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ABSTRACT: The factorized form of unitary coupled cluster theory (UCC) is a promising
wave-function ansatz for the variational quantum eigensolver algorithm. Here, we present a
quantum-inspired classical algorithm for UCC based on an exact operator identity for the
individual UCC factors. We implement this algorithm for calculations of the H10 linear chain
and the H2O molecule with single and double ζ basis sets to provide insights into UCC as a
wave-function ansatz. We find that for weakly correlated molecules, the factorized form of the
UCC provides similar accuracy to conventional coupled cluster theory (CC); for strongly
correlated molecules, where CC often breaks down, UCC significantly outperforms the
configuration interaction (CI) ansatz. As a result, the factorized form of the UCC is an accurate,
efficient, and reliable electronic structure method in both the weakly and strongly correlated
regions. This classical algorithm now allows robust benchmarking of anticipated results from
quantum computers and application of coupled-cluster techniques to more strongly correlated
molecules.

1. INTRODUCTION

Unitary coupled cluster theory (UCC) was proposed as a
wave-function ansatz for quantum chemistry about four
decades ago.1−3 In spite of efforts to develop computational
methods for this ansatz,4−7 UCC is not nearly as prevalent as
the closely related coupled cluster theory (CC)8,9 in electronic
structure calculations. One major reason behind this lack of
usage is because the Baker−Campbell−Hausdorff expansion of
the similarity-transformed Hamiltonian does not terminate in
UCC (unlike what happens in CC), which often makes an
exact calculation of this theory intractable on classical
computers.
Quantum computing provides new ways to tackle the many-

electron problem.10 For example, the quantum phase-
estimation algorithm is capable of calculating the ground-
state energy in polynomial time (provided a sufficiently good
initial wave function is prepared and time evolution is feasible
for the Hamiltonian). Unfortunately, limitations on the
maximal circuit depth that can be run on near-term quantum
computers make the phase-estimation algorithm unrealistic at
this time. The variational quantum eigenvalue solver (VQE),11

which is an approximate quantum-classical hybrid approach,
has shown a lot of promise for the electronic structure problem
in the near future. In VQE, a quantum circuit prepares a wave
function that depends on a set of variational parameters, and
multiple measurement circuits are employed to then evaluate
the expectation value of the energy (multiple circuits are
needed because the Hamiltonian is broken up into a sum of
unitary pieces to carry out the computation on a quantum
computer). Optimization of the energy with respect to the

variational parameters is then carried out in concert with a
classical computer. Since most operations on a quantum
computer are unitary, UCC has been proposed as a low-circuit-
depth state-preparation ansatz for VQE.12

This UCC-based state-preparation strategy has been
successfully implemented on an ion-trap quantum com-
puter13,14 for H2O using a minimal basis and up to three
UCC factors. This success further motivated research to
improve both the UCC ansatz and the VQE algorithm;
examples include (i) the Bogoliubov transformed UCC15 and
(ii) the k-UpCCGSD approach16 (which utilizes generalized
single and double excitations). An adaptive algorithm
(ADAPT) has also been developed,17 which is able to adjust
the ansatz by selecting the ordering of the most important
operators to use.
Due to the current paucity of robust quantum hardware,

most UCC calculations are performed on classical computers.
One way to do this is to directly simulate the quantum circuits
on classical computers. This approach is limited because
quantum circuits with more than 50 qubits cannot be
efficiently simulated. The other method available requires a
numerical computation of the matrix exponential (via a
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truncated power series, rescaling and squaring, or diagonaliza-
tion). Since the dimension of the matrices is equal to the
dimensionality of the Hilbert space, only small systems can be
studied this way. As a result, the molecules that have been
examined contain only a handful of atoms and usually are
represented by a minimal basis set. How the UCC will work
for larger molecules and basis sets is critical to understand how
effective the VQE will be in advancing quantum chemistry on a
quantum computer. Our work now allows us to do this using
classical computation.
In this paper, we introduce a quantum-inspired algorithm for

a factorized form of UCC that is based on an operator identity
that recognizes a hidden SU(2) symmetry.18,19 To illustrate
how this approach works, we perform numerical calculations
for the H10 linear chain and for the H2O molecule with the
minimal and the double-ζ basis set. Analysis of these results
sheds light onto the finer points of how one can employ the
UCC on quantum computers.

