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Time-resolved measurements of materials provide a wealth of information on quasiparticle dynamics, and
have been the focus of optical studies for decades. In this paper, we develop a theory for explicitly evaluating
time-resolved resonant inelastic x-ray scattering (tr-RIXS). We apply the theory to a noninteracting electronic
system and reveal the particle-hole spectrum and its evolution during the pump pulse. With a high-frequency
pump, the frequency and amplitude dependence analysis of the spectra agrees well with the steady-state
assumptions and Floquet excitations. When the pump frequency is low, the spectrum extracts real-time dynamics
of the particle-hole continuum in momentum space. These results verify the correctness of our theory and
demonstrate the breadth of physical problems that tr-RIXS could shed light on.
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I. INTRODUCTION

Ultrafast materials science, traditionally focused either on
time-resolved optical studies or time-resolved angle-resolved
photoemission spectroscopy (tr-ARPES), can reveal crucial
information about materials’ dynamics, including excitation
and relaxation of quasiparticles [1–6] and phases induced or
suppressed by disturbance [7–13]. The combination of these
two techniques provides fine details about the single-particle
properties and the long-wavelength collective excitations.
However, with an increasing demand for resolving complex
excitations, as well as for understanding correlation effects
behind them, these two techniques become insufficient in
many scenarios. For example, an outstanding issue in con-
densed matter physics is to detect bosonic excitations across
the entire Brillouin zone, as a finite-momentum excitation
may be crucial for some ordered phases such as charge den-
sity waves, stripes, and superconductivity. Optical techniques
such as reflectivity and Raman scattering can only provide
information about the resonant excitations at zero momentum
[14,15], while tr-ARPES detects exclusively single-particle
information [16]. Even though the collective modes can be
inferred qualitatively from tr-ARPES in some cases [16–20],
generally it can only reflect their integrated effects, making it
impractical to decipher the full momentum-resolved collective
excitations [21].

On the other hand, resonant inelastic x-ray scattering
(RIXS), as a photon-in photon-out spectroscopy, is increas-
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ingly popular due to its capability for detecting a variety of
atomically specified collective excitations in a wide range
of momentum and energy [22,23]. Recent development of
instrumentation has brought much progress to the energy
resolution of RIXS measurements [24–26]. With full Bril-
louin zone access in momentum space and light polarization
selection, RIXS has been able to separate and depict the
full momentum-energy structure of charge, orbital, spin, and
lattice degrees of freedom [27–33]. These advantages make
RIXS an indispensable technique for characterizing multipar-
ticle excitations [34].

Recently, progress has been achieved in time-resolved
RIXS (tr-RIXS) techniques, with the help of ultrashort and
ultrabright x-ray sources [35]. Dean et al. reported a fem-
tosecond tr-RIXS experiment on Sr2IrO4 to study subtle spin
and charge dynamics [36,37]. Combining the advantages of
ultrafast techniques and RIXS, this experiment reveals that
the photoinduced suppression of the magnetic order happens
mainly for (π, π ) momentum transfers, with in-plane spin
correlations restoring on a much faster timescale than the
out-of-plane correlations. Mitrano et al. reported tr-RIXS
on La2−xBaxCuO4 to study evolution of collective modes
associated with charge order [38]. It was found that low-
energy collective excitations are overdamped and propagate
via Brownian-like diffusion, displaying universal scaling be-
havior arising from the propagation of topological defects.
These results have demonstrated a first view of the power of
tr-RIXS. With the ability to characterize various multiparticle
excitations with time, momentum, and energy resolution, tr-
RIXS has paved the way for understanding and manipulating
nonequilibrium properties.
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However, in contrast to the well-established theory in time-
resolved single-particle and two-particle studies [4,39–42]
and equilibrium RIXS [22,23], the theory of tr-RIXS has
not yet been developed [34]. Here, we report a theory for
the nonequilibrium tr-RIXS cross section. While the generic
formalism can be applied to arbitrary electronic systems, we
explore the theory for noninteracting electrons as a bench-
mark. By tuning the pump-probe parameters (i.e., pulse width,
frequencies, etc.) and tracking the time-dependent spectrum
during the pump pulse, we analyze the change of the particle-
hole continuum. Floquet replicas and energy renormaliza-
tions by photoinduced transient states are clearly detected
for high pump frequencies, while breathing and flattening of
particle-hole excitations near the momentum nesting point are
observed for low pump frequencies. In both cases, tr-RIXS
precisely detects the relevant dynamics of particle-hole pairs
with full momentum and energy resolution. These results help
to set the stage for an understanding of the dynamics for
collective excitations in more realistic and strongly correlated
systems.

The remaining part of this paper is arranged as follows.
In Sec. II we propose a theory for calculating tr-RIXS as
well as its background, derivation, and comparison with the
equilibrium formula. In Sec. III we present and analyze nu-
merical results of our theory benchmarked on noninteracting
electrons under high- and low-frequency pump pulses. Sec-
tion IV closes with a discussion of the relevance of our results
for more realistic simulations for correlated systems.

II. THEORY FOR TIME-RESOLVED X-RAY
SPECTROSCOPY

RIXS is a second-order x-ray scattering process involv-
ing resonant intermediate states. In contrast to nonresonant
scattering, it has the advantage of strong intensity and large
momentum accessibility at the desired electron energy range
to which the probe x-ray is tuned [23]. RIXS describes the
following photon-in photon-out process: first, an incoming
photon with energy ωi excites a ground-state core-shell elec-
tron to the local valence shell (described by Dmei ); then, as
the second step, an electron from the valence shell annihilates

the core hole emitting a photon with energy ωf (described
by D†

mef
), leaving the system in an excited final state. This

is illustrated in Fig. 1. To be self-contained, we first briefly
review equilibrium RIXS theory [22,23]. Then we derive the
cross section for tr-RIXS from perturbation theory in the
probe pulse.

