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Abstract—The nonlinear response of a material to a large elec-
tric field (steady or pulsed) often determines the ultimate perfor-
mance of the material for electronics applications. The formalism
for understanding nonlinear effects in conventional semiconduc-
tors is well understood. The formalism is less well developed for
so-called “smart” materials that are tuned to lie close to the metal-
insulator transition. Here we show that the nonlinear response of
a strongly correlated electronic material can be calculated with a
massively parallel algorithm by discretizing a continuous matrix
operator on the Kadanoff-Baym contour in real time. We bench-
mark the technique by examining the solutions when the field van-
ishes and comparing the results to exact results from an equilib-
rium formalism. We briefly discuss the numerical issues associ-
ated with the case of a large electric field and present results that
show how the Bloch oscillations become damped as the scattering
due to electron correlations increases.

I. INTRODUCTION

THE problem of the response of materials used in electron-
ics to large external fields is important from both a theo-

retical and a practical point of view. On the theoretical side, the
basic ideas of nonequilibrium statistical mechanics were devel-
oped over 40 years ago [1], [2], but the formalism has not been
applied to strongly correlated materials except in approximate
ways. It is interesting to determine exact results for electronic
systems in an external field which can be used to benchmark
these approximate techniques. On the practical side, it is often
the nonlinear behavior of the material or device that determines
the ultimate performance within electronics. For example, the
nonlinear current-voltage characteristic of a p-n junction is crit-
ical for semiconductor-based switching and digital logic, while
the nonlinear current-voltage characteristic of a nonhysteretic
Josephson junction allows for digital logic based on rapid single
flux quantum (RSFQ) ideas [3]. A “smart” material is a mate-
rial that can have its properties altered by changing an external
system variable like pressure, temperature, or a gate voltage.
The most common devices with tunability are currently based
on semiconductors or ferroelectrics, but there is increasing in-
terest in strongly correlated materials near the metal-insulator
transition, because they might allow for more tunability than
their semiconducting counterparts.

The interest in large electric fields arises as the system di-
mensions shrink onto the nanoscale. When a feature size is on
the order of 100 nm, a potential difference of 1 V produces an
electric field of E ∼ 107 V/cm over the feature area. In ad-
dition, the military is interested in the robustness of devices to

large pulsed fields that can arise from natural sources like light-
ning, or from man-made sources like those employed in elec-
tronic warfare. These high energy-density short-time pulsed
fields may be difficult to filter out of a device and can cause
the device to “burn out”.

A “smart material” tuned to lie close to the metal-insulator
transition is called a strongly correlated material. The name
arises from the fact that one needs to take into account the
electron-electron repulsion in determining how the material re-
sponds to external perturbations. In conventional metals, insu-
lator, and semiconductors, it is adequate to ignore the mutual
electron-electron repulsion, and treat all of the electrons as in-
dependent, moving in an average field created by the other elec-
trons. This is the regime where band-theory holds. But as the
electron-electron interactions are made stronger relative to the
kinetic energy of the electrons, then the electron correlations
need to be taken into account, implying that one cannot treat
the other electrons in an averaged way, but one needs to take
into account where the electrons are and how they move as ev-
ery other electron moves. This is the regime of strong electron
correlations, and as the correlations are increased, many mate-
rials will undergo a metal-insulator transition called the Mott-
Hubbard transition.

The simplest model which takes into account strong electron-
electron correlations is the Falicov-Kimball model [4]. This
model has two kinds of electrons, itinerant electrons and lo-
calized electrons. They interact by a Coulomb repulsion when
they both occupy the same unit cell of the lattice. If the num-
ber of itinerant electrons plus the number of localized electrons
is equal to the number of lattice sites, then the system will un-
dergo a metal-insulator transition as the Coulomb repulsion is
increased. This model is not appropriate to describe many real
materials, but its simplicity allows for many exact results to be
calculated which are vitally important for benchmarking pur-
poses.

II. FORMALISM

We consider the Falicov-Kimball (FK) model in the presence
of an external electric field that is spatially uniform, but can
be time-dependent, and can have an arbitrarily large amplitude.
The FK model has two kinds of electrons: itinerant electrons
with creation and annihilation operators c†i and ci for conduc-
tion electrons at site i and localized electrons with the corre-



sponding operators f †
i and fi. The FK Hamiltonian is

H = −
∑

ij

tijc
†
i cj+U

∑

i

c†i cif
†
i fi−µ

∑

i

c†i ci+Ef

∑

i

f†
i fi,

(1)
where tij is the nearest-neighbor hopping matrix, U is the on-
site repulsion between c and f electrons, µ is the chemical po-
tential of the conduction electrons and Ef is the site energy for
the localized electrons. In the simplest case, we ignore the spin
of the electrons and assume they are spinless. In the calcula-
tions presented here, we set µ = U/2, Ef = −U/2, so that
〈c†c〉 = 〈f †f〉 = 1/2; this case is called half filling.