2. THEORY AND METHOD
In UCC, the trial wave function is expressed in an exponential
form, given by

σ|Ψ ⟩ = ̂ |Ψ ⟩exp( )UCC 0 (1)

where |Ψ0⟩ is a single reference state and the operator σ ̂ is an
anti-Hermitian combination of particle−hole excitation and
de-excitation

σ ̂ = ̂ − ̂†T T (2)

∑ ∑ ∑ ∑θ θ̂ = ̂ ̂ + ̂ ̂ ̂ ̂ + ···† † †T a a a a a a ,
i a

i
a

a i
ij ab

ij
ab

a b j i

occ vir occ vir

(3)

where the angles θ are the variational parameters. We use
letters from the start of the alphabets a, b, c, ... to denote the
virtual orbitals, with respect to the reference state, and letters
from the middle of the alphabets i, j, k, ... to denote the
occupied orbitals in the reference state. To simply notation, we
express a general n - fold excitat ion operator as
̂ = ̂ ̂ ̂ ̂† †a a a a a...ij
ab

a b j i...
... (with the corresponding de-excitation

operator being its Hermitian conjugate). We work in a
factorized form for the UCC, which is given by

∏ ∏ θ|Ψ ⟩ = [ ̂ − ̂ ]|Ψ ⟩
··· ···

···
···

···
···

···
···a aexp ( )

ij ab
ij
ab

ij
ab

ab
ij

UCC

occ vir

0
(4)

since this is the form of the UCC operator that can be easily
generated on quantum computers. Note that this form is
completely general because we did not specify at all what the
strategy is for determining the different factors. In particular,
we can express the traditional UCC form (with all excitations
appearing as a sum in the exponent) in this form, simply using
a Trotter breakup, which entails repeating many of the same
factors in the expansion.
Next, we discuss the operator identity for an arbitrary UCC

factor appearing in eq 4 and use it to develop a classical
algorithm for the UCC.
2.1. Operator Identity for UCC Factors. We first

examine UCC factors that correspond to single excitations

θ̂ = [ ̂ − ̂ ]U a aexp ( )i
a

i
a

i
a

a
i

(5)

This exponential operator can be reframed into the sum of a
much simpler operator expression using a hidden SU(2) group
structure associated with these UCC factors. First, the
“hidden” spin operators are defined as

̂ = ̂ ̂ ̂ = ̂ = − ̂ ̂

̂ = [ ̂ ̂ ] = ̂ ̂ − ̂ ̂

+
†

− +
† +

+ −
† †

S ia a S S ia a

S S S a a a a

; ( ) ;
1
2

,
1
2

( )

a i i a

z a a i i (6)

One can see that this is the conventional fermionic
representation of spin, if we think of the virtual spin−orbital
a as corresponding to spin-up and the real spin−orbital i as
corresponding to spin-down. The commutation relations of
these operators can then be immediately determined to be

[ ̂ ̂ ] = ̂ [ ̂ ̂ ] = ̂ [ ̂ ̂ ] = − ̂+ − + + − −S S S S S S S S S, 2 , , , and ,z z z
(7)

which can be recognized as the conventional SU(2) algebra.
However, these operators are not an independent SU(2)
algebra, instead they arise as a subgroup of the permutation
symmetry of all the generators of the allowed UCC factors (in
the factorized form). Hence, they represent a direct sum of S =
0 and S = 1/2 representations when acting on any product
state in the Hilbert space. We see this when we examine some
additional operator identities given by

̂ = ̂ = ̂ + ̂ = ̂ ̂ + ̂ ̂

̂ + ̂ = ̂ ̂ ̂ + ̂ ̂ ̂ = ̂ ̂ − ̂ ̂
= ̂ + ̂

+ − + − + − − +

+ − + − + − + − + −

+ −

S S S S S S S S

S S S S S S S S S S S S
S S

0; ( ) ;