A. RIXS calculation in equilibrium

The (equilibrium) RIXS process is a second-order process
that consists of two dipole transitions. Its cross section is
usually evaluated by the Kramers-Heisenberg formula [22,23]

I (ωi, ωf , q) = 1

π
Im〈�| 1

H − E0 − �ω − i0+ |�〉, (1)

with

|�〉 =
∑

m

eiq·rmD†
mef

1

H − E0 − ωi − i�
Dmei

∣∣�0
i

〉
. (2)

Here H is the Hamiltonian (including a core-hole interaction),
ωi, ωf are incident and outgoing photon energies, respectively,
�ω = ωi − ωf is the energy loss, q is the momentum transfer,
i.e., the difference between the incoming photon momentum
qi and the outgoing photon momentum qf , rm is the position
of the mth lattice site, and E0 is the energy of the ground state
|�0

i 〉. For direct RIXS, i.e., where the core electron is excited
directly into the valence band, Dme = ∑

σ,α,β Me
αβ p†

mασ dmβσ

is the local dipole transition operator, where pmασ (dmβσ )
annihilates an electron at site m with spin σ in the valence α

(core β) orbital. We use Me
αβ to denote the associated matrix

element with photon polarization e. In the nonequilibrium
case, Me

αβ will become time-dependent; thus we represent
the matrix element and dipole transition operator at time t as
Me

αβ (t ) and Dme(t ), respectively.

B. Time-resolved RIXS

To calculate the nonequilibrium time-resolved RIXS cross
section, we assume that the system starts out in equilib-
rium (i.e., when t → −∞) with Hamiltonian H0. It can
then be represented by an ensemble of electron and pho-
ton eigenstates |�0

n 〉 ⊗ |
ph〉. The electronic eigenstates |�0
n 〉

FIG. 1. An illustration of the RIXS process. It has two steps: In the excitation step, the incoming photon with energy ωi and momentum ki

promotes an inner shell electron to the outer shell at site m in the initial state and creates the intermediate state. Later, in the deexcitation step,
the intermediate state emits the outgoing photon with energy ωf and momentum kf and the core hole is filled, leaving the final state with an
excitation.
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satisfy H0|�0
n 〉 = En|�0

n 〉 and are present with probability
ρn = Z−1 exp[−En/kBT ], where Z = ∑

n exp[−En/kBT ] is
the partition function and T is the initial temperature. As
the linearization of a coherent state at the weak-probe limit,
the photon part |
ph〉 is a one-photon state a†

qiei
|0〉 of the

incoming probe light, where |0〉 is the photon vacuum and
a†

qiei
is the photon creation operator at incoming probe mo-

mentum qi with polarization ei. As the pump is turned on,
the Hamiltonian H(t ) becomes time-dependent, and the states
evolve according to U (t,−∞)|�0

n 〉 ⊗ a†
qiei

|0〉. Here U (t, t ′) =
T exp[− ∫ t

t ′ H(τ )dτ ] is the time evolution operator and T is
the time-ordering operator. The probe pulse is generally weak
compared to the pump and here we treat it as a perturbation
Hprobe(t ), while the pump is exactly included in H(t ), as in
the theory for tr-ARPES [39]. Thus the time evolution can be
expanded to second order as

Û (t ′′, t ′) = T e−i
∫ t ′′

t ′ [H(t )+Hprobe(t )]dt

≈ U (t ′′, t ) − i
∫ t ′′

t ′
dt U (t ′′, t )Hprobe(t )U (t, t ′)

+
∫ t ′′

t ′
dt2

∫ t2

t ′
dt1U (t ′′, t2)Hprobe(t2)U (t2, t1)

×Hprobe(t1)U (t1, t ′). (3)

The photon flux of a certain momentum and polarization,
which is directly linked to spectroscopic experiments, may be
measured by

Jqf ef = lim
t ′′→∞

〈
Û (−∞, t ′′)a†

qf ef
aqf ef Û (t ′′,−∞)

〉
, (4)

where t ′′ → ∞ is taken to include all scattering photons,
and 〈O〉 is the ensemble average of the operator O. Here
apparently the zeroth-order value is J (0)

qf ef
= δqiqf

(ef · ei )2, cor-
responding to elastic reflection in experiments.

In order to calculate higher-order results, first we
can perform the decomposition Hprobe(t ) = Hin(t ) + Hout(t ).
Hin(t ) = s(t )

∑
mke Dme(t )eik·rm ake represents the photon ab-

sorption part with ake annihilating a photon with momentum k
and polarization e, and Hout(t ) = H†

in(t ). s(t ) is the probe en-
velope function, which semiclassically describes the portion
of the probe field that interacts with the system. An alternative
representation is keeping the interaction fixed but allowing the
photon field to vary in time. These two representations lead to
the same cross section obtained by the linear response theory.

1. First-order contribution: Time-resolved XAS

The first-order contribution of Hprobe(t ) is

J (1)
qf ef

=
∫ ∞

−∞
dt2

∫ ∞

−∞
dt1

〈
U (−∞, t2)Hprobe(t2)

×U (t2,∞)
(
a†

qf ef
aqf ef − J (0)

qf ef

)
U (∞, t1)Hprobe(t1)

×U (t1,−∞)
〉
. (5)

Here, since Hin corresponds to photon absorption and Hout

corresponds to photon emission, J (1)
qf ef

can further be decom-
pose to two parts, i.e., J (1)

qf ef
= Jab

qf ef
+ Jem

qf ef
.

The absorption part Jab
qf ef

is

Jab
qf ef

=
∫ ∞

−∞
dt2

∫ ∞

−∞
dt1

〈
U (−∞, t2)Hout(t2)U (t2,∞)

(
a†

qf ef
aqf ef − J (0)

qf ef

)
U (∞, t1)Hin(t1)U (t1,−∞)

〉

=
∑
m, n

k, k′, e, e′

∫ ∞

−∞
dt2

∫ ∞

−∞
dt1s(t1)s(t2)〈U (−∞, t2)D†

ne′ (t2)e−ik′ ·rnU (t2, t1)Dme(t1)eik·rmU (t1,−∞)〉

× (〈
a†

k′e′ (t2)a†
qf ef

aqf ef ake(t1)
〉
ph − 〈a†

k′e′ (t2)ake(t1)〉phJ (0)
qf ef

)
, (6)

where ake(t1) = U (−∞, t1)akeU (t1,−∞), and 〈O〉ph calculates the mean value of the operator O in the one-photon eigenstate
a†

qiei
|0〉, which is the initial photon state in the discussed x-ray scattering process. If we have an x-ray pump, the electrons

and x-ray photons will be entangled in the time evolution. The inner-shell electrons will be excited to upper levels by
the pump, and the separation of the two parts in Eq. (6) will need to be carefully modified. Here we have assumed
that the pump does not affect inner shells, because a typical tr-RIXS measurement takes an off-resonant pump with
respect to the x-ray edges. Thus 〈a†

k′e′ (t2)a†
qf ef

aqf ef ake(t1)〉ph = 0 and 〈a†
k′e′ (t2)ake(t1)〉ph = eiωi (t2−t1 )δk′qi

δe′eiδkqi
δeei . This means

we obtain no first-order contribution unless we are probing at the incident photon momentum. Then Eq. (6) can be
simplified as