The electric field E(r, t) is described by a vector potential
A(r, t) in the Landau gauge where the scalar potential van-
ishes:

E(r, t) = −1

c

∂A(r, t)

∂t
. (2)

We assume that the vector potential A(r, t) is smooth enough
in space, that the magnetic field produced by A(r, t) can be
neglected.

The electric field is introduced into the Hamiltonian (1) by
the so-called Peierls’ substitution [5], [6] where we neglect in-
terband transitions because we are considering only a single
band (the possible dipole transition from a localized electron
state to a conduction electron state is also neglected; this as-
sumption may break down if the localized particles are elec-
trons, but it cannot break down if they are ions as in a binary
alloy interpretation of the FK model):

tij → tij exp

[

− ie

h̄c

∫

Rj

Ri

A(r, t) · dr
]

. (3)

The Peierls’ substitution represents the effect of the line inte-
gral of the vector potential on the hopping between sites i (at
position Ri) and j (at position Rj); in this work tij 6= 0 only
for nearest-neighbor sites i and j.

For simplicity we shall study the case of a d-dimensional hy-
percubic lattice in the limit of large spatial dimensions d → ∞.
In this limit, the electron self-energy becomes local, which sim-
plifies both the formalism and the numerical calculations. This
approximation corresponds to the dynamical mean-field theory
(DMFT) limit [7]. The simplest electric field is one that lies
along the unit cell diagonal [8]:

A(t) = A(t)(1, 1, ..., 1). (4)

After the Peierls’ substitution, the “band-structure” in the elec-
tric field becomes

εk = −2t
∑

l

cos

[

a

(

kl −
eAl(t)

h̄c

)]

, (5)

with a the lattice spacing which we will take to be one. With
our choice for the electric field along the diagonal, this becomes

εk = cos

(

eA(t)

h̄c

)

εk + sin

(

eA(t)

h̄c

)

ε̄k, (6)

with

εk = − t∗√
d

∑

l

cos kl (7)

and

ε̄k = − t∗√
d

∑

l

sin kl. (8)

being generalized energy functions and t∗ is a renormalized
hopping parameter: t = t∗/2

√
d in the limit d → ∞ [7]; t∗

will be used as our energy unit.
We find that many quantities we want to determine involve a

summation over momenta of functions of ε and ε̄. These sum-
mations can be performed more easily by determining a joint
density of states for the two energies in Eqs. (7) and (8); the
result in the limit of the infinite dimensions [9] becomes:

ρ2(ε, ε̄) =
1

πt∗2
exp

[

− ε2

t∗2
− ε̄2

t∗2

]

.

Hence, a summation over an infinite-dimensional Brillouin
zone can be re-expressed as a two-dimensional Gaussian inte-
gral.

In order to solve the many-body problem, we need to de-
termine the electronic Green’s functions in the presence of the
electric field. The derivation of formulas for these Green’s func-
tions is more complicated than in the absence of a field, because
there is no time-translation invariance, so the Green’s functions
depend on two different time arguments. Furthermore, since
the system evolves in the presence of an electric field, there is
no simple way to relate the quantum-mechanical state at large
times to the state at small times. Hence, we evolve the system
forward in time, then we de-evolve it backwards in time, in or-
der to properly determine its complete time evolution. Since the
local f -electron number is conserved, and we are not coupling
the f electrons to the field, the Hamiltonian is a quadratic func-
tion of the conduction electron operators. This means the time-
ordered product can be directly evaluated, and relevant func-
tional derivatives can be taken to determine the Green’s func-
tions. The algebra is somewhat long and will be omitted here.
The end result is a series of equations for the so-called local
contour-ordered Green’s function, which is defined with two
time arguments, each one lying on the Kadanoff-Baym con-
tour (see Fig. 1): gc(t, t′) = −(i/h̄)〈Tcci(t)c