( ) 2 2z z

2 2 2

3

(8)

which are not general operator identities of the SU(2) algebra
but are specific to this direct-sum space. These identities
immediately imply that odd powers of ̂ + ̂+ −S S are equal to

̂ + ̂+ −S S and even powers are equal to ̂ ̂ + ̂ ̂+ − − +S S S S . These
identities are similar to a spin-1 representation, where the cube
of the Cartesian angular momentum operators is equal to the
Cartesian angular momentum operators. Indeed, this same
identity allows us to evaluate the exponentials exactly. We
simply expand the exponential of the corresponding UCC
factor in a power series and use the fact that all nonzero even
powers of the operator are the same and all odd powers of the
operator are the same. Then, the numerical factors can be
immediately resummed to yield

θ θ θ

θ

θ
θ

[− ̂ + ̂ ] = − ̂ + ̂ +

× ̂ + ̂ −
!

̂ + ̂ +

= − ̂ + ̂
+ − ̂ ̂ + ̂ ̂

+ − + −

+ − + −

+ −

+ − − +

i S S i S S
i

S S
i

S S

i S S
S S S S

exp ( ) 1 ( )
( )

2

( )
( )

3
( )

1 sin ( )
(cos 1)( )

2

2
3

3

(9)

For this single UCC excitation, inserting eq 6 into eq 9
yields

θ θ θ[ ̂ − ̂ ] = + ̂ − ̂ + −

× ̂ + ̂ − ̂ ̂

a a a a

n n n n

exp ( ) 1 sin ( ) (cos 1)

( 2 )
i
a

a
i

i
a

a
i

a i a i (10)

where ̂ = ̂ ̂α α α
†n a a is the density operator for α = a or i. The

result of applying eq 10 onto certain states can be found in ref
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18. More importantly, this operator identity can be generalized
to any UCC factor of arbitrary n-particle excitations via the
recognition of the hidden SU(2) algebra for the general case,
which is given by

̂ = ̂ ̂ = − ̂

̂ = ̂ ̂ − ̂ ··· − ̂ − − ̂

− ̂ ̂ ··· ̂

+ ···
···

− ···
···S ia S ia

S n n n n n

n n n

, , and

1
2

( ... (1 ) (1 ) (1 )

...(1 ) )

i i i
a a a

a a a
i i i

z a a i i a

a i i

n
n

n
n

n n

n n

1 2
1 2

1 2
1 2

1 1 1

1 (11)

These spin operators satisfy the SU(2) commutation
relations in eq 7 and also satisfy the additional operator
identities in eq 8. Hence, we can perform the exact same
expansion of the power series for this UCC factor and find the
same result as given in eq 9. Evaluating the spin operators in
terms of the excitation and de-excitation operators then yields
the final exact operator identity

θ
θ

θ

= [ ̂ − ̂ ]
= + ̂ − ̂

+ − [ ̂ ̂ − ̂ − ̂ + − ̂
− ̂ ̂ ̂ ]

U a a
a a

n n n n n
n n n

exp ( )
1 sin ( )

(cos 1) ... (1 )...(1 ) (1 )
...(1 ) ...

i i
a a

i i
a a

a a
i i

i i
a a

a a
i i

a a i i a

a i i

...
...

...
...

...

...

...
...

...

...
n

n
n

n
n

n

n
n

n
n

n n

n n

1
1

1
1

1
1

1
1

1
1

1 1 1

1

(12)

This identity acts in a direct sum space of S = 0 and S = 1/2:
when S = 0, which happens when no excitation or de-excitation
is possible, the operator acts as the identity, but when S = 1/2,
which happens when an excitation or de-excitation is possible,
the operator acts analogous to a spin-one-half spinor, which is
rotated by the angle θ.
2.2. Quantum-Inspired Algorithm. Based on the exact

operator identity derived above, we devise an algorithm
inspired by the VQE11 for UCC in a factorized form; this
algorithm can be carried out on classical computers. Equation
12 guarantees that applying the UCC factor ···Ui i

a a
... n

n
1

1 to the

configuration |Ψ ⟩···
···

′ ′
′ ′

i i
a a

n
n

1
1 , where |Ψ ⟩···

···
′ ′
′ ′

i i
a a

n
n

1
1 is the result of applying

̂ ···
···

′ ′
′ ′ai i

a a
n

n
1

1 to the reference state |Ψ0⟩, can only have three
outcomes:

