemical potential of the leads. If the chemical potential
of the barrier is different, then the system must undergo an
electronic charge reconstruction. In particular, since the tem-
perature dependence of the chemical potential should be dif-
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ferent in the two different materials, even if the chemical
potentials match at one temperature, they will not match at
other temperatures, and a charge redistribution will take
place.

In this work, we will focus on problems that have “mirror
symmetry” for the leads, so the lead to the left is made of the
same material as the lead to the right. In this case, the total
Coulomb potential energy, due to all electric fields, goes to
zero when one is far from the interfaces, because all of the
charge rearrangement is localized at the interfaces, and the
whole system is charge neutral. If we were to examine sys-
tems with different materials for the left and right leads, then
the electrochemical potential of the system will be the aver-
age of the left and right bulk chemical potentials, which cre-
ates some additional complications, but does not change the
basic strategies or formulas, although, the Seebeck effect
needs to be defined and analyzed with care.14

The approach to describe the electronic charge reconstruc-
tion is a semiclassical one. We solve the problem for local
electron interactions exactly, but treat the long-range Cou-
lomb interaction in a mean-field fashion. The strategy we use
is to first calculate the electronic charge on each plane via an
inhomogeneous Green’s function approach �in dynamical
mean-field theory, the technique of Potthoff and Nolting15 is
used�. If possible, one uses a Matsubara-frequency approach,
because the numerics are usually under better control than
real-axis approaches, but this is just a matter of convenience,
not necessity. Next, we find the charge deviation on each
plane; namely, we determine whether extra charge has en-
tered or left the plane. Since the positive background charge
of the ions remains the same, the charge deviation will give
rise to an electric field. There are two different ways to treat
this field. The simplest is to assume the electric charge is
uniformly spread over the plane.11 Then the electric field is
constant, perpendicular to the plane, and pointing away from
it in both directions if the net charge density is positive,
while pointing toward the plane if the net charge density is
negative. The second method uses the actual distribution of
the ions, and the spatial profile of the electrons, if available,
to calculate the charge.12 This approach is closer to an
Ewald-like summation16 of the charge densities. The two
treatments should yield similar results.

In this work, we will choose the “constant plane of
charge” description for determining the electric fields. This
allows us to determine simple analytic expressions for the
electric fields—for example, the magnitude of the constant
field, emanating from the �th plane of charge is

�E�� =
�e���� − ��

bulk�a
2�0�r�

, �6�

where e�0 is the charge of the electron, �� is the quantum-
mechanically calculated electron number density at plane �,
��

bulk is the bulk electron number density for the material that
plane � is composed of �equal to the positive background
charge on the plane�, �0 is the permittivity of free space, and
�r� is the relative permittivity of plane �. The contribution to
the electric potential Vc�z� from this field satisfies

E = −
d

dz
Vc�z� . �7�

Since the electric field is constant in magnitude, it is straight-
forward to compute the contribution to the Coulomb poten-
tial at plane � due to the change in the charge density at
plane � �but one needs to keep track of the signs of the fields
or equivalently the relative order of � with respect to ��,

V�
c ��� =

�e���� − ��
bulk�a

2�0

	� �

=�+1

� � 1

2�r


+
1

2�r
−1
� , � � � ,

0, � = � ,

�

=�−1

� � 1

2�r


+
1

2�r
+1
� , � � � .	 �8�

Note that if the relative permittivity �r is a constant, indepen-
dent of the planes, then the potential energy is a linear func-
tion of the z coordinate, proportional to −�z�−z�� /�r as one
might expect. The reason why we need to sum over two
terms in the summands in Eq. �8� is because we envision the
�th plane of charge to be infinitesimally thick, and go
through the lattice sites of plane �, but we assume the di-
electric has a thickness of a and is centered around each
plane of atoms. Hence, if the permittivity changes from one
plane to another, a polarization charge develops halfway be-
tween the two planes where the dielectric is changing, and
the electric field has a discontinuity at that point �i.e., at the
position �+1/2, see Fig. 1�.

It is actually the potential energy −�e�V�
c =V� that shifts

the chemical potential at each planar site. We define a param-
eter

FIG. 1. Geometry taken for the classical electrostatics problem.
We show the blow up of two planes, � and �+1. Assuming the net
surface charge density on plane � is ���−��

bulk�a=�� �located along
the plane running through position �� and the relative permittivity
is �r� �and similarly for the �+1 plane�, then the change in polar-
ization at the interface between the two dielectric planes induces a
polarization charge on the interface �denoted �pol� that leads to a
discontinuous jump in the electric field halfway between the two
lattice planes �at the position �+1/2�. Once the fields are known,
we integrate to get the electric potentials. Note the discontinuity in
the electric field occurs at the midpoint between the two lattice
planes.
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eSchot��� =
e2a

2�0�r�

, �9�

which controls how the extra charge density decays away
from the interfaces. The parameter eSchot has the units of an
energy multiplied by an area; the product of eSchot with the
local density of states has units of the inverse of a length, and
this is what determines the decay length of the charge profile.
Using this parameter, we can immediately calculate the po-
tential energy due to the Coulomb interaction �evaluated in a
mean-field fashion�

V� = − �
�

��� − ��
bulk�

	� �

=�+1

�
1

2

eSchot�
� + eSchot�
 − 1�� , � � � ,

0, � = � ,

�

=�−1

�
1

2

eSchot�
� + eSchot�
 + 1�� , � � � .	

�10�

Note that a similar analysis can be carried out if one uses the
Ewald-like technique for determining the charge reconstruc-
tion.

These potential energies modify the Hamiltonian by the
long-range Coulomb interaction of the charge reconstruction.
The additional piece of the Hamiltonian �due to the charge
rearrangement� is

Hcharge = �
�

V� �
i�plane

c�i
† c�i, �11�

where we suppress all spin labels for simplicity. Hence, they
can be treated by shifting the chemical potential �→�−V�

on each plane depending on what the Coulomb potential en-
ergy is for the given plane. For consistency, we must have
that the potentials go to zero as we move far enough into
either of the leads �for the mirror-symmetric case�. This re-
quirement enforces overall charge conservation—any charge
that moves out of the barrier remains in the leads, localized
close to the interface, and vice versa. Of course, the poten-
tials V� that appear in the electronic charge reconstruction
Hamiltonian in Eq. �11� must be determined self-
consistently. Achieving this goal requires care in setting up
the iterative algorithm.

There will be no electronic charge reconstruction if the
chemical potentials in the bulk of both the leads and the
barrier match. In order to have freedom to adjust the mis-
match of the chemical potentials, we need to be able to
change the value of the band zero of the barrier region rela-
tive to the band zero of the leads. This parameter is called
�EF�, which vanishes in the leads, and is generically a non-
zero constant in the barrier �independent of the temperature
or the charge rearrangement�. Hence we add an additional
term

Hoffset = − �
�

�
i�plane

�EF�c�i
† c�i �12�

to the Hamiltonian. Although this term appears similar to the
Coulomb potential term in Eq. �11�, the key observation is
that this term is fixed and does not change with any param-
eters of the system, whereas the plane potentials V� need to
be readjusted as the parameters change, to achieve a self-
consistent solution of the problem. Note that we set �EF�

=0 in the leads to the right and to the left.
In this contribution, we will not discuss how to actually

solve for the electronic charge reconstruction in detail. One
can imagine a number of different approaches to this prob-
lem, ranging from direct means of solving the quantum-
mechanical problem on finite-sized stacked planes, to other
techniques like the inhomogeneous dynamical mean-field
theory approach. The DMFT approach has been quite suc-
cessful in examining these kinds of problems, and the for-
malism only requires that the self-energy remain local �al-
though it can vary from plane to plane�. Then, by performing
a Fourier transform to momentum space for the planar coor-
dinates, one decouples the planar motion from the longitudi-
nal motion. Hence, the problem reduces to a series of quasi-
one-dimensional inhomogeneous problems, which can be
solved by using the renormalized perturbation expansion17

�sometimes called the quantum zipper algorithm18�. Details
for such an approach have already appeared11,18 and are
briefly reviewed below.