Jab
qf ef

= −
∑
n,m

∫ ∞

−∞
dt2

∫ ∞

−∞
dt1s(t1)s(t2)eiωi (t2−t1 )eiqi·(rm−rn )

〈
U (−∞, t2)D†

nei
(t2)U (t2, t1)Dmei (t1)U (t1,−∞)

〉
δqiqf

(ef · ei )
2

= −
∑

n

∫ ∞

−∞
dt2

∫ ∞

−∞
dt1s(t1)s(t2)eiωi (t2−t1 )

〈
U (−∞, t2)D†

nei
(t2)U (t2, t1)Dnei (t1)U (t1,−∞)

〉
δqiqf

(ef · ei )
2. (7)

Equation (7) describes time-resolved x-ray absorption spectroscopy (tr-XAS). It is the first-order loss brought by the light-matter
interaction at the incident energy, which corresponds to absorption of the photon by the electrons in the materials. The function
s(t1) is given by the probe profile s(t1) = g(t1, t ), where t is the center of the probe pulse, and the same for s(t2).
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The emission part Jem
qf ef

is

Jem
qf ef

=
∫ ∞

−∞
dt2

∫ ∞

−∞
dt1

〈
U (−∞, t2)Hin(t2)U (t2,∞)

(
a†

qf ef
aqf ef − J (0)

qf ef

)
U (∞, t1)Hout(t1)U (t1,−∞)

〉

=
∑
m, n

k, k′, e, e′

∫ ∞

−∞
dt2

∫ ∞

−∞
dt1s(t1)s(t2)〈U (−∞, t2)Dne′ (t2)eik′ ·rnU (t2, t1)D†

me(t1)e−ik·rmU (t1,−∞)〉

× (〈
ak′e′ (t2)a†

qf ef
aqf ef a

†
ke(t1)

〉
ph − 〈ak′e′ (t2)a†

ke(t1)〉phJ (0)
qf ef

)
. (8)

Equation (8) corresponds to x-ray emission, and is nonzero
only when the initial state has core holes. For an off-resonant
pump pulse that does not excite core electrons to valence
levels, the contribution of Eq. (8) can be ignored.

2. Second-order contribution: Time-resolved RIXS

In contrast to XAS, RIXS is a photon scattering proce-
dure and requires the participation of both incoming and

outgoing photons. The second-order contribution to Jqf ef can
be realized by the second-order scattering terms in Hprobe(t ),
or a two-time sequence of the first order Hprobe(t ) in Eq. (3).
Resonant or nonresonant contributions can be selected by
different incident photon probe energies. Here we do not
consider nonresonant processes [43,44] but focus only on
those responsible for RIXS. Such a scattering procedure can
be measured by

J (2)RIXS
qf ef

=
∫ ∞

−∞
dt2

∫ t2

−∞
dt1

∫ ∞

−∞
dt ′

2

∫ t ′
2

−∞
dt ′

1

〈
U (−∞, t ′

1)Hout(t
′
1)U (t ′

1, t ′
2)Hin(t ′

2)U (t ′
2,∞)a†

qf ef
aqf ef

×U (∞, t2)Hout(t2)U (t2, t1)Hin(t1)U (t1,−∞)
〉

=
∑
m, m′
n, n′

∫ ∞

−∞
dt2

∫ t2

−∞
dt1

∫ ∞

−∞
dt ′

2

∫ t ′
2

−∞
dt ′

1〈U (−∞, t ′
1)D†

n′ε′ (t ′
1)U (t ′

1, t ′
2)Dnε(t ′

2)U (t ′
2, t2)D†

m′e′ (t2)U (t2, t1)Dme(t1)

×U (t1,−∞)〉s(t ′
1)s(t ′

2)s(t2)s(t1)
∑

k1, k2, k′
2, k′

1
e, e′, ε, ε′

ei(k1·rm−k2·rm′+k′
2·rn−k′

1·rn′ )
〈
a†

k′
1ε

′ (t
′
1)ak′

2ε
(t ′

2)a†
qf ef

aqf ef a
†
k2e′ (t2)ak1e(t1)

〉
ph

=
∑
m,n

∫ ∞

−∞
dt2

∫ t2

−∞
dt1

∫ ∞

−∞
dt ′

2

∫ t ′
2

−∞
dt ′

1〈U (−∞, t ′
1)D†

nε′ (t ′
1)U (t ′

1, t ′
2)Dnε(t ′

2)U (t ′
2, t2)D†

me′ (t2)U (t2, t1)Dme(t1)U (t1,−∞)〉

× s(t ′
1)s(t ′

2)s(t2)s(t1)
∑

k1, k2, k′
2, k′

1
e, e′, ε, ε′

ei(k1−k2 )·rm+i(k′
2−k′

1 )·rn
〈
a†

k′
1ε

′ (t
′
1)ak′

2ε
(t ′

2)a†
qf ef

aqf ef a
†
k2e′ (t2)ak1e(t1)

〉
ph. (9)

For tr-RIXS, qf = qi − q, and the initial photon state is
a†

qiei
|0〉. We may evaluate the photon part in Eq. (9)

to be 〈a†
k′

1ε
′ (t

′
1)ak′

2ε
(t ′

2)a†
qf ef

aqf ef a
†
k2e′ (t2)ak1e(t1)〉ph = δk1qi

δk′
1qi

δk2qf
δk′

2qf
eiωi (t ′

1−t1 )−iωf (t ′
2−t2 )δeeiδε′eiδe′ef δεef . Note that t1 and t ′

1
correspond to the excitation process, while t2 and t ′

2 cor-
respond to the deexcitation process. Equation (9) provides
the scattered photon flux from the many-body system, which
evolves first up to time t1, when an electron from the core level
is resonantly excited to the valence band, and then further
evolves the many-body state (with the core hole) up to time
t2. At this point, the valence electron drops back to eliminate
the core hole. Such evolution is represented by the Keldysh
contour shown in Fig. 2.

