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In this work, we theoretically examine recent pump/probe
photoemission experiments on the strongly correlated charge-
density-wave insulator TaS2. We describe the general nonequi-
librium many-body formulation of time-resolved photoemis-
sion in the sudden approximation, and then solve the problem
using dynamical mean-field theory with the numerical renor-
malization group and a bare density of states calculated from
density functional theory including the charge-density-wave
distortion of the ion cores and spin-orbit coupling.

We find a number of interesting results: (i) the bare band struc-
ture actually has more dispersion in the perpendicular direction
than in the two-dimensional planes; (ii) the DMFT approach
can produce upper and lower Hubbard bands that resemble
those in the experiment, but the upper bands will overlap in
energy with other higher energy bands; (iii) the effect of the
finite width of the probe pulse is minimal on the shape of the
photoemission spectra; and (iv) the quasiequilibrium approxi-
mation does not fully describe the behavior in this system.

1 Introduction Strongly correlated electronic systems
are some of the most interesting and exotic systems in
the quantum world. They are compounds where the out-
ermost electrons interact so strongly with each other that
noninteracting band theory no longer applies, and they
can exhibit novel quantum-mechanical effects. Most ex-
perimental and theoretical techniques for strongly corre-
lated electrons have been applied in equilibrium, or in the
linear-response regime, where we have a wealth of knowl-
edge and understanding about how these systems behave.
Strongly correlated electron systems that are driven into a
nonequilibrium state are much less understood, and rep-
resent a new frontier for the condensed-matter physics
community. One of the most important experimental tech-

niques that allows access to the nonequilibrium regime are
time-resolved pump/probe studies, where an intense and
ultrashort pulse of light hits the material, causing it to be-
come excited into a nonequilibrium state, and then a much
less intense but still ultrashort pulse is used to probe the
system at different time delays after the pump pulse, to ex-
amine how the nonequilibrium dynamics lead the system
to relax back to equilibrium. In this work, we will focus
on time-resolved pump/probe photoemission experiments
that have recently been completed in TaS2 [1].

The material TaS2 is an interesting strongly correlated
commensurate charge-density-wave (CDW) insulator be-
low an incommensurate/commensurate transition tempera-
ture of about 180 K [2]. Conventional band-structure cal-
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Figure 1 (colour online at: www.pss-b.com) Structure of the
CDW-ordered Ta plane in the 1T3 phase at low temperature.
There are three inequivalent Ta sites in the ordered phase, as in-
dicated by the different colors.

culations predict that the ordered phase is metallic, with
a single band crossing the Fermi level, but experiment
shows that the material is actually an insulator at low T ,
and it is believed the insulating state arises from Mott-
Hubbard physics in this single band [3] (which was orig-
inally proposed to be close to the critical U for the Mott
transition). The CDW structure is actually quite complex
in this system. Starting at temperatures above 1150 K, we
find a (disordered) 1T structure is the stable structure for
TaS2; this structure is made up of S-Ta-S trilayer units, in
which atoms in each layer sit on a triangular lattice [4].
Since the separation between S-Ta-S sandwiches is larger
than the interlayer spacing within a sandwich, the structure
is quasi two dimensional. As the temperature is lowered,
TaS2 undergoes a series of phase transitions to structures
that can be viewed as distortions of the basic 1T struc-
ture. Of interest here is the low-temperature commensu-
rate CDW phase (1T3), which appears below about 180 K.
In the plane, this phase is characterized by a

√
13 × √

13
supercell in which the Ta atoms group into clusters of 13
sites in a ‘Star-of-David’ arrangement, as shown in Fig. 1.
Some groups report that the stacking sequence of S-Ta-S
sandwich units has a period of 13 [4], while others suggest
that the stacking is disordered [5]. For this work, we em-
ploy a

√
13 × √

13 × 1 supercell to model the 1T3 phase;
i. e., we assume uniform stacking in the z-direction.