The DMFT algorithm is given in Fig. 2. If there is a
separate algorithm available for the Matsubara frequency
Green’s functions, then the upper left loop �which determines
the electronic charge reconstruction� is used on the imagi-
nary axis, and we do not need it on the real axis. If such an
algorithm does not exist �such as when calculations are per-

FIG. 2. Flow diagram for the DMFT algorithm in a multilayered
nanostructure with electronic charge reconstruction. We determine
the charges on each plane, determine how they differ from the bulk
charge on the plane to find the excess or deficit charge. Then we use
classical electromagnetism to find the electric potentials on each
plane and finally the contribution of the potential energy to the
electrochemical potential on each plane. Then we average the po-
tentials with a large damping factor so that the potentials are up-
dated slowly. This is then input into the next loop of the main
DMFT algorithm, which is unchanged from cases where there is no
electronic charge reconstruction.
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formed with the numerical renormalization group�, then we
would use the entire loop on the real axis. The new steps to
find the electronic charge reconstruction are to first find the
electron density on each plane. Then we subtract the bulk
charge density of each plane to find the excess or deficit
charge on the given plane. Once the change in charge density
is known, we can calculate the electrical potential, and then
the contribution to the potential energy. This gets added to
the chemical potential to determine the electrochemical po-
tential at each plane.

When numerical results are generated11,19 �see those ref-
erences for numerical issues in the algorithm�, we find that
usually the electronic charge reconstruction does not change
significantly at low temperature, and that the size of the
charge deviation grows as the mismatch between the chemi-
cal potentials grows �governed in part by the size of �EF� in
the barrier�. Such results are similar to what one would ex-
pect, but most of the calculations have taken place in systems
where the charge density is not too sensitive to changes in
the chemical potential. The effects may be different in sys-
tems with either Mott insulators, or doped Mott insulators,
which can be brought close to the insulating phase via the
electronic charge reconstruction. In addition, electron-
phonon coupled systems can develop a strong sensitivity of
the charge to the chemical potential when the coupling is
large, which may be an interesting case to examine as well.

Ultimately, we are most interested in the transport of
charge and heat through the device. In order to calculate the
transport, we need to evaluate the real-axis results for the
self-energies and Green’s functions of a nanostructure with
an electronic charge reconstruction. Unfortunately, the algo-
rithms used when there is no electronic charge
reconstruction15,18 cannot be simply employed for this case.
The reason why is that the presence of the different poten-
tials V� on each plane causes the nature of the integrands
over the two-dimensional density of states to have a different
singular behavior than they had before. In a system without
electronic charge reconstruction, the singularities in the inte-
grand could be square-root-like, which are removed by a
simple variable change using trigonometric or hyperbolic
functions. Now, the singularities are poles �because the de-
nominators are shifted by the potentials at a given plane, so
they vanish at different energies, and give rise to a different
singular behavior�, and we need to evaluate all integrals in a
principal-value sense, where the real part is integrated with a
symmetric grid around each pole, and the imaginary part has
a delta-function contribution that needs to be included. This
is challenging to implement numerically, because the loca-
tions of the poles are different on different planes, and can
vary from one iteration to the next. Details for how to deal
with such a sophistication will appear elsewhere, since they
are beyond the scope of this work.

III. PROOF OF THE INHOMOGENEOUS JONSON-
MAHAN THEOREM

It is important to examine how the linear-response trans-
port formalism18 is modified by the presence of an electronic
charge reconstruction. We have taken the chemical potential

as a constant throughout the multilayered nanostructure for
thermodynamic equilibrium. One can directly show that the
device carries no longitudinal charge current even though
there are nonzero electric fields arising from the electronic
charge reconstruction �see Appendix A for a proof when the
self-energy is local�. No current flows because the putative
current driven by the internal electric fields is canceled by an
equal magnitude but oppositely directed current driven by
the concentration gradients. The standard way to describe
this result is via a phenomenological equation �for the case
with no thermal gradients�20

�jc
 = a�
�

���E� − a�e��
�

D��

��+1 − ��

a
=

−
a

�e���

���

�̃�+1 − �̃�

a
, �13�

where D�� is the diffusion constant for Fick’s law of
diffusion,21 and the second equality follows from the Ein-
stein relation22 �or more correctly the Nernst-Einstein-
Smoluchowski relation23,24� which relates the diffusion con-
stant to the conductivity via

��� = e2D��d��/d�; �14�

both quantities are matrices, with indices given by the planes
of the multilayered nanostructure. The symbol �̃�=�−V� is
called the electrochemical potential. The Einstein relation
can be derived by relating the gradient with respect to the
chemical potential to the gradient with respect to the number
concentration via the chain rule: d� /dz= �d� /d��d� /dz, and
the fact that the current vanishes in equilibrium.25

Equation �13� implies that the condition for there to be no
charge current is simply d�̃ /dz=0. The chemical potential is
a constant, but it does vary with the filling, so if there is a
change in electron concentration, then d�̃ /dz
= �d� /d��d� /dz−dV�z� /dz, so the force from the electric
field will be balanced by the force from the change in elec-
tron concentration. In addition, note that the current vanishes
no matter how large the variation in the concentration is �i.e.,
beyond the linear-response regime�, so the conclusion is that
the current generated by the internal electric field is always
canceled by the current generated by the change in the elec-
tron concentration. Hence, for a linear-response treatment of
transport, we can ignore the forces due to the internal electric
fields and the concentration gradients, because they always
cancel, and we can limit our focus to the effects of the ex-
ternal electric field only. This then implies that all of the
analysis performed previously for the charge current18 con-
tinues to be valid, and because the form of the charge current
is unchanged when we have electronic charge reconstruction,
the Kubo formula is identical as it was before �with the ef-
fects of the potentials V� included, of course�.

The basic observation needed for a thermoelectric device
is that there is a difference between the weighting factors that
determine the bulk charge current and heat current. The
charge current is weighted by the electron velocity, while the
heat current is weighted by the velocity multiplied by the
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kinetic energy minus the chemical potential plus a term from
the potential energy. Hence, one can create charge current
without heat current, or vice versa; by carefully engineering
the way electrons move through the device, one can control
both the energy and charge flow, which is useful for different
types of applications like refrigeration or power generation.
A typical device has two legs, one using electrons as the
charge carriers and one using holes as the charge carriers.
Current flows through the device in a loop, but the net heat
flows in one direction only, which allows the device to func-
tion.

In this contribution, we concentrate on multilayered nano-
structures, which can be used to compose one of the legs of
the thermoelectric device. We also concentrate solely on
electronic transport mechanisms. In most thermoelectrics,
the thermal conductivity from phonons can be large enough
to significantly reduce the figure of merit. It is expected that
the phonon thermal conductivity will be further reduced in a
nanostructure, because the interfaces in the nanostructures
will cause significant phonon scattering if the masses of the
ions in the different materials have a large mismatch,5 but we
do not discuss this issue further.