1. (S = 1/2 case, excitation) If sets {a1···an} and {a1′···an′}
have no common elements and sets {i1···in} and {i1′···in′}
have no common elements, then applying the UCC
factor generates the sum of two configurationsthe
original configuration |Ψ ⟩···

···
′ ′
′ ′

i i
a a

n
n

1
1 with the coefficient cos θ

and the excitation |Ψ ⟩··· ···
··· ···

′ ′
′ ′

i i i i
a a a a

n n
n i n

1 1
1 with the coefficient ±sin

θ. Because excitations in the wave function can arise
from multiple pathways, we must adopt a consistent
ordering scheme for the fermionic operators that
determine each determinant in the variational ansatz.
We follow the convention used by Handy20 to keep
track of the signs; in some cases, there is an overall
negative sign for a specific determinant that produces a
−sin θ.

2. (S = 1/2 case, de-excitation) If set {a1···an} is a subset of
{ a 1 ′ · · · a n ′ } w i t h t h e c o m p l e m e n t s e t
{ ··· } = { ∈ { ··· }| ∉ { ··· }}″ ″ ′ ′a a x a a x a an n n1 1 1 and set
{i1···in} is a subset of {i1′···in′} with the complement
set { ··· } = { ∈ { ··· }| ∉ { ··· }}″ ″ ′ ′i i x i i x i in n n1 1 1 , then ap-
plying UCC factors generates two configurationsthe
original |Ψ ⟩···

···
′ ′
′ ′

i i
a a

n
n

1
1 with the coefficient cos θ and the de-

excitation |Ψ ⟩···
···

″ ″
″ ″

i i
a a

n
n

1
1 with the coefficient −sin θ. Similar

to the excitation case, a sign (+1 or −1) needs to be
determined for each de-excitation determinant.

3. (S = 0 case, nothing) If the abovementioned two
conditions are not satisfied, then the result is one
configuration, the original |Ψ ⟩···

···
′ ′
′ ′

i i
a a

n
n

1
1 with coefficient 1.

Equipped with these exact rules, we can efficiently produce
UCC wave functions (in the factorized form) on classical
computers. Configurations generated by sequentially applying
UCC factors fit into a tree-type data structure. The root node
of the tree is the initial reference configuration. Each level
except the last one corresponds to the application of one of the
UCC factors in the sequential order. Each parent node gives
rise to one or two child nodes according to eq 12 and the three
rules stated above. Starting from the root node with coefficient
1, we can calculate the coefficients for all the nodes on the tree
according to the exact rules. The last level of the tree (leaf
nodes) is the final UCC wave function expressed as a linear
combination of configurations. It is important to condense all
final leaves (those indicated by the interrupted line pairs in the
last row of the figure) to save space during the tree
construction. One example of this tree structure built on
three UCC factors can be found in Figure 1.

This tree structure can not only be used to generate the
UCC wave function but also the derivatives of the wave
function with respect to the variational parameters, which is
extremely useful in optimizing the variational ansatz. We can
take the derivative of eq 12

θ

θ
θ

θ

̂
= ̂ − ̂

− [ ̂ ̂ − ̂ − ̂

+ − ̂ − ̂ ̂ ̂ ]

U
a a

n n n n

n n n n

d ( )

d
cos ( )

sin ... (1 )...(1 )

(1 )...(1 ) ...

i i
a a

i i
a a

a a
i i

a a i i

a a i i

...
...

...
...

...