2 Many-body formalism for TR-PES The theoret-
ical description for time-resolved (TR) pump/probe pho-
toemission spectroscopy (PES) is complicated. For con-
tinuous beam photoemission, the signal is proportional to
the so-called lesser Green’s function (summed over kz

if the system is not quasi two-dimensional) in frequency

space, when one neglects the specific details of the ma-
trix elements involved in the coupling of the electrons to
the light and in the sudden approximation (see below for
details). For the nonequilibrium case, the formulation of
the photoemission theory is more complicated. One first
must evolve the system in the presence of the pump pulse
to create the ‘initial’ nonequilibrium state on which the
probe pulse acts. This is achieved by evolving the equi-
librium ensemble of many-body eigenstates {|Ψn〉} of the
system Hamiltonian H to the ‘initial’ ensemble of states
{|Ψ I

n(t0)〉} ≡ {U(t0,−∞)|Ψn〉}, where U is the unitary
time-evolution operator in the presence of the pump pulse,
determined by a time dependent Hamiltonian Hpump(t)
whose precise form depends on the way one models the
interaction of the pump radiation [represented by the
vector potential Apump(r, t), with the t dependence in-
cluding the turning on and off of the pump,] with the elec-
trons of the system [6]. The turning on of the probe pulse
at time t0 similarly modifies H by adding in the Hamilto-
nian Hprobe(t) which includes the interaction of the vec-
tor potential of the probe radiation with the system. At
some later time t, (typically after the probe pulse has been
turned off) the initial nonequilibrium ensemble of states
{|Ψ I

n(t0)〉} has evolved into the ‘final’ ensemble of states
{|ΨF

n (t)〉} ≡ {Ũ(t, t0)|Ψ I
n(t0)〉}, with Ũ(t, t0) being the

unitary time-evolution operator that includes the presence
of the probe pulse. The probability that a photoelectron
with momentum ke ≡ kek̂e (in a momentum interval dke

and solid angle dΩk̂e
) is detected when the system is de-

scribable by this final nonequilibrium ensemble is given by

lim
t→∞

(ke)
2dkedΩk̂e

(2π)3
P (t); (1)

P (t) ≡
∑
n,m

ρn

∣∣〈Ψm;ke|ΨF
n (t)〉

∣∣2 .

Here, as appropriate to photoemission from an experimen-
tal sample with a surface, |Ψm;ke〉 is well approximated
as a direct product of the many-body eigenstate |Ψm〉 of
the initial (and final) time-independent system Hamilto-
nian H, and a high energy, one-electron scattering state
of the system which propagates as a free electron state of
momentum h̄ke outside the sample. The eigenstate |Ψm〉
in which the system is left is not determined in the experi-
ment, and the initial state can be any one of the ensemble of
initial states with probability ρn = Z−1 exp[−En/(kBT )]
where En are the corresponding energy eigenvalues, and
Z =

∑
n exp[−En/(kBT )] is the partition function.

Hence Eq. (2) includes an unconstrained sum over m, and a
sum over n weighted by ρn. This expression implicitly as-
sumes the sudden approximation, where the photo-excited
electron rapidly moves out of the sample.

We employ a probe shape function, s(t′), to capture
the time dependence of the temporal profile of the probe
pulse, including its turning on and off. Mq(kz , kez ;k‖),
the matrix element for the absorption of a photon of wave
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vector q (frequency ωq = cq) and the ejection of an elec-
tron of wave vector k ≡ (k‖, kz) inside the system as a
photo-electron of wave vector ke = (k‖, kez) depends on
the details of the modeling of the sample, especially its sur-
face [7]. To leading order in the perturbationHprobe(t) due
to the (weak) probe pulse (and using the factorization of
|Ψm;ke〉), we find

∣∣〈Ψm;ke|ΨF
n (t)〉

∣∣ � 1

h̄

∣∣∣
∫

dkzMq(kz, kez ;k‖)

×
∫ t

t0

dt′s(t′)e−iωt′ (2)