There is no simple way to derive the response of a
strongly correlated system to both electrical fields and ther-
mal gradients. The reason why is that the thermal gradient
cannot be added as a field to the Hamiltonian like the electric
field can, hence there is no way to follow the simple Kubo
response theory developed for the charge current in an elec-
tric field �because the linear-response approach evaluates
correlation functions at a fixed temperature, and a variation
of the temperature with position is problematic to include
within the formalism�. Luttinger sorted out a reasonable plan
of action for how one can nevertheless proceed.25 We couple
a fictitious field to the heat-current operator, analogous to the
vector potential that couples to the charge current operator,
and determine the linear response with respect to both fields.
Then, we compare the Kubo response to a phenomenological
set of equations that relate the charge and heat currents to the
electric field and the gradient of the temperature. We then
identify the relevant transport coefficients and how they are
expressed in terms of correlation functions.

In multilayered nanostructures, there always is an elec-
tronic charge reconstruction, because the bulk chemical po-
tentials for the leads and the barrier will have different T
dependence, and hence cannot always be equal �the only
exception is for particle-hole symmetry at half-filling, but
there the thermopower vanishes, so that case is uninteresting
for thermal transport�. Hence the Hamiltonian must be modi-
fied to include the potential energy V� on each plane, and the
band offsets �EF, as described in Sec. II 
i.e., we add
��i�V�−�EF��c�i

† c�i to H�. The band offsets are independent
of T, and represent the difference in the band zeroes for the
leads and the material placed at plane �. The potential ener-
gies V� do depend on T, but they do not create any currents,
because they correspond to the static potential associated
with the electronic charge reconstruction �and the diffusion
current generated by the change in electron concentration
cancels the current from the internal electric field; see Ap-
pendix A�. But the Coulomb potentials do create internal
electric fields that maintain the electronic charge redistribu-
tion amongst the planes.

The phenomenological study of currents caused by exter-
nal electric fields or temperature gradients has been exam-
ined since the early 1800s. It was found that an electric field
can drive a charge current �which is essentially Ohm’s law26

with the conductivity as the phenomenological constant� and
it can drive a heat current because the electrons carry heat
with them as they move through the material �this phenom-
enon is called the Peltier effect27�. Similarly, a temperature
gradient can drive heat conduction with the phenomenologi-
cal thermal conductivity �called Fourier’s law28�, and be-
cause the electronic contribution to the heat current generi-
cally carries charge, a temperature gradient can generate a
charge current �called the Seebeck effect29�. The phenomeno-
logical equations for the �linear response� longitudinal trans-
port in a multilayered nanostructure are then �j� is the lon-
gitudinal number current, j�

c is the longitudinal charge
current, and j�

Q is the longitudinal heat current�

�j�
c 
 = − �e��j�
 = �e�a�

�

L11���d��

dT

T�+1 − T�

a
+ �e�E��

+ �e�a�
�

L12��

T�+1 − T�

aT�

, �15�

�j�
Q
 = − a�

�

L21���d��

dT

T�+1 − T�

a
+ �e�E��

− a�
�

L22��

T�+1 − T�

aT�

, �16�

where the indices � and � denote the planar sites �or the
midpoint between planar sites, as clarified below�, the term
�T�+1−T�� /a is the discretized approximation to the tem-
perature gradient and the Lij coefficients can be thought of as
the phenomenological parameters. We define the symbol
��=�−V�+�EF�, which may be thought of as the “local
chemical potential” for plane �. The origin of the tempera-
ture derivative of �� entering into the phenomenological
equations arises from the conventional �� term, which be-
comes �Td� /dT when the system is placed in a thermal
gradient. The spatial derivative of the V� terms does not
drive any current, because it cancels with the current driven
by the equilibrium concentration gradient �which we did not
include in the above phenomenological equations�, so the
electric field E� is the external field applied to the device
�this is valid only in the linear-response regime of a small
external electric field�. Note, that there is a simple way to
understand the signs that appear in Eqs. �15� and �16�. First
consider the external electric field, which can be written as
the negative gradient of the electric potential. The current
�whether of electrons or of holes�, always runs down the
potential hill. Since the conductivity is always positive, the
first term in Eq. �15� must have a positive sign. The thermo-
electric number current also runs downhill, so it is propor-
tional to the negative temperature gradient. For electrons, the
charge current is −�e� times the number current, which gives
rise to the positive sign for the last term in Eq. �15�. Simi-
larly, the thermal conductivity runs down the temperature
“hill,” so it has a negative sign in front of it. The Peltier
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effect term is the hardest to understand, but because the elec-
trons are negatively charged, they actually move up the po-
tential hill �the charge current runs down the hill because the
electrons are negatively charged�, so the heat is carried up
the hill, and hence there is a minus sign in front of the term
�recall the electric field is the negative gradient of the poten-
tial�.

Our next step is to determine how to represent the thermal
transport coefficients Lij in terms of many-body correlation
functions. This has already been done for the first
coefficient,18 which is proportional to the conductivity ma-
trix, and is represented by a current-current correlation func-
tion, ���=e2L11�� �the modification of the Hamiltonian by
the electronic charge reconstruction has no effect on the form
of the charge current, or on the form of the correlations func-
tions, but obviously creates additional scattering�. Since this
coefficient arises from an electric field, which can be added
to the Hamiltonian, the derivation is rigorous. Similarly, if
we follow all the steps in Ref. 18 that led up to the derivation
of the conductivity matrix, but we examined the expectation
value of the heat-current operator instead of the charge-
current operator, we would find that the L21 correlation func-
tion was identical to the L11 correlation function except that
it is a heat-current-charge-current correlation function in-
stead of a charge-current–charge-current correlation func-
tion.

As we discussed above, there is no complete theory to
determine the L12 and L22 coefficients for the phenomeno-
logical transport equations. But, classical nonequilibrium sta-
tistical mechanics has proved that there is a reciprocal rela-
tion between the “cross” terms in the transport equations.20

Written in the form we have them, this relation shows that
L21=L12. Knowing the form for L21, we then conclude that
L12 is the charge-current–heat-current correlation function.
Keeping within this same vein, the natural conclusion is that
the final transport coefficient L22 is a heat-current–heat-
current correlation function �but there is no rigorous deriva-
tion of this result�.

In order to derive the local charge and heat current opera-
tors, we must formulate the transport problem in real space.
Unlike the bulk case, where the procedure is completely well
defined, there are a number of different possible ways to try
to derive the local current operators. The bulk number cur-
rent operator is found by taking the commutator of the num-
ber polarization operator with the Hamiltonian; this guaran-
tees that the equation of continuity holds, and it also implies
that the number current is conserved through the system. The
number polarization operator is


number = �
�i

R�i�c�i
† c�i + f�i

† f�i� , �17�

where we dropped the spin index for simplicity, and where
R�i is the position vector of the site labeled by �i. The f†f
term enters for the Falicov-Kimball and periodic Anderson
models, but not for the Hubbard model. Since the number
polarization operator depends only on the number operators,
it commutes with all number operators in the interaction
Hamiltonian. It turns out that the form in Eq. �17� also com-
mutes with the hybridization term in the periodic Anderson

model because the hybridization is on-site only. Hence, the
bulk number current operator is the same for all models we
examine here, and arises solely from the commutator of the z
component of the polarization operator with the hopping
Hamiltonian. Performing the commutator is straightforward,
and leads to j=��j�, with

j� = − iat��+1
� �

i�plane
�c�i

† c�+1i − c�+1i
† c�i� . �18�

Note that the subscript � on the current operator denotes the
total current operator flowing through the �th plane, and
does not indicate a Cartesian coordinate of the current opera-
tor; the current operator is always taken in the z direction for
the longitudinal flow. The current at plane � is thus defined
to be the total number of electrons flowing to the left minus
the total flowing to the right �here the current operator at
plane � is determined by the number of electrons flowing to
the right or to the left through the �th and �+1st planes�.