...n

n

n
n

n
n

n n

n n

1

1

1
1

1
1

1 1

1 1 (13)

The result of applying this operator to a configuration is
similar to what has been discussed above, but with the
coefficients modified. The derivative of the wave function with
respect to each variational parameter immediately follows as

Figure 1. Tree structure of configurations generated by three UCC
factors. Red arrows represent excitation, gray arrows represent
identity, and blue arrows represent de-excitation. Lines with two
arrows at the bottom level represent elimination of the repeating
configurations.
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θ θ
|Ψ ⟩

= ̂ ··· ̂
̂
··· ̂ ̂ |Ψ ⟩+U U

U
U U

d
d

d
di

n i
i

i

UCC
1 2 1 0

(14)

The tree-structured wave function and derivatives can also
be used to carry out the ADAPT algorithm17 on classical
computers, since repeating factors are allowed when
constructing the tree. However, calculations using a general-
ized UCC ansatz16 cannot be performed with the same
algorithm. The SU(2) operator identities still hold for each
excitation/de-excitation pair in the factorized form, but the
algorithm to construct the tree for the wave function would
need to be modified for general orbitals.
The Hamiltonian of the molecule is constructed from the

reference state. We use canonicalized Hartree−Fock (HF)
wave functions as the reference state. The second quantized
Hamiltonian becomes

∑ ∑̂ = + ̂ ̂ + ̂ ̂ ̂ ̂† † †h h a a a a a a
1
2pq

pq p q
pqrs

p q r s0
(15)

where p, q, r, and s label orthogonal spin orbitals, h0 is the
nuclear repulsion energy, and hpq and hpqrs are one- and two-
electron integrals generated by PySCF package21,22

∫ ∑ϕ ϕ= − ∇ −
| − |

h r r
Z

R r
rd ( )

2
( )pq p

i

i

i
q

i

k
jjjjjj

y

{
zzzzzz (16)

∫
ϕ ϕ ϕ ϕ

=
| − |

h r r
r r r r

r r
d d

( ) ( ) ( ) ( )
pqrs

p q s r
1 2

1 2 1 2

1 2 (17)

To initialize these calculations, we need a set of UCC factors
in a particular order. Different orderings of the same set of
factors can possibly correspond to different wave-function
ansatzes, as pointed out previously23 (and verified by simply
looking carefully at how the tree is formed). In this work, we
use second-order Møller−Plesset perturbation theory24 (MP2)
to choose the UCC factors and their ordering. MP2 provides
amplitudes for double excitations, which are easy to obtain and
serve as good estimations of their importance. UCC factors are
chosen in the descending order of the absolute value of the
corresponding MP2 amplitudes. This strategy to order UCC
factors is well defined and provides a concrete selection and
ordering scheme for the UCC factors, as the later factors are
assumed to be less relevant. A drawback is that MP2 only has
amplitudes for double excitations; to include single excitations
in calculations, we put the single factors after the double
factors, with a random order. As we will see later, variational
parameters associated with single UCC factors are generally
small, thus their ordering ends up being of minor significance.
A non-HF starting point, like natural orbitals, could be used to
improve screening of UCC factors in the future.
With Hartree−Fock spin orbitals, a parameterized Hamil-

tonian, UCC factors chosen in the MP2 order, and MP2
amplitudes as the initial guess for variational parameters, the
initialization step is complete. In the next step, the tree
structure of the configurations is generated. When the number
of UCC factors is large, the number of configurations on the
tree becomes prohibitively large. Eliminating repeating
configurations on each level of the tree greatly reduces the
memory requirement of the calculation. However, this also
means that one child node can have more than one parent
node. In the third step, coefficients for all the configurations on
the tree are calculated; the coefficients for the wave function

and its derivatives are obtained from the leaf nodes. Then, the
energy and its derivatives are evaluated from the expectation
values of Hamiltonian. Subsequently, the energy and
derivatives are fed into an optimization algorithm. We used
the Broyden−Fletcher−Goldfarb−Shannon (BFGS) minimi-
zation scheme as implemented in SciPy.25 If convergence is
not achieved, an updated set of values for the variational
parameters are employed to recalculate the coefficients. Since
the tree structure is fixed and saved in memory, it is not
necessary to regenerate it during optimization; this procedure
greatly saves time in completing the calculation. This then is
the classical algorithm for UCC in the factorized form, and its
flowchart is illustrated in Figure 2. To speed up the energy and

derivative calculations, we prune the leaf nodes and keep only
configurations with an absolute value of their amplitude larger
than a specified threshold. In this work, we set the threshold to
10−6, and differences in total energies due to pruning are
always found to be smaller than 10−5 Ha in several test cases.