Typically, we do not consider the phenomenological life-
time of the excitations or quasiparticles, since it is usually
longer than the probe pulse for low-energy excitations. How-
ever, since the core hole has a huge binding energy, its lifetime
has to be explicitly considered. This means the refilling of the

core hole at t2 must happen within a certain time window
after it was created at t1. The detailed evaluation of this
procedure requires the consideration of the interaction with
the environment. Tracing out the environmental degrees of
freedom then leads to a non-Hermitian decay process, whose
net effect is a nonunitary U (t2, t1). As a phenomenological
description of the irreversible decay process, we modify
Eq. (3) and Eq. (9) for the time intervals [t1, t2] and [t ′

1, t ′
2],

where the core hole exists, with U (t2, t1) → l (t1, t2)U (t2, t1)
and U (t ′

1, t ′
2) → l (t ′

2, t ′
1)U (t ′

1, t ′
2), where l (t1, t2) = exp(−|t2 −

t1|/τch) describes the lifetime of the core hole. The probe
pulse is treated the same as in XAS described above, i.e.,
s(τ ) = g(τ, t ), where t is the observation time. To simply the
expression, we also define the four-point correlation function

Smn
eief

(t1, t2, t ′
2, t ′

1) = 〈
U (−∞, t ′

1)D†
nei

(t ′
1)U (t ′

1, t ′
2)Dnef (t

′
2)

×U (t ′
2, t2)D†

mef
(t2)U (t2, t1)Dmei (t1)

×U (t1,−∞)
〉
. (10)
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• •
•• •
t

2σpr

−∞

−∞

t2t1

t1 t2

pump probe

FIG. 2. The Keldysh contour of tr-RIXS. The red curve and cyan
shade represent the pump and probe pulse, respectively. t1, t2, t ′

2, and
t ′
1 are as defined in Eq. (9). The probe centered at t has a width 2σpr,

containing all four time points. The separations between t1(t ′
1) and

t2(t ′
2) correspond to the time when the core hole is present and are

further constrained by l (t1, t2) or l (t ′
1, t ′

2), as defined in the main text.

Putting all of these together, we find

I (ωi, ωf , q, t )

= J (2)RIXS
qf ef

=
∫ ∞

−∞
dt2

∫ t2

−∞
dt1

∫ ∞

−∞
dt ′

2

∫ t ′
2

−∞
dt ′

1eiωi (t ′
1−t1 )−iωf (t ′

2−t2 )

× l (t1, t2)l (t ′
1, t ′

2)g(t1, t )g(t2, t )g(t ′
1, t )g(t ′

2, t )

×
∑
m,n

eiq·(rm−rn )Smn
eief

(t1, t2, t ′
2, t ′

1). (11)

Equation (11) is the full cross section of tr-RIXS. The dipole
excitation and dipole deexcitation processes form the scatter-
ing amplitude, resulting in a closed-form cross section deter-
mined by t1 < t2, t ′

1 < t ′
2. We should note that the derivation

of the tr-RIXS cross section here is generic and not dependent
on a particular form of H(t ) or a specific probe shape s(t ).

C. Comparison to equilibrium Kramers-Heisenberg formula

As a special case of tr-RIXS, the equilibrium RIXS cross
section can be obtained by assuming a time-independent
Hamiltonian, i.e., H(t ) = H(t + τ ) = H for any τ . Assum-
ing zero temperature, we evaluate the four-point correlation
function to be

Smn
eief

(t1, t2, t ′
2, t ′

1) = 〈
�0

i

∣∣D†
nei

e−i(H−Ei )(t ′
1−t ′

2 )Dnef e
−i(H−Ei )(t ′

2−t2 )

×D†
mef

e−i(H−Ei )(t2−t1 )Dmei

∣∣�0
i

〉
, (12)

where |�0
i 〉 is the initial ground state with energy Ei. For the

equilibrium case, Eq. (11) should be understood in terms of
a constant rate of detection for the scattered photons [39,45],
and we should set the probe shape function g(ti, t ) = 1. This
then yields

I (ωi, ωf , q, t ) ∝ lim
L→∞

1

2L

∫ L

−L
dt2

∫ t2

−L
dt1

∫ L

−L
dt ′

2

∫ t ′
2

−L
dt ′

1

× eiωi (t ′
1−t1 )−iωf (t ′

2−t2 )l (t1, t2)l (t ′
1, t ′

2)

×
∑
m,n

eiq·(rm−rn )Smn
eief

(t1, t2, t ′
2, t ′

1). (13)

Through the transformation r = t2 − t1, s = t ′
2 − t2, τ = t ′

2 −
t ′
1, T = (t1 + t ′

1)/2 − t , we obtain

I (ωi, ωf , q, t )

∝ lim
L→∞

1

2L

∫ 2L

0
dτ

∫ 2L

−2L
ds

∫ 2L

0
dr

∫ L−t

−L−t
dT e−�re−�τ

×
∑
m,n

eiq·(rm−rn )〈�0
i

∣∣D†
nei

e−i(ωi−H+Ei )τDnef e
i(�ω−H+Ei )s

×D†
mef

ei(ωi−H+Ei )rDmei

∣∣�0
i

〉

∝ lim
L→∞

∫ 2L

0
dτ

∫ 2L

−2L
ds

∫ 2L

0
dr

×
∑
m,n

〈
�0

i

∣∣D†
nei

e−�τ−i(ωi−H+Ei )τDnef e
−iq·rn ei(�ω−H+Ei )s

× eiq·rmD†
mef

e−�r+i(ωi−H+Ei )rDmei

∣∣�0
i

〉
, (14)

where the inverse core-hole lifetime � = 1/τch. Using∫ ∞
0 dr e−δr+iαr = i(α + iδ)−1 and

∫ ∞
−∞ eicsds = 2πδ(c) (for

real c), we obtain the equilibrium RIXS cross section

Ieq(ωi, ωf , q, t ) =
∑

f

|Af |2δ(�ω − Ef + Ei ), (15)

where f labels an eigenstate |�0
f 〉 of H with energy Ef , and

Af = 〈
�0

f

∣∣ ∑
m

eiq·rmD†
mef

1

ωi − H + Ei + i�
Dmei

∣∣�0
i

〉
(16)

is the scattering amplitude. This recovers the Kramers-
Heisenberg formula for equilibrium RIXS [23,46,47].