A comment is in order about the choice given in Eq. �18�
for the current associated with the �th plane. Note that the
form chosen is not the same as the choice that would arise
from taking the commutator of the “local” polarization op-
erator �at the �th plane� with the Hamiltonian. The direct
result from the commutator ĵ�= i
H ,�i�planez��c�i

† c�i

+ f�i
† f�i��,

ĵ� = − i �
i�plane


t��+1
� �c�+1i

† c�i − c�i
† c�+1i� + t�−1�

� �c�−1i
† c�i

− c�i
† c�−1i��z�, �19�

does not seem reasonable, because it is weighted by the z
coordinate of the �th plane, rather than involving the differ-
ence of currents moving in opposite directions �at the �th
plane�. When we have full translational symmetry, we derive
the conventional form for the current operator by shifting the
spatial index of one of the terms, to explicitly carry out the
cancellation of the spatial coordinates �just take the summa-
tion of the above result over �, and shift �→�+1 in the last
two terms�. More reflection on this issue, shows that the
explicit form of the local current operator that enters the
Kubo formula actually originates from the coupling term
−j ·A that corresponds to the perturbation of the Hamiltonian
due to the electric field in a gauge where the scalar potential
vanishes; this is because we evaluate the expectation value of
the total current with the perturbation of the Hamiltonian due
to the external field and that field enters via the vector po-
tential value at a specific plane. Hence the conductivity ma-
trix is defined from the piece of the total current operator that
couples to the field at plane � and, since the total current will
be the sum of the currents at each plane, the current-current
correlation function for the conductivity matrix involves the
local current operators that couple to the vector potential.
Thus, we choose the perturbation of the Hamiltonian to be

H��t� = − i�e�a�
�i

t��+1
� �c�+1i

† c�i − c�i
† c�+1i�A��t� , �20�

where we have taken the vector potential along the z direc-
tion, and independent of the intraplane coordinates, because
the field is uniform for each plane. We feel this choice makes
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good physical sense because we couple the vector potential
to the physical current between the �th and �+1st planes.
Alternatively, one can view this as a coupling of the current
between the �th and �+1st plane to the electric vector po-
tential located halfway between those two planes 
in this
interpretation, we would use �A�+A�+1� /2 as the coupling
field�. Finally, one can take a symmetrized version of the
local current operator to be

j�
sym = − iat�−1�

� �
i�plane

�c�i
† c�−1i − c�−1i

† c�i�/2

− iat��+1
� �

i�plane
�c�+1i

† c�i − c�i
† c�+1i�/2, �21�

corresponding to the average of the currents located just to
the left and to the right of plane �. This choice sounds like
the most physical choice, but the calculations for it are some-
what more complicated, and it is not likely the end results
are too different from our first choice. The difference be-
tween the two choices is actually quite simple. In the first
approach, one should envision the spatial indices � and � to
correspond to z�+a /2 and z�+a /2; that is, they are shifted to
the right by one-half the distance between the planes. In the
second, symmetrized approach, the � and � indices denote
the planar indices. For this reason, we do not expect the final
results to be too different for either approach. For simplicity,
we choose to take the current operator to be the current be-
tween the �th and �+1st planes for our derivations below,
and we discuss how to get the corresponding symmetrized
results at the end.

The calculation of the local heat current operator is more
complicated. We adopt the same strategy as before though—
first calculate the bulk operator, and then extract a reasonable
choice for the local operator. To calculate the bulk heat cur-
rent operator, we first need to determine the energy polariza-
tion operator. This is similar to the number polarization op-

erator, except it is weighted by the piece of the Hamiltonian
associated with the �i position. This is easy to do for the
interaction and hybridization terms, the Coulomb potential
energy terms, and the band offset terms, which are local, but
is complicated for the hopping terms, which involve two
lattice sites. The procedure that is used is to associate one-
half of the hopping term between the two sites with the local
Hamiltonian at each of those two sites. The energy polariza-
tion term then becomes


E = �
�

�
i�plane

�1

2�
�

�
j�plane

Hhop �i�j + Hint �i + Hcharge �i

+ Hoffset �i�R�i, �22�

where the hopping piece is divided into two as described
above, and the interaction piece includes all the local parts of
the interacting Hamiltonian associated with each lattice site.
The bulk energy current operator is jE= i
H ,
E�, and the
heat-current operator is jQ= jE−�j because the heat is the
energy measured relative to the chemical potential. The com-
mutator is tedious to work out, but just involves straightfor-
ward algebra. When it is finished, we have an expression for
the bulk heat current, which can be organized into summa-
tions that involve a plane � and the plane to the right �there
is also a hopping term involving operators at the �+2 plane�.
One simply groups the terms together to find how to make an
educated guess for the local heat current operator. The final
results that we have are summarized below. These are the
proper local heat current operators needed to satisfy the
Jonson-Mahan theorem, as described below. In all cases, we
have jQ=��j�

Q. Note that we can form the symmetric version
of the heat current operator as well, if desired, but it is even
more complex.

For the Hubbard model, we have

j�
Q = iat��+1

� �− �
ij�plane,�

1

2
�t�ij

� + t�+1ij
� ��c�+1i�

† c�j� − c�i�
† c�+1j�� −

1

2
t�+1�+2
� �

i�plane,�
�c�+2i�

† c�i� − c�i�
† c�+2i��

−
1

2
t�−1�
� �

i�plane,�
�c�+1i�

† c�−1i� − c�−1i�
† c�+1i�� + �

i�plane,�
�− � +

1

2
�V� + V�+1� −

1

2
��EF� + �EF�+1���c�+1i�

† c�i� − c�i�
† c�+1i��

+
1

2 �
i�plane,�

�U�c�i�̄
† c�i�̄ + U�+1c�+1i�̄

† c�+1i�̄��c�+1i�
† c�i� − c�i�

† c�+1i��� , �23�

where �̄=−� denotes the spin state opposite to �. For the Falicov-Kimball model, we find

j�
Q = iat��+1

� �− �
ij�plane

1

2
�t�ij

� + t�+1ij
� ��c�+1i

† c�j − c�i
† c�+1j� −

1

2
t�+1�+2
� �

i�plane
�c�+2i

† c�i − c�i
† c�+2i� −

1

2
t�−1�
� �

i�plane
�c�+1i

† c�−1i

− c�−1i
† c�+1i� +

1

2 �
i�plane

�U�w�i + U�+1w�+1i��c�+1i
† c�i − c�i

† c�+1i� + �
i�plane

�− � +
1

2
�V� + V�+1� −

1

2
��EF� + �EF�+1��

	�c�+1i
† c�i − c�i

† c�+1i�� . �24�

For the periodic Anderson model the commutation of the Hamiltonian with the energy polarization operator gives
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j�
Q = iat��+1