× 〈Ψm|U †(t′, t0)ckU(t′, t0)|Ψ I
n(t0)〉

∣∣∣,
with U being the exact unitary time evolution operator in
the presence of the pump pulse, which therefore includes
all its nonequilibrium effects. Here h̄ω ≡ h̄ωq−
(h̄ke)

2/(2me) − W is the energy of the excitation left in
the system after the photoemission process and W is the
work function. For probe photons of fixed direction and en-
ergy, and for a given material, specifying ω determines ke,
hence the probability P (t) in Eq. (2) is a function only of
t, ω and k̂e. Using the properties of the time development
operator, and the completeness of {|Ψm〉} it is straightfor-
ward to show that

P (t, ω, k̂e) � 1

(h̄)2

∫
dk′

z

∫
dkzMq(kz , kez ;k‖)

× M∗
q(k′

z , kez ;k‖)I(t, ω, k̂e; kz , k
′
z) (3)

with

I(t, ω, k̂e; kz , k
′
z) ≡ −i

∫ t

t0

dt′′
∫ t

t0

dt′s(t′′)s(t′)eiω(t′′−t′)

× G<
k,k′(t

′, t′′). (4)

Here k ′ ≡ (k‖, k
′
z) , and G< is the well known two-time

(nonequilibrium) lesser Green’s function [8] given by

G<
k,k′(t′, t′′) = i

∑
n

ρn〈Ψn|U(−∞, t′′)c†k ′U(t′′, t′)

× ckU(t′,−∞)|Ψn〉 (5)

≡ iZ−1Tr[e−H/(kBT )c†k ′(t
′′)ck(t′)] (6)

where c†k ′(t′′) and ck(t′) are the electron creation and de-
struction operators in the Heisenberg picture appropriate to
Hpump(t):

c†k ′(t
′′) ≡ U(−∞, t′′)c†k ′U(t′′,−∞); (7)

ck(t′) ≡ U(−∞, t′)ckU(t′,−∞). (8)

In the nonequilibrium (pumped) case, this needs to be
calculated using nonequilibrium Keldysh contour-ordered
Green’s function techniques [9] on the Kadanoff-Baym-
Keldysh contour in the complex time plane.

In case of continuous probe beam PES on a system in
equilibrium, s(t) = 1 and G<

k (t′, t′′) is only a function of

(t′ − t′′). Furthermore, in a highly anisotropic layered sys-
tem, its kz dependence can be neglected. Then the angle-
resolved PES transition rate (transition probability per unit
time, which is what is relevant as the continuous beam
probe pulse photoemits electrons at all times at a constant
rate) is proportional to

lim
t→∞

lim
t0→−∞

I(t, ω, k̂e)

(t − t0)
= −iG<

k‖
(ω) = Ak‖

(ω)f(ω)

(9)
which is the standard result [with Ak‖

(ω) being the spec-
tral function and f(ω) = 1/{1+exp(ω/kBT )} the Fermi-
Dirac distribution function].

We will also invoke the quasiequilibrium approxima-
tion in this work. This approximation assumes that the
electronic system rapidly thermalizes after the pump pulse
is turned off, but, because the time scale for thermaliza-
tion with the phonons is much longer, the electronic sys-
tem remains hot, and cools slowly during the course of
the TR experiment [1]. In this case, the PES is described
by the equilibrium lesser Green’s function, but at an effec-
tive electronic temperature that depends on the time delay
for the turning on of the probe pulse, convoluted with the
probe pulse shape functions s(t) as in Eq. 4. Finally, we
take the matrix elements M to be constants, and evaluate
the Green’s functions for a bulk system, rather than a sys-
tem with a surface, in which case we have full translational
invariance, and kz = k′

z . This last approximation is per-
haps the most serious one that we make, but it also is com-
monly done in theoretical treatments of PES.