The above derivation assumes infinite probe width. In prac-
tice, a finite probe width typically gives a linewidth on top of
the δ functions in photoemission or Raman scattering [39,43].
Similarly in RIXS, the conventional Kramers-Heisenberg for-
mula Eq. (1) differs from Eq. (15) by a consideration of finite
linewidth as a result of the probe shape. However, we notice
that this linewidth is in fact a complicated form instead of an
inverse of the probe width. That is because in Eq. (14) the part
that corresponds to energy loss �ω only contains the photon
emission time t2 and t ′

2, while the probe shape contains t1 and
t ′
1. The consequence is that the final effective linewidth, if

written in the Kramers-Heisenberg form, contains a renormal-
ization by the core-hole lifetime τch. Conceptually it indicates
the “excitations” effectively develop at a weighted average
time between t1 and t2 (or t ′

1 and t ′
2). When the core-hole life-

time is much shorter than the probe duration, which is typical
in experiments, we can simply reduce the shape function by
g(t1, t )g(t2, t )g(t ′

1, t )g(t ′
2, t ) ≈ g2(t2, t )g2(t ′

2, t ) similarly to the
nonresonant scattering [43,44]. This recovers the well-known
Kramers-Heisenberg formula.

III. NUMERICAL CALCULATION OF tr-RIXS

In order to provide a basic picture of the nonequilibrium
physics revealed from tr-RIXS, we study electrons on a
2D square lattice at zero temperature as a simple example.
Although an explicit treatment of the electron interaction is
necessary in quantum materials with strong correlations, a
precise description of the many-body states is then necessarily
restricted to a small cluster, which conceals the momentum
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FIG. 3. Tr-RIXS spectra for a large pump frequency. (a) Schematic of the pump pulse. The Gaussian profile is shown in blue dashed lines,
and the five orange dots correspond to the times when spectra in (b)–(f) are taken. (b)–(f) The tr-RIXS spectra at t = −2σpu, −σpu, 0, σpu, 2σpu,
respectively. The inset of (b) shows the Fermi surface of the 2D electronic system with red lines, and the blue arrows show the nesting
momentum wave vector at q 
 0.4π . Unless otherwise specified, all RIXS intensities are shown in the same arbitrary units.

resolution of RIXS. As a benchmark study focused on the
tr-RIXS measurements, the conduction band can be written
in a tight-binding form:

εk = εc + μ0 − 2th(cos kx + cos ky), (17)

in which εc is the energy of the core level, μ0 is the
energy difference between core and valence electrons in

the atomic limit, and th is the hopping of the conduction
band which is chosen to be 0.3 eV. The symbol εk de-
notes the band dispersion. When there is an external uniform
pump field A(t ), the Peierls substitution gives k → k − A(t )
in Eq. (17) [48]. The probe energy is set to be ωi = μ0

to achieve resonance. We can explicitly evaluate Eq. (11)
to find

I (�ω, q, t ) ∝
∫∫∫∫

t1<t2,t ′
1<t ′

2

dt1dt2dt ′
2dt ′

1 ei(ωi−μ0 )(t ′
1−t1 )−i(ωi−�ω−μ0 )(t ′

2−t2 )g(t1, t )g(t2, t )g(t ′
1, t )g(t ′

2, t )l (t1, t2)l (t ′
1, t ′

2)

×
∑

k

{
f (εk)[1 − f (εk+q)]e−i

∫ t ′2
t2

dτ (2th ){cos[kx−Ax (τ )]+cos[ky−Ay (τ )]}+i
∫ t ′1

t1
dτ (2th ){cos[kx+qx−Ax (τ )]+cos[ky+qy−Ay (τ )]}}, (18)

where f (ε) is the Fermi-Dirac distribution. To mimic the
probe profile and the phenomenological decay, we em-
ploy g(τ, t ) = 1/(

√
2πσpr) exp[−(τ − t )2/2σ 2

pr] and l (τ, t ) =
exp[−|τ − t |/τch] in Eq. (18). Note that we do not incorpo-
rate any specific time-dependent form for the dipole matrix
elements, nor do we correct the momentum shift as is done
in tr-ARPES to produce a gauge-invariant Green’s function
[49,50]. The issue of gauge invariance in the presence of a
pump is a complex one, which we defer to future work.

A. High-frequency pump: Floquet physics

Here we choose a pump having a Gaussian profile, po-
larized along the Brillouin zone diagonal. The width of the
pump is chosen to be σpu = 240 eV−1 = 151 fs, the max-
imum strength of the pump in both directions is A0, and
the pump frequency is �. Here 1 eV−1 = h̄/eV = 0.628 fs.
Then the time-dependent pump is given by Ax(t ) = Ay(t ) =
A0 exp(−t2/2σ 2

pu) cos(�t ). The width of the incoming probe
pulse is σpr = 30 eV−1 = 18.8 fs. The core-hole life time is
τch = 1.5 eV−1. The choice of parameters is motivated by
the hierarchy of timescales in the system: the probe width
determines the balance between time and energy resolution,
and the pump width guarantees a nontrivial drive and rel-
atively long steady state for given pump frequency [51,52].

The Fermi energy of the 2D system is taken to be εF = εc +
μ0 − 0.1 eV = μ − 0.1 eV, where μ is the energy of the band
center. A 200 × 200 momentum grid in the Brillouin zone
is chosen in the calculation, and the time step for numerical
integration is chosen to be 0.12 eV−1.

Figure 3 shows the time-resolved RIXS spectra at t =
−2σpu, −σpu, 0, σpu, and 2σpu, respectively, with � = 0.5 eV
and A0 = 2.4. The transferred momentum q lies along the
x direction, i.e., q = (q, 0). At the beginning and the end
of the pump (i.e., t = −2σpu and 2σpu), the RIXS spectra
are similar to the equilibrium result [21]. The RIXS spectra
depict the particle-hole continuum of the band: the excitation
softens to zero at the (weak) nesting momentum q 
 0.4π that
spans the Fermi surface [as shown in Fig. 3(b) inset] along
(π, 0) at the given εF , and strong intensity is observed at
q = π,�ω 
 1.2 eV, consistent with the Lindhard response
(see more discussion in Appendix A).