†
i (t

′)〉, with the
time-ordering taking place along the contour, the time depen-
dence of the fermionic operators being determined by the total
(time-dependent) Hamiltonian in the Heisenberg picture, and
the angular brackets denoting a weighted trace over all states
〈O〉 = Tre−βHO/Z; the partition function is Z = Tre−βH

with β = 1/T the inverse temperature. In addition, we need to
define a local self-energy Σc(t, t′) and an effective dynamical
mean-field λc(t, t′) in analogy with the equilibrium case in zero
electric field [10], [11]:

gc(t, t′) =

∫

dε

∫

dε̄ρ2(ε, ε̄)
[

gc−1

0
(ε, ε̄) − Σc

]−1

(t, t′) (9)

λc(t, t′) = gc−1

imp(t, t′) − gc−1(t, t′) − Σc(t, t′) (10)

gc(t, t′) = [1 − w1][g
c−1

imp[µ] − λc]−1(t, t′)

+ w1[g
c−1

imp[µ → µ − U ] − λc]−1(t, t′) (11)

Σc(t, t′) = gc−1

imp(t, t′) − gc−1(t, t′) − λc(t, t′), (12)



where gc
0(ε, ε̄, t, t

′) is the noninteracting Green’s function in
the presence of the electric field [8], gc

imp(t, t
′) is the impurity

Green’s function in zero field, which is equal to gc
0(ε, ε̄, t, t

′)
at ε = ε̄ = 0, and w1 is the occupancy of the f -electrons
[w1 = 〈f†f〉]. The difference of this system of equations from
the real-frequency case is that these objects are all continuous
square matrix operators of time (defined on the Kadanoff-Baym
time contour) rather than being scalar functions of frequency.
The inverses are all to be interpreted as matrix inverses.

We will be interested in the so-called lesser Green’s function
g< and self-energy Σ< in this work. These functions are ex-
tracted from the contour-ordered objects by fixing the first time
argument t to lie on the upper real-time piece of the Kadanoff-
Baym contour and the second time argument t′ to lie on the
lower real-time piece of the Kadanoff-Baym contour.

The system of the equations (9)–(12) can be solved by it-
eration starting from some initial guess for the self-energy
Σc(t, t′). From Eq. (9), one can find the local Green’s func-
tion gc−1(t, t′), which allows us to find the effective dynamical
mean field λc(t, t′) from Eq. (10). Then the impurity equation
[Eq. (11)] allows us to find a new local Green’s function, which
is employed to find a new self-energy from Eq. (12). This pro-
cedure is repeated until the self-energy has converged to a fixed
point. We call this iterative solution approach the DMFT algo-
rithm.

β

t

−i

0

0

maxmax

max

A

A

−t

−t

Fig. 1. Kadanoff-Baym integration contour for the time variables. The time-
domain cutoffs are symmetric at ±tmax. The direction for the integration of the
line integral is indicated by the arrows. The dashed line schematically shows
where we typically turn on the electric field, as represented by the vector po-
tential; it is commonly turned on when the time is equal to zero. Note that
for the lesser functions, we choose the first time argument on the upper real
time branch, and the second time argument on the lower real branch. When the
contour is discretized, we use a step spacing of ∆t along the real axis, and a
step size of 0.05 along the imaginary axis. All calculations presented here have
β = 1 corresponding to twenty steps along the imaginary axis.

Once the system of equations in Eqs. (9)–(12) is solved, then
we can determine the properties of the system as a function
of time. It is convenient to describe response functions like
the self-energy and the Green’s function with the relative trel
and the average T time variables (the so-called Wigner coordi-
nates [12]):

trel = t − t′, T =
t + t′

2
, (13)

instead of the two times t and t′. In equilibrium, these functions
are independent of the average time T , and depend only on the
relative time trel. We perform a Fourier transform of the relative
time to a real frequency, and examine the Green’s function and
self-energy as functions of frequency. In the nonequilibrium

case, we do a similar thing, performing the Fourier transform
with respect to the relative time, and examining how the re-
sponse functions evolve as a function of the average time. For
example, we have

Σ<(ω, T ) =

∫

dtrele
iωtrelΣc

(

T +
trel
2

, T − trel
2

)

. (14)

Note that we must have the first time argument t = T + trel/2
lying on the upper branch and the second time argument t′ =
T − trel/2 lying on the lower branch of the Kadanoff-Baym
contour.