3 Numerical techniques Because we need to de-
scribe Mott-Hubbard physics we will use a dynamical
mean-field theory (DMFT) approach. Since there is only
one band at the Fermi level, this problem can be formu-
lated as a simple single band model with a complicated
noninteracting DOS. (This tacitly assumes that any other
higher bands remain higher in energy than the upper Hub-
bard band that comes from the original noninteracting band
at the Fermi energy, a result that may well not be true in
TaS2 - see comments below.) That DOS is determined via
band structure calculations that include both the CDW dis-
tortions of the ion cores and the spin-orbit coupling.

The band structure calculations were done using the
density-functional code VASP [10], a plane-wave-based
all-electron code in which the electron-core interaction
is treated using the projector augmented wave method
[11]. The generalized gradient approximation (GGA) was
used for electron exchange and correlation [12]. For self-
consistent-field calculations and structural relaxations, the
Brillouin zone was sampled using a 6 × 6 × 12 grid of k-
points. Unless explicitly noted, calculations were carried
out using the scalar relativistic Hamiltonian.

The GGA optimized in-plane lattice constant of a =
12.2 Å is about 0.5% larger than the experimental value.
For the out-of-plane lattice constant, the experimental c/a
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Figure 2 (colour online at: www.pss-b.com) Band structure of
CDW-ordered TaS2, including the effects of the spin-orbit inter-
action. The zero of energy is set to the Fermi level. To facili-
tate comparison with results in Ref. [13] which ignored spin-orbit
coupling, the bands are plotted along high-symmetry directions in
the Brillouin zone of the undistorted 1T structure. The half-filled
band (red) that crosses the Fermi level is strongly localized in the
in-plane directions, and is dispersive along kz (Γ to A).

was used to mitigate effects arising from the simplified
stacking sequence assumed. Atomic positions were relaxed
in the scalar relativistic approximation, holding the lattice
constants fixed. The b- and c-site Ta atoms relax towards
the center a site, with the a-b and a-c distances contract-
ing by 5.3% and 3.8% from their respective values in the
undistorted triangular lattice. These results are close to the
experimentally measured distortions. For the S atoms, the
relaxations were found to be larger in the z direction than
within the planes. The S planes develop a slight pucker,
with S atoms close to the central Ta a sites displaced out-
wards in the z direction.

In the undistorted 1T structure, a previous density func-
tional calculation has shown that the electronic bands have
a two-dimensional character in which the Ta d bands cross-
ing the Fermi level are only weakly dispersing in the kz

direction, consistent with the quasi 2D nature of the lattice
[13]. That study also found that the formation of the Star-
of-David clusters causes significant changes in the bands
near the Fermi level. Indeed, in our calculation, the CDW
distortion causes the Ta d band that crosses the Fermi level
to become essentially one-dimensional, with a width of
about 0.5 eV arising almost exclusively from dispersion
in the kz direction (see Fig. 2). This is a nonbonding dz2

band with primary weight on the central Ta a site. The Ta
clustering causes this state to become localized in the in-
plane directions, which suggests that the electronic struc-
ture should transition from being two-dimensional to zero-
dimensional. However, the outward bulging of the S atoms
around the central Ta a sites that accompanies the forma-
tion of clusters enhances the interactions between tri-layer
units, resulting in a one-dimensional band instead.

Recently, it has been suggested that in addition to the
CDW distortion, the spin-orbit effect could have a large
influence on the bands near the Fermi level in TaS2. A
2D tight-binding model found that the spin-orbit interac-
tion causes the nonbonding Ta d band to split off from
a manifold of higher-lying bands [14]. It becomes a very
narrow (less than 0.1 eV in width) half-filled band right
at the Fermi level, primarily of dxy , dx2−y2 character on
the Ta a site. We have carried out density-functional cal-
culations for the 3D system, treating the spin-orbit effect
self-consistently. The results are shown in Fig. 2. As in the
tight-binding results, we find that the spin-orbit interaction
splits off the a-site nonbonding band from higher-energy
bands. However it still has a width of about 0.4 eV due to
kz dispersion. Its character remains mainly dz2 , although
the dxy and dx2−y2 weight is significant at the top of the
band.