� �− �
ij�plane,�

1

2
�t�ij

� + t�+1ij
� ��c�+1i�

† c�j� − c�i�
† c�+1j�� −

1

2
t�+1�+2
� �

i�plane,�
�c�+2i�

† c�i� − c�i�
† c�+2i��

−
1

2
t�−1�
� �

i�plane,�
�c�+1i�

† c�−1i� − c�−1i�
† c�+1i�� + �

i�plane,�
�− � +

1

2
�V� + V�+1� −

1

2
��EF� + �EF�+1���c�+1i�

† c�i�

− c�i�
† c�+1i��� + iaV�

hyb1

2 �
i�plane,�


t��+1
� �f�i�

† c�+1i� − c�+1i�
† f�i�� + t��−1

� �f�i�
† c�−1i� − c�−1i�

† f�i���

+ iat��+1
� 1

2 �
i�plane,�


�U�f�i�̄
† f�i�̄ + U�+1f�+1i�̄

† f�+1i�̄��f�+1i�
† f�i� − f�i�

† f�+1i��� . �25�

The heat current operator depends on the model being exam-
ined, because it involves commutators of the potential energy
with the energy polarization. We also subtract the chemical
potential multiplied by the number current from the energy
current to get the heat current. One might have thought we
should subtract the “local chemical potential” multiplied by
the local number current operator, but that would remove the
extra terms in the heat current arising from the electronic
charge reconstruction; one could have grouped those terms
into either the Hamiltonian or the local chemical
potential—we chose the former, so we subtract only �j.

Now we need to determine the dc limit of the correlation
functions Lij on the real axis. The analytic-continuation pro-
cedure is identical to that for the bulk case. We start by
defining a polarization operator on the imaginary axis, then
we analytically continue to the real axis, we form the rel-
evant transport coefficient, and then we take the limit of the
frequency going to zero. We denote four polarization opera-

tors by L̄ij���i�l� according to

L̄11���i�l� = �
0

�

d�ei�l��T�j����j��0�
 ,

L̄12���i�l� = �
0

�

d�ei�l��T�j����j�
Q�0�
 ,

L̄21���i�l� = �
0

�

d�ei�l��T�j�
Q���j��0�
 ,

L̄22���i�l� = �
0

�

d�ei�l��T�j�
Q���j�

Q�0�
 , �26�

and the transport coefficients satisfy

Lij�� = lim
�→0

1

2i�

L̄ij���� + i0+� − L̄ij���� + i0−��

= lim
�→0

Re
− iL̄ij�����/�� �27�

�the ij subscripts here are 1 or 2, and not the planar site
indices�. The generic notation O���=exp
�H−�N���O
	exp
−�H−�N��� is used to indicate the time dependence

of the operators in Eq. �26�. The Jonson-Mahan theorem3,4

can be straightforwardly generalized to treat this case. Begin
by defining a generalized function

F����1,�2,�3,�4�

= �T�iat��+1
� �

i�plane

c�+1i

† ��1�c�i��2� − c�i
† ��1�c�+1i��2��

	iat��+1
� �

j�plane

c�+1j

† ��3�c�j��4� − c�j
† ��3�c�+1j��4��� .

�28�

Next, we determine the polarization operators by taking the
appropriate limits and derivatives. Namely,

L̄11���i�l� = �
0

�

d�1ei�l�1F����1,�1
−,0,0−� ,

L̄12���i�l� = �
0

�

d�1ei�l�1
1

2
� �

��3
−

�

��4
�

	�F����1,�1
−,�3,�4���3=0,�4=0−,

L̄21���i�l� = �
0

�

d�1ei�l�1
1

2
� �

��1
−

�

��2
��F����1,�2,0,0−���2=�1

−,

L̄22���i�l� = �
0

�

d�1ei�l�1
1

4
� �

��1
−

�

��2
�� �

��3
−

�

��4
�

	�F����1,�2,�3,�4���2=�1
−,�3=0,�4=0−. �29�

This result holds because the ���−���� /2 operator converts
the local number current operator into the local heat current
operator. To see this, we simply compute

lim
��→�

1

2
� �

��
−

�

���
�iat��+1

� �
i�plane


c�+1i
† ���c�i����

− c�i
† ���c�+1i����� = iat��+1

�

	 �
i�plane

�
H − �N,c�+1i
† ����c�i��� + c�+1i

† ���

	
H − �N,c�i����� , �30�
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which can be shown to be equal to j�
Q when the commutators

are evaluated. It is this critical identity that connects the local
number and heat current operators that is a requirement for
the formalism to satisfy the Jonson-Mahan theorem. The
analytic continuation is complex, because it involves four-
time functions in the general case, and a detailed proof of the
Jonson-Mahan theorem appears in Appendix B. Instead, we
provide a direct constructive proof in DMFT here, where we
neglect the vertex corrections. This is just a heuristic ap-
proach to the full problem.

The first step is to evaluate the expectation values of the
Fermionic operators �in the definition of F� via contractions,
because we neglect the vertex corrections. This yields

F����1,�2,�3,�4� = a2t��+1
� t��+1

� �
ij�plane

�G��+1ji��4 − �1�

	G��+1ij��2 − �3� − G�+1�+1ji��4 − �1�

	G��ij��2 − �3� − G��ji��4 − �1�

	G�+1�+1ij��2 − �3� + G�+1�ji��4 − �1�

	G�+1�ij��2 − �3�� , �31�

where G��ij���=−�T�c�i���c�j
† �0�
. Next, we need to deter-

mine a spectral representation for the off-diagonal Green’s
function. Using the fact that

G��ij�z� = −
1

�
� d�

Im G��ij���
z − �

, �32�

with z in the upper half-plane �which can be shown by using
the Lehmann representation�, says that

G��ij��� = −
1

�
� d�T�

n

e−i�n�

i�n − �
Im G��ij��� . �33�

Now we convert the sum over Matsubara frequencies into a
contour integral �that surrounds each Matsubara frequency,
but does not cross the real axis—the contour is then de-
formed into two contours, one running just above and the
other just below the real axis�, but we must be careful to
ensure that the procedure is well defined. If ��0, then

T�
n

e−i�n�

i�n − �
= −

i

2�
�

C

dz
e−z�

z − �
f�z� ,

=−
i

2�
�

−�

�

dze−z�f�z�� 1

z + i0+ − �
−

1

z − i0+ − �
�

= − e−��f��� . �34�

This result is well-defined because the Fermi factor provides
convergence 
asymptotically like exp�−�z�� for z→� and
the exp�−z�� term provides boundedness for z→−� when
��0. Since 1− f�z� has the same poles as f�z� on the imagi-
nary axis, with residues that have the opposite sign, and it
behaves like exp��z� for z→−�, one finds

T�
n

e−i�n�

i�n − �
= e−��
1 − f���� , �35�

for ��0. The results in Eqs. �34� and �35� can then be sub-
stituted into Eq. �33� to get the final formula for the off-
diagonal Green’s function

G��ij��� = �−
1

�
� d� Im G��ij���e−��
1 − f���� , � � 0,

−
1

�
� d� Im G��ij���e−��
− f���� , � � 0.	