Another interesting quantity is the current density that is
driven by the external electric field:

jl(T ) = −i
et∗√

d

∑

k

sin

(

kl −
eAl(T )

h̄c

)

g<(εk, ε̄k, T, T ),

(15)
with each vector component identical when the electric field
lies along the diagonal. The magnitude of the total current den-
sity in the case where the electric field lies along the unit-cell
diagonal is then

j(T ) =
√

djl(T ). (16)

It is well known that the current response to an electric field is
strange for a perfect conductor that has no electron scattering.
Indeed, there is an ac response to a dc field due to the lattice
periodicity, which does not allow the momentum of the elec-
tron to get too large before an umklapp scattering event occurs
with the lattice and changes the sign of the momentum. This
phenomenon is called a Bloch oscillation [13], [14], [15], and
it should be seen in any material that is free enough of defects
and other sources of scattering. No conventional metal has ever
been grown that has small enough scattering to exhibit Bloch
oscillations. Instead, the scattering occurs so rapidly, that the
steady-state current is a constant, which increases linearly with
the electric field until nonlinear effects take over. Bloch oscil-
lations have been seen in semiconducting heterostructures [16]

Bloch oscillations are also seen in DMFT, with a time-
independent electric field (E constant and A(T ) = −EcT ) [8]:

j(T ) ∼ sin

(

eA(T )

h̄c

)
∫

dε
df(ε − µ)

dε
ρ(ε), (17)

producing an oscillating current density [ρ(ε) is the noninter-
acting density of states, which is equal to the integral of ρ2 over
ε̄ and f(ε) = 1/{1+exp(βε)} is the Fermi-Dirac distribution].
The frequency of the oscillation is ωBloch = eE/h̄ and is called
the Bloch oscillation frequency. We expect these oscillations to
survive in the presence of scattering if the field is large enough
that the relaxation time due to scattering is significantly larger
than the Bloch oscillation period. The frequency of oscillation
is undoubtedly too high for the Bloch oscillations to be directly
observed (ωBloch � 1012 Hz).

III. NUMERICAL ALGORITHM

There are a significant number of numerical issues that need
to be taken into account to be able to determine the Green’s
functions, and other properties of strongly correlated electrons



in a large electric field. To begin, the matrix operators are con-
tinuous operators defined along the Kadanoff-Baym contour,
and there is no simple way to find their matrix inverse analyti-
cally. Furthermore, matrix multiplication implies an integration
over the Kadanoff-Baym contour

A · B(t, t′) =

∫

c

dt′′A(t, t′′)B(t′′, t′), (18)

which is a complicated line integral in the complex plane (see
Fig. 1). Our approach to solve this problem is a common nu-
merical approach—we discretize the Kadanoff-Baym contour
and evaluate the line integrals as finite Riemann sums over the
discretized paths. The matrix operators then become finite-
dimensional square matrices, whose size is equal to the num-
ber of points used to discretize the Kadanoff-Baym contour.
Once this has been accomplished, then standard LAPACK and
BLAS routines can be employed to invert and manipulate the
discretized versions of the matrix operators. One issue that
needs to be taken into account though is that the inverse of a
continuous matrix operator satisfies

∫

c

dt′′A−1(t, t′′)A(t′′, t) = δc(t, t
′) (19)

with δc the Dirac delta function on the contour. The delta func-
tion is represented by the inverse of the time step used in the
discretization of the Kadanoff-Baym contour, but one needs to
note that this time step changes sign on the lower (real) branch
of the contour, and it becomes imaginary on the vertical piece
of the contour. One needs to properly take this into account
before using a matrix inversion routine.

Next, we need to examine the numerical issues arising in
Eq. (9). We evaluate this equation for a given self-energy matrix
Σc(t, t′). This requires us to choose values of ε and ε̄ for the
two-dimensional Gaussian integration, compute the inverse of
the matrix gc

0(ε, ε̄), subtract the self-energy, and compute a new
matrix inverse. There is an exact algorithm that allows us to
directly compute the matrix inverse of gc

0(ε, ε̄); this arises from
the equation of motion for the Green’s function, from which the
inverse operator can be directly read off. The only subtlety is
to ensure that the inverse operator inherits the correct boundary
condition from the Green’s function. This is not so simple to
carry out, but using techniques like the discretization scheme
in Negele and Orland [17] and Kamenev [18] provides a sys-
tematic method to directly compute the matrix inverse which
satisfies the requisite boundary condition and becomes the ex-
act matrix-operator inverse in the limit where the discretization
step size goes to zero. The last matrix inversion is a general
complex matrix inversion, because the self-energy is complex-
valued, and has no simple symmetries. Hence, it is the most
“expensive” matrix inversion that needs to be performed. Next
the matrix elements of the inverse are multiplied by the relevant
weighting factors for the integration, and finally we accumulate
the results over all ε and ε̄ terms that we choose for the two-
dimensional integral. Since the integral weights are Gaussian,
it seems reasonable to employ a Gaussian integral scheme for
choosing the points on the grids and the weights. Unfortunately,
since each point in the two-dimensional integration requires one