The density of states (DOS) of the split-off one-dimen-
sional band is shown in Fig. 3 with the U = 0 label.
Its double-peaked shape can be understood from the kz

dispersion: near the bottom of the band, the dispersion
is quadratic, leading to a DOS that goes roughly like
(E − E0)

−1/2; near the middle of the band, the disper-
sion is roughly linear, giving a nearly constant DOS; and
at the top of the band, the band is relatively flat in all three
directions, yielding a peak in the DOS.

In spite of the fact that the dispersion of the CDW-
distorted bands (with spin-orbit coupling) have a quasi
one-dimensional character to them, we nevertheless ap-
ply the DMFT approach to determine the Mott-Hubbard
physics, even if the results will only be approximate. The
DMFT calculations are now straightforward given the non-
interacting DOS. We make the simplifying assumption that
the Coulomb interaction will be between the two differ-
ent (degenerate) spin-orbit states at a given local site and
use the DFT band structure DOS (for the single band that
crosses the Fermi level) in the Hilbert transform that de-
termines the local Green’s function on the lattice from
the momentum-dependent Green’s function with a local
self-energy. Then, the conventional numerical renormal-
ization group (NRG) impurity solver can be used to solve
for the Green’s function of the effective impurity problem
with the given value of the interaction U . The NRG ap-
proach we employ is the standard algorithm [15]—we take
Λ = 1.8 and keep 800 states per iteration on the Wilson
chain. The DMFT equations for the retarded Green’s func-
tion are solved via the self-consistent iterative approach of
Jarrell [16]. The PES signal is found by multiplying the
spectral function by −2if(w) to get the lesser Green’s
function, then Fourier transforming to real time to find
G<(t − t′). Next we evaluate Eq. (4), which is propor-
tional to the TR-PES spectra given the above assump-
tions. We take the shape function s(t) to be a Gaussian
s(t) = exp[−(t− t̄)2/Γ 2]/(Γ

√
π) with a width Γ equal to

80 fs and a probe delay time set at t̄ (we assume the center
of the pump pulse occurs at t = 0). In the quasiequilibrium
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Figure 3 (colour online at: www.pss-b.com) Local many-body
density of states for the single-band Hubbard model (at T =
50 K) with the noninteracting DOS given by the band structure
calculations described in the text. The metal-insulator transition
takes place around U ≈ 0.55 eV, and the best parameter value
for TaS2 is U ≈ 0.7 eV. The dashed black lines show the upper
and lower bands in the band structure that lie above and below
the band that crosses the Fermi energy; note how the upper and
lower Hubbard bands merge with them more and more as U in-
creases (even the noninteracting band is overlapping with neigh-
boring bands near the lower band edge).

approximation, the lesser Green’s function depends only
on the time difference, so the convolution theorem can be
used, and the final PES signal can be determined directly
by a single integral in frequency space

−i

∫
dνG<

k‖
(ω − ν)) |s̃(ν)|2 /2π, (10)

where s̃(ν) is the Fourier transform of s(t′). Since a pulse
of 80 fs has a width on the order of 8 meV, this convolu-
tion will not modify the smooth structure in the DOS or
the PES which vary over a frequency scale much larger
than 0.01 eV. Hence we neglect the “windowing effect” of
the probe envelope function s(t) in our analysis below. We
fix our calculations to half-filling and vary the interaction
strength to tune it for TaS2, and then only vary the tempera-
ture. Our PES signals are normalized so that the integrated
weight in all spectra are identical.