3. RESULTS AND DISCUSSION
3.1. H10 Linear Chain. We apply this quantum-inspired

UCC algorithm to calculate the ground state of the H10 linear
chain with the minimal basis set STO-6G. We choose this
model system because extensive benchmark calculations using
many state-of-art computational methods have already been
applied to it.26 Comparison of our results with these standards
provides insight into the accuracy of UCC as an electronic
structure tool. With the minimal basis set, the reference state of
the H10 linear chain has 10 molecular orbitals, and half of them
are occupied. The Hilbert space for the ⟨ ̂ ⟩ =s 0z sector
contains 63,504 determinants, with 825 of them doubles and
50 of them singles; we use a lower case ̂sz to refer to the
physical z-component of the spin of the different product
states. Correlation energies (difference between the calculated
energy and the Hartree−Fock energy) and the error

Figure 2. Flowchart of the quantum-inspired algorithm for the
factorized form of UCC.
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[difference between the calculated energy and the full
configuration interaction (FCI) energy] of several methods
as a function of bond length between the H atoms are plotted
in Figure 3.

The correlation energy of the hydrogen chain increases with
the bond length, which indicates that the system crosses over
from being weakly correlated to being strongly correlated. In
the weakly correlated regime, UCCSD results are very close to
those obtained by CCSD, which is known to be the method of
choice for weakly correlated molecules. When the correlation
strength goes beyond a certain point (where the bond length is
approximately 2.5 Bohr in this case), CCSD energy is no
longer bounded by FCI from below, and the error can become
quite large. As constructed, the UCCSD calculation is always
variational. Calculations show that the UCCSD curve follows
the FCI results closely. Compared to the configuration
interaction singles and doubles (CISD), which is also
variational, and the MP2 method, which is not, the UCCSD
provides significantly improved energies for all the bond
lengths covered here.
Additional insights into the UCC can be obtained by

examining the final variational wave functions generated in the
calculations. Values of the variational parameters θ after
optimization, for the weakly and strongly correlated systems,
are plotted in Figure 4. A couple of observations can be made
about the values of θ. First, a large number of UCC factors of
double excitations have θ very close to zero (here, essentially
all UCC double factors with the index larger than 450; recall
the singles come last). These factors can be ignored in the
UCC calculations if we have good estimations of each UCC
factor’s importance beforehand. Second, the absolute values of
θ are tied to correlation energies. Strongly correlated systems
(such as a bond length of 3.6 Bohr, plotted with red squares)
have much larger θ values than the weakly correlated system
(such as a bond length of 1.0 Bohr, plotted with black circles).

It is interesting that all of these angles, even in strongly
correlated systems, are clustered close to θ = 0.
The quantum phase-estimation algorithm is the ideal

approach to calculate the ground-state energy (and to prepare
the ground state) on a quantum computer; it should be
possible to use this method once fault-tolerant quantum
computation with high depth circuits is feasible. One potential
application of the factorized form of UCC is to use it as the
initial wave-function preparation method to start the phase-
estimation algorithm. The success rates of the phase-estimation
algorithm depend on the fidelity of the initially prepared wave
functions, which is determined by the squared overlap between
the prepared wave function and the exact ground-state wave
function, (FCI wave function): F = |⟨ψapprox.|ψFCI⟩|

2. Since HF
and CISD are variational, their states can, in principle, be
prepared on quantum computers, with the Hartree−Fock
being trivial in a second-quantized formalism. The fidelity of
these approximate wave functions is plotted in Figure 5. We
see that the factorized form of UCCSD provides a wave
function with higher fidelity for all bond lengths studied here.
The difference is significant in the strongly correlated regime,
which makes UCC a much more suitable state-preparation
method for the phase-estimation algorithm in these cases.

Figure 3. Correlation energy (panel A) and error (panel B) calculated
with several quantum chemistry methods as a function of the bond
length of the hydrogen linear chain. Data for CCSD are from ref 26.
Data for other methods are from calculations performed in this work.