When approaching the pump center, the spectra are flat-
tened (i.e., become essentially dispersionless for most q),
together with the appearance of replicas of the spectra. This
phenomenon is most prominent at the pump center [see
Fig. 3(d)], with completely flat spectra and replicas at mul-
tiples of the pump energy. When the pump field fades away
as t > 2σpu, the spectrum recovers to the equilibrium result
before the pump. Due to the lack of many-body interactions,
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FIG. 4. (a), (b) Tr-RIXS spectra for different pump amplitudes A0 at the pump center: (a) A0 = 0.8 and (b) A0 = 1.6. Both pumps lie along
x = y with frequency � = 0.75 eV. The dashed lines are the Floquet theoretical upper bounds of branches of the particle-hole continuum. The
color scale is the same as in Fig. 3. (c) The autocorrelation C(q, η, t ) for q = (π, 0) at t = 0. The black, magenta, and green lines show the
theoretical first, second, and third Floquet frequencies n�, respectively. A0 is kept at 2.4 throughout.

there is no net excitation induced after the pump terminates
since the electron distribution nk is conserved. In addition,
at times t and −t , the spectra are the same to numerical
accuracy because the symmetric pump profile obeys time-
reversal symmetry.

The replica features and the energy renormalization in
tr-RIXS spectra can be explained in the Floquet framework.
A system driven by a time-periodic external field is described
by Floquet theory [53,54]. Combined with spatial periodicity,
a lattice under periodic excitation would have Floquet-Bloch
electronic bands that exhibit periodicity in both momentum
and energy. The steady-state Floquet theory, with an infinitely
long pump, predicts two critical signatures at the lowest order:
the replicas above and below the original bands separated
by integer multiples of the pump frequency, and the band
renormalization by J0(A0), where J0 is the Bessel function
of the first kind [54–56]. The steady-state band structure is
renormalized into

Ek,n = μ − 2th
∑
α=x,y

J0(Aα0) cos(kα ) ± n�, (19)

where Aα0 is the constant amplitude of a periodic pump
field in the α direction, and n is an integer for the replicas.
More discussion on the derivation of Eq. (19) can be found
in Appendix B. Complementary to the substantially studied
single-particle Floquet properties [57–60], the tr-RIXS here
examines the multiparticle features associated with Floquet
physics, with both energy and momentum resolution. In our
calculation, σpu is much larger than the pump oscillation
period 2π/� and the core-hole lifetime τch; thus the transient
states can be approximated by the steady state at the (slowly
varying) instantaneous pump amplitude [52], consistent with
the experimental setup in [36]. Due to the changes of the
single-particle band structure, the particle-hole excitations re-
vealed in tr-RIXS also exhibit the replicas and renormalization
signatures. In this case, the transient states are manipulated
adiabatically by the pump field, leaving the energy renor-
malization predictable by the steady-state assumption. At the
pump center, the flat band arises as the pump strength Aα0 =
2.4 is close to the zero of the Bessel function J0.

To verify the above interpretation and the relation to Flo-
quet physics, we examine the tr-RIXS for different pump

amplitudes in Fig. 4. For a given momentum transfer q =
(q, 0), let k (k′) be the momentum of the electron decaying to
(excited from) the core. The upper bound of the particle-hole
excitation given q can be achieved at the maximum of Ek′,n −
Ek,n. From Eq. (19) this happens when their momenta along
the x direction satisfy kx + k′

x = π . Together with q + kx =
k′

x, we can conclude that the upper bound of each branch of
the particle-hole continuum is �ω = 4thJ0(A0) sin q

2 ± n�,
as shown in dashed lines in Figs. 4(a) and 4(b), agreeing well
with calculated spectra. This consistency further confirms our
interpretation of the multiparticle features through the steady-
state assumption.

On the other hand, the steady-state assumption can also be
directly validated through the change of the pump frequencies.
To quantify the replica features, we define the autocorrelation
via [56]

C(q, η, t )∝
∫ ∞

−∞
I (ω, q, t )I (ω + η, q, t )dω, (20)

which represents the self-similarity of the nonequilibrium
spectral function with a shift η in the energy loss. In Fig. 4(c),
we plot the autocorrelation at qx = π which has the highest
spectral weight at t = 0 along qy = 0. The strong autocorre-
lation along with the theoretical Floquet predictions confirm
that branches of the particle-hole excitations are separated
by the pump frequency. This is a consequence of the pump-
induced redistribution of the electrons to different sidebands
separated by n� without many-body scattering. The autocor-
relation map confirms that the steady-state assumption is valid
and the Floquet physics dominates the dynamics for a large
pump frequency.

B. Low-frequency pump: Effect on nesting
conditions in one dimension

The Floquet steady-state picture is valid only when the
pump has high frequency with much shorter period than the
duration of both the pump and probe pulse. However, this
can be violated for the pump at small frequency, e.g., when
driving the system through a phonon mode. In this case,
we expect tr-RIXS to reflect adiabatic real-time dynamics of
the particle-hole excitations. For a 1D electronic system, an
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FIG. 5. Tr-RIXS spectra of the 1D system with a low pump frequency. (a) Schematic picture of the pump pulse. The Gaussian profile is
shown in blue dashed lines, and the four orange dots correspond to the time when spectra in (b)–(e) are taken. (b)–(e) The tr-RIXS spectra
at t = −720 eV−1, −150 eV−1, 300 eV−1, 720 eV−1, respectively. The insets plot the band structure and electron distributions in momentum
space (shown in red) at each time point.

important signature is the momentum nesting at 2kF where
low-energy particle-hole excitations exist. It is important to
see the adiabatic dynamics of such signatures under an ex-
ternal drive, so we calculated the tr-RIXS of a 1D tight-
binding model with the same th as before and we set kF =
0.34π ≈ 1.07 which means it is hole-doped. To reflect the
new timescale, the pump width is still σpu = 240 eV−1 =
151 fs but with a much lower frequency � = 0.02 eV. It is
aligned along the 1D chain with a small amplitude A0 =
0.4. The probe width is σpr = 15 eV−1 = 9.4 fs to balance
the time and energy resolution. Note that the probe width
is chosen to be much smaller than the period of the pump
oscillation. The core-hole lifetime here is τch = 0.5 eV−1, still
very small compared to σpr.