�36�

Now we note that we can restrict ourselves to the case �1
��2��3��4 without loss of generality, because that is the
ordering needed to get the relevant correlation functions.
Then we employ Eq. �36� in Eq. �31� and use the fact that the
summations over the spatial indices for the planes can be
Fourier transformed, and then the momentum summation can
be replaced by an integration over the two-dimensional den-
sity of states, to yield

F����1,�2,�3,�4� =
a2

�2 t��+1
� t��+1

� � d�� d��� d���2d����

	 f���
1 − f�����e−���4−�1�−����2−�3�

	 
Im G�����,��Im G�+1�+1���,���

+ Im G�+1�+1���,��Im G�����,���

− Im G��+1���,��Im G��+1���,���

− Im G�+1����,��Im G�+1����,���� , �37�

where we have assumed for simplicity that t�ij
� is indepen-

dent of �. Now we can evaluate the polarizations, and di-
rectly perform the analytic continuation. We Fourier trans-
form the expression in Eq. �37� to get the Matsubara
frequency representation. Then we replace i�l by �+ i0+, we
construct the transport coefficients on the real axis, and we
finally take the limit �→0 to get the dc response. The factor
���−���� /2 gives a factor of ��+��� /2 which goes to ��
+� /2� after integrating over the delta function that arises in
the analytic continuation. Setting �=0 gives an extra power
of � in the integrand for each derivative factor in the re-
sponse coefficient. The end result is

Lij�� =
a2

�
t��+1
� t��+1

� � d��−
df���

d�
��i+j−2� d���2d����

	 
Im G�����,��Im G�+1�+1���,��

+ Im G�����,��Im G�+1�+1���,��

− Im G��+1���,��Im G��+1���,��

− Im G�+1����,��Im G�+1����,��� . �38�

This is the generalized Jonson-Mahan theorem for inhomo-
geneous systems described by DMFT with vertex corrections
neglected. Note that the equality of L12 with L21 is the On-
sager reciprocal relation.20
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If one wants to work with symmetrized currents rather
than the currents between the � and �+1st planes, then the
Kubo formulas will be changed slightly to take into account
the symmetrized current operators. These can be constructed
directly from the correlation functions already illustrated
above, and it is a simple exercise to take care of the relevant
bookkeeping; we leave such details to the reader.

IV. ANALYSIS OF EXPERIMENTS

With the expressions for the phenomenological coeffi-
cients that appear in Eqs. �15� and �16� determined, we now
can move onto evaluating the transport in different cases of
interest. The first point that needs to be emphasized is that
the total number of electrons is always conserved in the sys-
tem, so the charge current is conserved, and cannot change
from plane to plane �j�

c 
= �j�
c 
. There is no such conservation

law for the heat current though, because the electrons can
change the amount of heat that they carry depending on their
local environment. Hence, it is the boundary conditions that
we impose upon the heat current that determines how it be-
haves in a multilayered nanostructure. This point will be-
come important as we analyze different experimental situa-
tions.

The first experiment we would like to analyze is the
Peltier effect in a multilayered nanostructure. We imagine
that the nanostructure is attached to a bath that maintains the
entire structure at a fixed temperature, and we then turn on an
external electric field. The Peltier effect is the ratio of the
heat current to the charge current. A moment’s reflection will
show that the heat current is not necessarily conserved in this
system, because we must exchange heat with the reservoir to
maintain a constant temperature profile. Hence, it is not even
obvious what ratio should be taken for the Peltier effect—the
average heat current for the entire device over the charge
current, the total change in the heat current over the charge
current, or the heat current transferred to the reservoir over
the charge current. We now show how to determine all three
of these results.

The starting point is the transport equations �15� and �16�
with T�=T independent of the plane number. We first deter-
mine the electric field by multiplying both sides of Eq. �15�
by the inverse L11 matrix. Since the charge current is inde-
pendent of the plane index, we find the electric field satisfies

E� =
1

e2a
�
�

�L11
−1����jc
 . �39�

Integrating the electric field over the z coordinate, then yields
the voltage across the device, which allows us to extract the
resistance-unit-cell-area product via Ohm’s law

Rna2 =
1

e2�
��

�L11
−1���. �40�

To find the heat current, we substitute the value of the elec-
tric field into Eq. �16�, which yields

�j�
Q
 = −

1

�e���


L21���L11
−1��
�jc
 . �41�

This is all we need to analyze the Peltier effect of a nano-
structure. Note that the heat current generically will have �
dependence, and hence will vary from plane to plane �see
Fig. 3�.

The first question we can ask is how much heat is lost or
gained by the reservoir that is attached to the device to main-
tain isothermal conditions. This is determined by the ratio of
the difference in the heat current at the right and the heat
current at the left to the charge current. In equations,

��jQ

�jc


=
�jR

Q
 − �jL
Q


�jc

= −

1

�e���


�L21R� − L21L���L11
−1��
.

�42�

This would measure the net cooling or heating of the reser-
voir by the device as the charge current flows. Similarly, we
could measure the average heat flow carried through the de-
vice

�jave
Q 


�jc

= −

1

�e�
1

N
�
��


L21���L11
−1��
, �43�

where N is the number of terms taken in the summation over
the index �. This expression is analogous to the bulk Peltier
effect, which measures the ratio of the heat to charge current
flows �which are independent of position in a bulk system in
linear response�.

Next we examine the Seebeck effect and a thermal con-
ductivity experiment. In both cases we work with an open
circuit, so the total charge current vanishes �jc
=0. The See-
beck measurement is subtle, because we do not want to mea-
sure the voltage difference with probes at different tempera-
tures, because there will be a contribution from the
�Td� /dT terms to the voltage drop �and there may be a
thermal link allowing heat to flow through the voltage
probe�. An actual experiment uses thermocouple probes,
where one end of the probe is placed on the sample, and the

FIG. 3. Schematic diagram of the heat transfers in the Peltier
effect. The dots refer to different planes. A heat current is incident
from the left. As we go from one plane to another, the heat current
changes, as heat is transferred to or from a reservoir to maintain the
system at a constant temperature. For example, we can examine the
total heat current transferred to the reservoirs �jQR− jQL�, or we can
examine the average heat current that flows through the device
��jQ� /N, where N is the number of planes involved in the heat
transfer.
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other is placed in a constant T0 bath. Two probes are needed
to measure the voltage change and the temperature at two
points along the sample. The net thermopower is measured
relative to the thermopower of the metal used in one of the
legs of the thermocouple �typically copper�. For details, see
Refs. 30 and 31; a simpler schematic picture of this issue is
shown in Fig. 4. Alternatively, we can imagine the lead to the
left placed in a bath at temperature T0, the interface plane on
the left held at temperature T, the interface on the right held
at temperature T+�T, and the lead to the right held at tem-
perature T0. The net effect on our analysis, if we assume the
thermopower of copper can be neglected �or of the ballistic
lead in the alternative picture�, is that we neglect the d�� /dT
terms in our analysis �because the chemical potential at the
probes is at a constant temperature when the potential differ-
ence is measured�. With these caveats in mind, using Eq.
�15�, we find

E� = −
1

a�e�T�
�


�L11
−1���L12�
�T
+1 − T
� . �44�

Multiplying by a and summing over � yields the voltage
drop across the device. We also need the temperature profile.
Substituting Eq. �44� into Eq. �16�, and noting that the heat
current is conserved if the device is isolated and in the steady
state �implying heat cannot be transferred out of any plane,
recall that the Joule heating is a nonlinear effect� because the
system develops a temperature profile so that the heat current
is conserved through the device. In this case, we can evaluate
the temperature profile, which satisfies