We begin by calculating the local DOS at T = 50 K
to set the value of U . The results are shown in Fig. 3.
Note how the metal-insulator transition takes place near
U = 0.55 eV. We “fit” to the experimental data by pick-
ing the distance between the peaks of the upper and lower

Hubbard bands to be approximately 0.6 eV, as seen in the
TR-PES studies [1]. This result also produces a gap on the
order of 0.125–0.15 eV, consistent with optical conductiv-
ity experiments [17]. In addition, one should note that the
upper and lower Hubbard bands are merging with the next
higher and next lower bands in the band structure, indicat-
ing that the single-band model may be inadequate for this
system (particularly for the upper Hubbard band).

4 Results The experimental continuous beam (equi-
librium) PES studies on TaS2 in the low-T CDW phase
show interesting behavior [18]. The angle-resolved PES
shows little dispersion of the lower Hubbard band peak as a
function of momentum, consistent with the dispersion ly-
ing predominantly in the kz direction (the kz dispersion
is seen in PES studies that vary the photon energy [13]).
Furthermore, as one approaches the chemical potential, the
angle-resolved PES curves tail off toward zero with an al-
most linear dependence on frequency. This does not dis-
play the expected band gap in the insulating phase, where
the spectra should go to zero before one hits the chemical
potential. It is argued in the experiment that this is occur-
ring because the system has defects which pin the chemi-
cal potential to the upper edge of the lower Hubbard band.
If so, then there would be no way to see the gap in any
continuous-beam (equilibrium) PES experiment, because
one cannot reach the high temperatures needed before the
CDW order disappears. In TR-PES experiments, one can
access the higher bands by pumping energy into the sys-
tem with the pump pulse which can excite electrons across
the CDW gap and then be imaged. But the TR-PES spectra
also do not show a clear signature of a gap in the data, as
we illustrate below.

The TR-PES measurements on TaS2 work with low-
energy photons [1], and hence the electronic excitations
are limited to lie in a small volume about the zone-center
in the Brillouin zone. It is argued, if the system is quasi
two-dimensional, that one would then examine the k = 0
spectral function. We will show some results with just such
an approach, although, the quasi one-dimensional disper-
sion along kz , indicates that one should average instead
over kz , which is approximately the local Green’s function
when the dispersion is quasi-one-dimensional. So we also
examine the local Green’s function with our simplified ap-
proach.

Since we have set the Hubbard model interaction at
U = 0.7, we can determine the TR-PES spectra by simply
calculating the local (or k = 0) equilibrium lesser func-
tion at different temperatures and plotting as a function of
frequency. Different effective temperatures correspond to
different time delays, with the hottest temperatures being
the shortest time delays. The results of just such a calcula-
tion are shown for the local Green’s function in Fig. 4 and
for the k = 0 Green’s function in Fig. 5. Here we plot the
lesser function for different quasiequilibrium temperatures.
The chemical potential is fixed by the requirement that the
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Figure 4 (colour online at: www.pss-b.com) Time-resolved pho-
toemission spectroscopy in the single-band quasiequilibrium ap-
proximation for TaS2. Here we plot the local lesser Green’s func-
tion to represent the sum over all kz values with the quasi one-
dimensional dispersion. Note how one always sees a strong insu-
lator, and that one can image the upper Hubbard band as the tem-
perature becomes on the order of half the bandwith and above.
Note further that the 50 K curve and the 175 K curve are indistin-
guishable.

filling remain exactly one in the band. The chemical po-
tential shifts in such a way to push the peaks to the left
in the figures for higher temperature. Such a shift is not
seen in the experimental data. If we instead assume that
the chemical potential is pinned by defect states, then we
would shift the curves back to the right (by hand) so they
all meet at a characteristic frequency. This is the behavior
seen in experiment and could be reproduced in the theory if
we allow ourselves to shift the frequency axis for each case
or if we include defect states in our analysis. In addition to
the movement of the peaks with the changing chemical po-
tential, we also clearly see insulating behavior for small T ,
and we always see a double peak structure when we can
image the lower and upper Hubbard bands separately at
high T . Note that the upper Hubbard band is always small
in weight compared to the lower band due to the Fermi
factor. The experimental TR-PES data does not show such
behavior. It instead has an almost monotonically decreas-
ing signal as one moves across the chemical potential and
beyond, with no real gap structure to be seen anywhere.
This behavior is difficult to reconcile with a single-band
Mott-Hubbard type of picture. The behavior for some of
these features is reproduced better in the local approxima-
tion than the k = 0 approximation (like the location of the