Figure 5 shows the tr-RIXS spectra of this 1D system
at t = −720 eV−1, −150 eV−1, 300 eV−1, and 720 eV−1,
respectively. At t = −720 eV−1, the pump has just been
turned on, and we can clearly see the momentum nesting
in Fig. 5(b) with zero energy excitation just at q = ±2kF ≈
±2.14. However, as the pump gets stronger, the momentum
nesting features become different. Under the pump A(t ), an
electron that had momentum k initially will appear at k − A(t )
adiabatically. As the electrons oscillate in momentum space,
the tr-RIXS spectrum near 2kF “breathes” accordingly. At t =
−150 eV−1, A(t ) is negative, and the electrons move to the
+x direction along the cosine band. This makes the excitation
at 2kF have a nonzero energy while a finite range of momenta
around −2kF could have zero energy excitations. As observed
in Fig. 5(c), the nesting point at 2kF lifts off and the nesting
at −2kF gets flattened. Similarly, at t = 300 eV−1, A(t ) is
positive and the electrons move to the −x direction adia-
batically, as shown in the inset of Fig. 5(d). The nesting at
−2kF lifts off while the 2kF nesting gets flattened. Finally,
at t = 720 eV−1, the pump is almost zero and the spectrum
recovers to the original form. Since tr-RIXS can be used to
track momentum nesting, it would be interesting to see how
the charge density waves change as well when the pump is
on. It has been theoretically proposed that most charge density
waves actually result from strong electron-phonon interaction
rather than Fermi surface nesting [61]. Therefore, by tracking
momentum nesting and charge density waves at the same

time in tr-RIXS experiments, we may answer whether Fermi
surface nesting is the origin of charge density waves in certain
materials.

IV. DISCUSSION AND CONCLUSION

The RIXS process studied here is direct RIXS: the incom-
ing photon promotes a core electron to an empty valence band
state, and then an electron from a different state in the valence
band decays and annihilates the core hole [23]. The core hole
itself does not leave quasiparticles after it is filled. In contrast
to the crucial role core-hole attraction plays in indirect RIXS
where it scatters valence electrons and creates excitations in
the intermediate state [23,62–64], for direct RIXS it does
not manifest explicitly. Currently we have not included the
core-hole potential in this work, since it is computationally
expensive. In our future work, we will include the core-hole
potential for systems in which it is important.

Tr-RIXS has opened a gate for investigating a variety of
important physical problems. A pump can be used to achieve
band engineering. Tr-RIXS can detect momentum nesting and
charge density waves changed by such band engineering and
shed light on their relationship. Tr-RIXS can also decipher
the topological effects in charge excitations brought by the
pump in materials such as transition-metal dichalcogenides
[65]. Besides, in systems with spin-orbit coupling, we can use
tr-RIXS to track the interplay of charge and spin excitations
under an external pump [4]. Our theory does not depend on
the form of the Hamiltonian and thus could be used to study
materials with strong correlation.

In conclusion, this study proposed a generic theoretical for-
malism for calculating time-resolved resonant spectroscopies,
including tr-XAS and tr-RIXS. We benchmarked this method
on a noninteracting system and calculated the tr-RIXS spectra
under a pump pulse. The evolution of the particle-hole exci-
tations can be resolved in the spectra. For a high-frequency
pump, the tr-RIXS spectrum displays both replica excitations
and band renormalization. Through an autocorrelation analy-
sis for various pump frequencies, we found the features can be
captured by a steady-state assumption and Floquet theory for
multiparticle excitations. However, when the pump frequency
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is low, the dynamics of the system behaves more adiabatically
and displays a breathing of the spectrum near the nesting
momentum, which results from real-time electron oscillations
in momentum space. In both situations, tr-RIXS exhibits
particular advances in tracking the nonequilibrium behavior of
multiparticle excitations, and is complementary to tr-ARPES
and optics. With progress in experimental techniques as well
as computing power and algorithms, we may address a wider
range of systems including strongly correlated materials,
topological materials, magnetic materials, and many others,
and we believe tr-RIXS will bring new insights to the rich
nonequilibrium physics in those systems.
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APPENDIX A: RIXS AND LINDHARD RESPONSE

For the single-band model studied here, due to the full
configuration of the core shell, the kinetic energy of the
transient core hole vanishes. The Fourier transform of Eq. (16)
yields (note that there are no spin flips)

Af = 〈
�0

f

∣∣∑
kσ

pkσ

1

ωi − H + Ei + i�
p†

k+qσ

∣∣�0
i

〉

= 〈
�0

f

∣∣∑
kσ

pkσ Gc(ωi − εk+q, k + q)p†
k+qσ

∣∣�0
i

〉
, (A1)

where pk,σ annihilates a conduction electron with momen-
tum k and spin σ , and εk is its energy measured from the
valence level in the atomic limit (i.e., εk = εk − εc − μ0).
Here, Gc(ω, p) = 1

ω−μ0+i� represents the core-hole propaga-
tor. Thus

I (ωi,�ω, q) ∝
∑

k

f (εk)[1 − f (εk+q)]G∗
c (ωi − εk+q, k + q)

× δ(�ω − εk+q + εk)Gc(ωi − εk+q, k + q)

∝ −Im lim
δ→0+

∑
k

f (εk)[1 − f (εk+q)]

× 1

�ω − εk+q + εk + iδ

× |Gc(ωi − εk+q, k + q)|2. (A2)

For the Lindhard response of such a system [66], we have

χ (q, ω) = 1

V
lim

δ→0+

∑
k

f (εk)[1− f (εk+q)]

[
1

ω−εk+q + εk + iδ

− 1

ω + εk+q − εk + iδ

]
. (A3)

Note that the second term of χ (q, ω) is negligible for positive
ω: either f (εk)[1 − f (εk+q)] or Im 1

ω+εk+q−εk+iδ is close to
zero. We can see that the RIXS spectrum is a convolution of
the negative imaginary part of χ and |Gc|2. We may compare
the two numerically to see that they are basically the same,
which is shown in Fig. 6.