T�+1 − T� = − T�
�

�M−1����jQ
 , �45�

with the matrix M defined to be

M�� = L22�� − �

�

L21�
�L11
−1�
�L12��. �46�

Now we can sum Eq. �45� over � to get the temperature
difference over the device. Hence the Seebeck effect be-
comes

�V

�T
= −

1

�e�T

�
��
�

�L11
−1���L12�
�M−1�
�

�
��

�M−1���

. �47�

Note that this is not equal to 1/T times the Peltier coefficient
as in the bulk 
see Eqs. �42� and �43��. Instead, we have a
weighting of the L12 to L11 ratio by the matrix M−1, which is
related to the thermal conductivity. This factor cancels in the
bulk, where the M−1 matrix depends on the difference of the
spatial coordinates, and the q=0 response is independent of
M−1 because the common factor in the Fourier transform will
cancel out �as can easily be proved by invoking the convo-
lution theorem�. If we do not measure �V via thermocouples
at constant T, then the �V term is modified by a contribution
from d�� /dT. We do not discuss that modification here, be-
cause it is not normally a technique used in measurements.14

The thermal conductance is evaluated in a similar way,
but does not require any subtlety in the measurement. We
also work in an open circuit, and the heat current is con-
served, because we isolate the system. Now we measure the
ratio of the heat current to the temperature difference to find
that the thermal conductance per unit area K satisfies

K = −
�jQ

�T

=
1

T�
��

�M−1���

, �48�

and the thermal resistance-area product becomes

Rtha
2 = T�

��

�M−1���. �49�

Given all of the phenomenological parameters that enter
into the transport of a nanostructure, we are now in a posi-
tion to be able to evaluate things like the efficiency of a
refrigerator, or of a power generator �this requires evaluating
heat flow while charge current is flowing, and is more com-
plex than the cases considered here�. The final equations that
result are quite complicated, and will not be shown here.
Note that it is necessary to perform such an exercise here,
because in these nanostructure devices, the thermoelectric
cooling or power generation is not determined solely by the
bulk figure of merit of the constituent pieces. When quantum
effects enter due to nanoscale structures, the situation is more
complicated. But one can define an effective figure-of-merit
by constructing an effective Lorenz number from the ratio of
the thermal to the charge resistance and then evaluate an
effective figure-of-merit from the Seebeck coefficient and the

FIG. 4. Schematic diagram for how to measure the �relative�
Seebeck effect. The metallic leads are composed of the same mate-
rial, and a voltage probe is placed across the two ends which both
are fixed at a temperature of T0. The voltage across those probes is
V0. Since heat current will flow across the voltmeter if both ends are
not at the same temperature, there is no way to directly measure the
desired voltage V. But, since the change in voltage in the metallic
lead in going from T0 to T on the left-hand side it is exactly can-
celed by the change in voltage in going from T to T0 on the right-
hand side, we find the difference between the voltage V and V0 is
just equal to the Seebeck coefficient of the metallic lead multiplied
by �T. Hence, since a measurement uses V0 instead of V, the See-
beck coefficient of the barrier is measured relative to the Seebeck
coefficient of the metallic lead.
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effective Lorenz number. Even if this is done, it is not the
same as the calculation of the efficiency of a real device,
which simply is more complicated.

V. CONCLUSIONS

In this work we have shown how to derive the formalism
for evaluating the electronic contribution to the charge and
thermal transport of a strongly correlated nanostructure by
determining the appropriate Kubo formulas for the transport
coefficients. This analysis requires us to properly determine
the local current operators, which we do via a heuristic ar-
gument. Using these specific local current operators allows
us to show that the Kubo formulas for the various heat trans-
port coefficients are related by a generalization of the
Jonson-Mahan theorem to inhomogeneous systems. We also
describe how nanostructures that will be used for heat trans-
port must have an associated electronic charge reconstruc-
tion, and we sketched how to solve for that reconstruction
using the DMFT approximation in the nanostructure. We il-
lustrated our results for models described by the Hubbard
model, the Falicov-Kimball model, and the periodic Ander-
son model, but they should hold for any model that involves
only local interactions.

It will be interesting to now solve some numerical prob-
lems and investigate the thermal transport coefficients for
these systems. Devices of particular interest are those that
have strongly correlated electrons, such as systems with a
Mott insulator, a doped Mott insulator, or Kondo metals in
them. Solving such problems is easiest to do for the Falicov-
Kimball model because it is the easiest model to solve nu-
merically, but it should be feasible to investigate the Hubbard
model and the periodic Anderson model as well using nu-
merical renormalization group techniques, or quantum
Monte Carlo plus maximum entropy analytic continuations.
Such work will be presented elsewhere.
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APPENDIX A: VANISHING OF CURRENTS FOR AN
EQUILIBRIUM ELECTRONIC CHARGE

RECONSTRUCTION

We prove that the charge and heat current expectation
values vanish in equilibrium when there is an electronic
charge reconstruction, in the case where the self-energy is
local. The result should also hold for the nonlocal case, by
purely physical reasons, but we are not aware of a simple
way to prove this result in the general case.

Because the multilayered system is translationally invari-
ant in each plane, we can use a mixed basis, where we have

a two-dimensional momentum describing the planar degrees
of freedom, and we use real space to describe the inhomoge-
neous z direction.15 Then, if we assume the self-energy is a
local function ��, that can vary from one plane to another,
we have the local Green’s function satisfies18

G�����,�� = 1/�L����,�� + R����,�� − 
� + � − V� + �EF�

− ����� − ���� , �A1�

where �� is the two-dimensional �planar� band structure �we
assume t�ij

� is independent of � for simplicity�, and the left
L� and right R� functions are defined below. The local
Green’s function on each plane is then found by summing
over the two-dimensional momenta, which can be replaced
by an integral over the two-dimensional density of states,

G����� =� d���2d����G�����,�� . �A2�

The left function is defined to be

L�−n���,�� = −
G��−n+1���,��t�−n+1�−n

�

G��−n���,��
�A3�

and it satisfies the recurrence relation

L�−n���,�� = � + � − V� + �EF� − ��−n��� − ��

−
t�−n�−n−1
� t�−n−1�−n

�

L�−n−1���,��
. �A4�

We solve the recurrence relation by starting with the result
for L−�, and then iterating Eq. �A4�. In a similar fashion, we
define a right function and a recurrence relation to the right,
with the right function satisfying

R�+n���,�� = −
G��+n−1���,��t�+n−1�+n

�

G��+n���,��
�A5�

and the recurrence relation being

R�+n���,�� = � + � − V� + �EF� − ��+n��� − ��

−
t�+n�+n+1
� t�+n+1�+n

�

R�+n+1���,��
. �A6�

We solve the right recurrence relation by starting with the
result for R�, and then iterating Eq. �A6�.