Figure 5 (colour online at: www.pss-b.com) Time-resolved pho-
toemission spectroscopy in the single-band quasiequilibrium ap-
proximation for TaS2. Here we plot the k = 0 lesser Green’s
function. In this case, the relative weight of the upper and lower
band features are closer to experiment than the local results and
the tailing off of the signal as we approach the chemical potential
from negative energies is also similar to what is seen in experi-
ment, but the peak location is pushed much lower in energy and
sits near −0.5 eV rather than −0.2 eV, as seen in experiment.

peak height), while other behavior is produced better in the
k = 0 approximation (like the tailing off of the signal as
one approaches the chemical potential, the lower relative
weight of the upper Hubbard band, and the difficulty in di-
rectly imaging the peak in the upper Hubbard band).

We have a couple of conjectures about what is happen-
ing in this system, but we do not yet have definitive an-
swers to these questions. First off, the single-band model
approximation is probably the most serious one that we
made in this work. This is because the higher-energy bands
in the band structure lie just slightly above the noninter-
acting DOS upper band edge. So the upper Hubbard band,
which is pushed upwards in energy relative to the noninter-
acting band edge, is expected to lie in or above those first
lower bands (the situation is not quite as bad for the k = 0
spectra, because the k = 0 band energies are pushed a bit
higher). This implies the system looks more like a charge-
transfer insulator than a Mott-Hubbard insulator, and the
upper bands in the band structure must be taken into ac-
count in the analysis. If we instead ignore that problem,
then we still need to explain why we do not see a clear sig-
nature of the upper Hubbard band in the data. Here there
are three other effects that can be playing a role. One could
have a situation where the nonequilibrium behavior is not
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described well by the quasiequilibrium approximation, and
hence the “filling in” of the gap is a nonequilibrium ef-
fect. Another possible explanation could arise from surface
states which may lie at slightly different energies and could
enhance the signal in the gap, making it look like there is
no gap, when there actually is one in the bulk. Finally, the
energy and momentum dependence of the matrix elements
could be playing a role. When one compares the TR-PES
studies with the higher-energy continuous beam studies,
one can see a difference in the relative peak heights of the
lower Hubbard band and of the even lower energy filled
bands, which must arise from matrix-element effects.

5 Conclusions In this work, we have examined a
theoretical description of the time-resolved photoemission
spectroscopy in the strongly correlated CDW insulator 1T-
TaS2 based on a simplified single-band model that employs
DFT + DMFT(NRG) techniques. The model can be solved
directly, and does display some of the qualitative features
of the experiments, but misses a number of key elements:
First, the experiments never show a true insulator, while
the theory shows well defined insulating behavior even at
high temperature, where a lower and upper Hubbard band
can still be seen. Second, this approximation is neglect-
ing the fact that the upper Hubbard band lies at energies
that are typically above the lower band edge of the higher
energy unoccupied band states of the system. When this
occurs one really needs to consider a multiband model.
Third, we find the DFT-based bands, with the CDW dis-
tortion and the spin-orbit coupling included, display quasi
one-dimensional behavior perpendicular to the planes, and
essentially localized behavior within the planes, indicating
that averaging over kz is always necessary (even though
many features in the experiment are represented better by
the k = 0 results with no kz averaging). It is also possi-
ble that one needs to take into account nonequilibrium ef-
fects beyond the quasiequilibrium approximation (which
may fill the gap in the DOS faster), include the momentum
or energy dependence to the matrix elements rather than
treating them as constants, and incorporate surface effects,
in particular the effects of surface states which could also
mask the insulating behavior. Clearly further work is re-
quired to start to resolve and better understand 1T-TaS2.
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