APPENDIX B: FLOQUET BAND RENORMALIZATION

Under the steady-state assumption, the electronic wave
function is determined by the Hamiltonian HF with a periodic
pump. We want to find the solutions to the Schrödinger
equation

i
∂

∂t
|ψ (t )〉 = HF [A(t )]|ψ (t )〉, (B1)

FIG. 6. Comparison of (a) the negative imaginary part of the Lindhard response calculated from Eq. (A3) and (b) the equilibrium RIXS
spectrum I (ωi, �ω, q) calculated from Eq. (A2) for the 2D tight-binding model Eq. (17) as parametrized in Sec. III A. In numerical evaluation,
� = 0.80 eV and δ = 0.042 eV. q = (q, 0) for both calculations.
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FIG. 7. The middle part (i.e., n close to 0) of the Floquet band
structure calculated from Eq. (B3) by only considering J0 and
considering up to J4. In evaluating Eq. (B3) r ranges from −12 to 12.
Since the Fourier transform is linear, here we only considered terms
in Eq. (B5) related to the x direction (i.e., essentially a 1D tight-
binding model). The two calculations are almost indistinguishable.

where A(t + T ) = A(t ) and thus HF (t + T ) = HF (t ). The
Floquet theorem dictates that the generic solutions to this

equation satisfy [53,54]

|ψλ(t )〉 = e−iελT |uλ(t )〉, (B2)

where |uλ(t )〉 = |uλ(t + T )〉.
We may expand both HF (t ) and |ψ (t )〉 in Fourier

series as HF (t ) = ∑∞
n=−∞Hnein�t and |ψλ(t )〉 =∑∞

n=−∞e−iελt ein�t |uλ,n〉. Then they are inserted into Eq. (B1),
and we find solving ελ is equivalent to solving the following
eigenvalue problem:

∑
r

(Hn−r + n�δn,r )|uλ,r〉 = ελ|uλ,n〉. (B3)

Let Hr be the matrix of Hr . In explicit matrix form, we are
solving the eigenvalues of the following infinite-dimensional
matrix:

HF =

⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

. . .
. . .

...
...

. . . H0 + � H1 H2 . . .

. . . H−1 H0 H1
...

. . . H−2 H−1 H0 − �
...

...
...

. . .
. . .

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠

. (B4)

For the single-band tight-binding model Eq. (17) under a
pump A(t ), the Hamiltonian can be written as

H(t ) =
∑

k

εk−A(t ) p†
k pk, εk = −2th[cos(kx ) + cos(ky)], (B5)

and we have the following expansion [67]:

cos[k − A cos(�t )] = J0(A) cos(k) +
∞∑

m=1

(−1)mJ2m(A) cos(k)(ei2m�t + e−i2m�t ) +
∞∑

m=0

(−1)mJ2m+1(A) sin(k)

× [ei(2m+1)�t + e−i(2m+1)�t ]. (B6)

Thus under a linear-polarized harmonic pump A(t ) = A0 cos(�t ), by comparing coefficients of Fourier series, we may
conclude that Hr = ∑

k Er,k p†
k pk, where

E0,k = −2th[J0(Ax0) cos(kx ) + J0(Ay0) cos(ky)],

E1,k = E−1,k = −2th[J1(Ax0) sin(kx ) + J1(Ay0) sin(ky)],

E2,k = E−2,k = 2th[J2(Ax0) cos(kx ) + J2(Ay0) cos(ky)],

· · · . (B7)

HF is a quasiband matrix: when |n| is large, Jn(A) →
0, Hn → 0. As a result, the off-diagonal higher orders
of Jn(A) contribute little to the quasienergy. Thus we
only consider diagonal elements of HF in Sec. III A and
obtain the quasienergy ελ = Ek,n = −2th[J0(Ax0) cos(kx ) +
J0(Ay0) cos(ky)] ± n�. In fact, we have compared the

quasienergy obtained considering up to J4 with that only
considering J0, as shown in Fig. 7, with A0 = 1.6 and � =
0.3 eV. Note that J4(1.6) = 0.015, which is already very
small compared to � and J0(1.6) = 0.455. The two calcu-
lations are almost indistinguishable, justifying the simplifica-
tion in the band renormalization calculation.
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I. Božović, B. Dalla Piazza, H. Rønnow, E. Morenzoni, J. Van
Den Brink et al., Nat. Mater. 11, 850 (2012).

[31] J. Lee, B. Moritz, W. Lee, M. Yi, C. Jia, A. Sorini, K. Kudo,
Y. Koike, K. Zhou, C. Monney et al., Phys. Rev. B 89, 041104
(2014).

[32] S. Moser, S. Fatale, P. Krüger, H. Berger, P. Bugnon, A. Magrez,
H. Niwa, J. Miyawaki, Y. Harada, and M. Grioni, Phys. Rev.
Lett. 115, 096404 (2015).

[33] Y. Peng, G. Dellea, M. Minola, M. Conni, A. Amorese, D. Di
Castro, G. De Luca, K. Kummer, M. Salluzzo, X. Sun et al.,
Nat. Phys. 13, 1201 (2017).

[34] Y. Wang, M. Claassen, C. D. Pemmaraju, C. Jia, B. Moritz, and
T. P. Devereaux, Nat. Rev. Mater. 3, 312 (2018).

[35] C. Bostedt, S. Boutet, D. M. Fritz, Z. Huang, H. J. Lee, H. T.
Lemke, A. Robert, W. F. Schlotter, J. J. Turner, and G. J.
Williams, Rev. Mod. Phys. 88, 015007 (2016).

[36] M. Dean, Y. Cao, X. Liu, S. Wall, D. Zhu, R. Mankowsky,
V. Thampy, X. Chen, J. Vale, D. Casa et al., Nat. Mater. 15,
601 (2016).

[37] Y. Cao, D. Mazzone, D. Meyers, J. Hill, X. Liu, S. Wall, and M.
Dean, arXiv:1809.06288.

[38] M. Mitrano, S. Lee, A. A. Husain, L. Delacretaz, M. Zhu, G. de
la Peña Munoz, S. Sun, Y. I. Joe, A. H. Reid, S. F. Wandel
et al., arXiv:1808.04847.

[39] J. K. Freericks, H. R. Krishnamurthy, and T. Pruschke,
Phys. Rev. Lett. 102, 136401 (2009).

[40] M. Sentef, A. F. Kemper, B. Moritz, J. K. Freericks, Z.-X. Shen,
and T. P. Devereaux, Phys. Rev. X 3, 041033 (2013).

[41] H. Aoki, N. Tsuji, M. Eckstein, M. Kollar, T. Oka, and
P. Werner, Rev. Mod. Phys. 86, 779 (2014).
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