In order to determine the current, we need to examine the
off-diagonal, nearest-neighbor Green’s functions, which sat-
isfy

G�+1����,�� = −
G�+1�+1���,��t�+1�

�

L����,��
�A7�

and

G��+1���,�� = −
G�����,��t��+1

�

R�+1���,��
. �A8�

Using the recursion relations for the Green’s functions and
for the R and L functions allows us to express the result for
the Green’s functions in terms of R�+1 and L�. Hence, we
find
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G��+1���,�� = G�+1����,��

=
1

L����,��R�+1���,�� − t��+1
� t�+1�

� . �A9�

Now, we are ready to show that the expectation value of the
number current operator vanishes. We can evaluate the ex-
pectation value of the number current operator in Eq. �18� by
using the Green’s functions we have been describing above.
One finds

�j�
 = −
a

�
t��+1
� � d�f����

��

Im
G�+1����,�� − G��+1���,���

= 0, �A10�

which vanishes because the two Green’s functions are iden-
tical in value. Note that this vanishing of the current holds
for arbitrary size electronic charge reconstruction, because it
does not involve any linear-response assumption. Similarly,
since the heat-current operator is related to the number cur-
rent operator by a derivative with respect to time, and that
derivative analytically continues to an extra power of fre-
quency in the integral over frequency, we also have that the
heat-current operator expectation value vanishes, because it
involves adding an extra power of frequency into the above
integrals. This then completes the proof that the electronic
charge reconstruction does not have any currents flowing
through it, so the electric fields that enter the linear-response
formalism are the external fields only.

APPENDIX B: ANALYTIC CONTINUATION OF THE
FOUR-TIME RESPONSE FUNCTION NEEDED FOR THE

GENERAL JONSON-MAHAN THEOREM PROOF

We can restrict ourselves to the case �1��2��3��4
without loss of generality, because that is the ordering
needed to get the relevant correlation functions in Eqs. �29�.
First of all, let us introduce a four-time correlation function
�in real time� defined by

IABCD�t1,t2,t3,t4� = IABCD�t1 − t,t2 − t,t3 − t,t4 − t�

= �A�t1�B�t2�C�t3�D�t4�
 , �B1�

where all operators are written in the Heisenberg representa-
tion O�t�=exp
i�H−�N�t�O exp
−i�H−�N�t� ��=1�. Its

Fourier transform gives a four-time spectral density �with the
constraint �1+�2+�3+�4=0 due to time-translation invari-
ance of equilibrium correlation functions�

IABCD��1,�2,�3,�4� = �
−�

+� dt1

2�
�

−�

+� dt2

2�
�

−�

+� dt3

2�

	exp�i�1t1 + i�2t2 + i�3t3 + i�4t4�

	IABCD�t1,t2,t3,t4�

=
1

Z�
ilfp

e−��iAilBlfCfpDpi���il + �1�

	���lf + �2���� fp + �3� , �B2�

where �i is the energy eigenvalue of the quantum many-body
state �i
 �i.e., the eigenvalue of the operator H−�N�, �il
satisfies �il=�i−�l, Oil= �i�O�l
 is the matrix element of the
operator O between the states i and l, and Z=�ie

−��i is the
partition function. The second line in Eq. �B2� follows from
the Lehmann representation by inserting appropriate sets of
complete states. The spectral density satisfies the following
cyclic permutation identities

IABCD��1,�2,�3,�4� = IBCDA��2,�3,�4,�1�e��1

= ICDAB��3,�4,�1,�2�e���1+�2�

= IDABC��4,�1,�2,�3,�e−��4 �B3�

and transforms under Hermitian conjugation as

IABCD��1,�2,�3,�4� = 
ID†C†B†A†�− �4,− �3,− �2,− �1��*,

�B4�

with the dagger indicating Hermitian conjugation of the as-
sociated operator. Now, the generalized function in Eq. �28�
can be defined for �1��2��3��4 in terms of a generalized
spectral density as

F����1 � �2 � �3 � �4�

= �
−�

+�

d�1�
−�

+�

d�2�
−�

+�

d�3I����1,�2,�3,�4�

	exp�− �1�1 − �2�2 − �3�3 − �4�4� , �B5�

where we introduce the total spectral density in terms of the
partial one in Eq. �B2�,

I����1,�2,�3,�4� = − a2t��+1
� t��+1

� �
i�plane

�
j�plane


Ic
�+1i
† c�ic�+1j

† c�j
��1,�2,�3,�4� + Ic

�i
† c�+1ic�j

† c�+1j
��1,�2,�3,�4�

− Ic
�+1i
† c�ic�j

† c�+1j
��1,�2,�3,�4� − Ic

�i
† c�+1ic�+1j

† c�j
��1,�2,�3,�4�� . �B6�

Next, we can calculate the polarization operators in Eq. �29� by taking the appropriate limits and derivatives. Namely,
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L̄ij���i�l� = �
−�

+�

d�1�
−�

+�

d�2�
−�

+�

d�3I����1,�2,�3,�4�
e−���1+�2� − 1

i�l + �1 − �2�
1 for ij = 11,

1

2
��4 − �3� for ij = 12,

1

2
��2 − �1� for ij = 21,

1

4
��2 − �1���4 − �3� for ij = 22.

	 �B7�

Here, one notes that �4=−�1−�2−�3 due to the constraint. Then we replace i�l by �+ i0+ and construct the transport
coefficients on the real axis. Finally we take the limit �→0 to obtain the dc response

Lij�� = lim
�→0

1

2i�

L̄ij���� + i0+� − L̄ij���� − i0+�� = ���

−�

+�

d�2�
−�

+�

d�4I���− �2,�2,− �4,�4��2
i−1�4

j−1, �B8�

where, by using the identities in Eqs. �B3� and �B4�, the spectral density in Eq. �B6� can be reduced to the following
expression:

I���− �2,�2,− �4,�4� = − 2a2t��+1
� t��+1

� �
i�plane

�
j�plane

Re
Ic
�+1i
† c�ic�+1j

† c�j
�− �2,�2,− �4,�4� − Ic

�+1i
† c�ic�j

† c�+1j
�− �2,�2,− �4,�4�� .

�B9�

Equations �B8� and �B9� are the generalization of the Jonson-Mahan theorem to nanostructures; the integrands for the
charge-charge, heat-charge, charge-heat, and heat-heat current operator correlation functions are all related by powers of
frequency. One can also check that the Onsager reciprocal relation holds, where L12 is equal to L21. This follows by using the
symmetry relations, and then interchanging the dummy integration variables �2 and �4.

In the case where we neglect vertex corrections, the spectral densities in Eq. �B9� are equal to

Ic
�+1i
† c�ic�+1j

† c�j
�− �2,�2,− �4,�4� = Ic�ic�+1j

† c�jc�+1i
† ��2,− �4,�4,�2,�e��4 = Īc�jc�+1i

† ��4�Īc�ic�+1j
† ��4�e��4���2 − �4� �B10�

and

Ic
�+1i
† c�ic�j

† c�+1j
�− �2,�2,− �4,�4� = Ic�ic�j

† c�+1jc�+1i
† ��2,− �4,�4,− �2�e��4 = Īc�+1jc�+1i

† ��4�Īc�ic�j
† ��4�e��4���2 − �4� , �B11�

respectively, where

ĪAB��� = −
1

�
f���Im GBA��� �B12�

are the single-particle spectral densities, and we obtain the
same result as in Eq. �38�. In the general case, when vertex
corrections are included, one can find the spectral densities

in Eq. �B2� from the multitime temperature �Matsubara�
Green’s function in Eq. �28� by employing spectral relations
for the multitime correlation functions.32 The full derivation
is complex and lengthy. In the end it provides no new infor-
mation with relation to the Jonson-Mahan theorem, only an
explicit formula for the charge conductivity matrix. Hence,
we do not go through the derivation here.
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