Figure 4. Variational parameters θ obtained from energy optimization
at bond lengths of 1.0 (black circles) and 3.6 Bohr (red squares). The
first 825 θ values are for UCC double factors and last 50 are for the
UCC singles factors.

Figure 5. Fidelity of the wave function prepared by HF, CISD, and
UCCSD, which are calculated as the squared overlap between the
approximate wave function |ψapprox.⟩ and exact ground-state wave
function (from FCI calculations): F = |⟨ψapprox.|ψFCI⟩|2.
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3.2. H2O with Single and Double ζ Basis Sets. The next
molecule we study is the H2O molecule. With a minimum basis
set STO-3g, a calculation using three UCC factors has been
performed on a trapped ion quantum computer, and
simulations (with more factors) have been performed on a
classical computer. These latter calculations showed that only a
small number of UCC factors (about 20) are necessary for
UCC to achieve chemical accuracy, which is an energy window
of 1.6 milliHartree (mHar) from the ground state.14 With the
STO-3g basis set, the H2O molecule has 7 molecular orbitals
and 10 electrons, which leads to 120 double excitations and 20
single excitations. We put double and single UCC factors in
the descending order of their MP2 amplitudes and applied our
algorithm to this system. Similarly, we find that 20 UCC
factors (all doubles in our case) are needed to reach chemical
accuracy (see Figure 6). After incorporating all the double and
single UCC factors, the UCCSD energies are slightly better
than CCSD, and they are much better than CISD.

It is known that the performance of the minimum basis sets
is generally poor, and a double-ζ basis set can give a striking
improvement.27 Here, we perform a UCC calculation for the
H2O molecule with a 6-31g basis set, which has 13 molecular
orbitals. To make the calculations more manageable, the
orbital of the lowest energy (oxygen 1s orbital) is frozen. In
total, this system (with one frozen orbital) has 1360 double
and 64 single excitations. Results of these calculations are
plotted in panel (B) of Figure 6. First, similar to the H10 linear
chain, we find that after about 400 doubles, the remaining
1000 double UCC factors do not further improve the energy.

The energy after including all the single and double UCC
factors is again slightly lower than CCSD and much better than
MP2 and CISD. Unlike the system with the sto-3g basis set,
the chemical accuracy can only be achieved after including all
the important singles and doubles, which indicates that
chemical accuracy is harder to reach when we use larger
basis sets.
As apparent from the tree structure, UCC in a factorized

form provides a low-rank representation for the many-body
wave function. This is similar to conventional coupled cluster
theory, which also uses a low-rank representation, with the
added benefit that the factorized form of UCC has higher
accuracy for more strongly correlated systems. Computation-
ally, two steps in the procedure are time consuming: the
construction of the wave functions and the calculation of the
energy-expectation values for the given wave function. For
molecules studied here, the energy-expectation-value calcu-
lation, which involves multiplying a Hamiltonian matrix times a
state vector, is more time consuming of the two. The iterative
diagonalization method used in CI calculations is also limited
by matrix-vector multiplications. Therefore, UCC, as imple-
mented in this work, has a similar computational cost as a
selective configuration interaction method with the same
number of determinants in the wave function; the factorized
form of the UCC approach is expected to have more matrix-
vector multiplications than a typical selective CI will have, due
to the use of an optimizer. The total number of determinants
can grow exponentially as the number of UCC factors
increases, which eventually limits the size of systems that can
be studied by this method.

4. CONCLUSIONS

In this work, we presented a classical algorithm for the
factorized form of UCC, which was inspired by the quantum
VQE algorithm. The foundation of this algorithm is an
operator identity for the general UCC factor, uncovered from a
hidden SU(2) symmetry. Implementation of this algorithm
allowed us to apply UCC to larger systems than studied before
on classical computers. Compared to more established
quantum chemistry methods, the factorized form of UCC is
as accurate as CC for weakly correlated systems and provides
much better results than CI with the same excitations for
strongly correlated systems. Since we can choose factors and
their orders, the factorized form of UCC can be molded for
different needs and computational budgets. This accuracy and
flexibility make UCC a very valuable tool for chemistry,
material science, and condensed matter physics.
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