full matrix inversion, we need to minimize the number of points
chosen. As a compromise, we use the following scheme: (i) we
perform the integral using an N = 54 Gaussian integration; (ii)
repeat with an N = 55 Gaussian integration; and (iii) average
the results. The N = 54 case requires 2916 grid points and the
N = 55 case requires 3025 grid points. We choose to average
these two results, because terms in the Green’s function often
behave like exp(icε), which can be accurately represented by
the Gaussian integration until c becomes on the order of the in-
verse of the grid spacing of the Gaussian integration near ε = 0.
Then, the sampling over the discrete points will no longer can-
cel, and the Gaussian integration will overestimate the value of
the integral. Since the grid spacing for N + 1 points nearly
interlaces that for N , the results of the averaging over N and
N + 1 grids produces accurate results for values of c up to two
times larger than what is possible for either one alone, and in
the double integral case, it produces a factor of two reduction
in computation time from using a Gaussian integration scheme
with twice the number of points.

This part of the DMFT algorithm, the calculation of the lo-
cal Green’s function from the self-energy, is easily parallelized.
One simply ships the self-energy matrix, and the energy vari-
ables ε and ε̄ to the individual nodes, generates the relevant
matrix, performs the inversion, and sends the result back to the
master node for accumulation. Once the local Green’s function
has been calculated, then we proceed with the remainder of the
DMFT algorithm to determine the new self-energy matrix. This
part of the code is not so simple to parallelize, because it must
proceed in a serial fashion. The only possible parallelization
will occur if we can use SLAPACK routines to distribute the
calculation of the matrix inverses over a small set of processors.
To date, we have not included this element in the computation.

The algorithm given by Eqs. (9)–(12) is iterated until it con-
verges. As the size of the matrices is made larger, by choosing a
larger maximal cutoff in time for the Kadanoff-Baym contour,
or by fixing the maximal cutoff time and reducing the step size,
then the algorithm slows down significantly, and it becomes
more difficult to attain the same level of accuracy at the end
of the iterations. We usually try to iterate the solutions at least
20 − 50 times for full convergence, but sometimes we have to
limit ourselves to about 10 iterations due to the computational
time involved.

There are a number of numerical issues that play a role in the
quantitative accuracy of the results. These include the maximal
time chosen for the cutoff tmax, the step size in real time ∆t,
and the number of points N chosen for the ε grids. In this work,
we examine a number of different choices for these parameters
to see which terms are the most important for maintaining ac-
curacy of the results. We do this employing what is probably
one of the most difficult cases for the nonequilibrium code, that
of a vanishing electric field (corresponding to an equilibrium
situation). There is a major simplification of this approach be-
cause we have no ε̄ dependence in our formulas, and the inte-
gral over ε̄ can be done trivially. The problem arises from the
fact that the self-energy develops a delta function in frequency
at ω = 0 in the insulating state, and this function cannot be
easily represented in a calculation for real time that has a finite
cutoff along the time axis. Indeed, we find that it is difficult
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average time T = 0 and in equilibrium, but calculated with the nonequilibrium
formalism. The exact results are in blue, and the other curves are all calculated
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the integration over ε introduces spurious results when the grid spacing is too
coarse, which lead to the oscillations seen in Fig. 2.
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55 Gaussian integration). Note how the Bloch oscillations are damped as the
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to obtain good results for the self-energy as a function of fre-
quency in this case. But we also check the moments of the
self-energy and the Green’s function, and find good agreement
for the low-power moments, indicating that the results do work
well for short times. Hence, it is reasonable to think that they
do a good job at determining the initial transient response to an
electric field after the field is turned on. Furthermore, we do
not know whether the delta function in the self-energy survives
when a field is turned on. If it doesn’t, then the nonequilibrium
approach may work well for the insulating cases, even if it has
problems for the equilibrium system.

IV. BENCHMARKING THE EQUILIBRIUM RESULTS

The electronic density of states is a quantum-mechanical
measure of the elementary excitations of a strongly correlated
material. In most materials, the density of states spans a
range of a few electron volts, or in our units, a few t∗. The
Fourier transform of the density of states is closely related
to the Green’s functions in the time domain. We expect the
time-dependent Green’s functions to have important time de-
pendence when trel is smaller than c/t∗ for some constant c
of order one. Hence choosing a cutoff in time on the order of
10 − 20 1/t∗ is a reasonable choice. The above heuristic dis-
cussion holds when the system is metallic. When it becomes
insulating, then the density of states has a gap, and the self-
energy develops a pole, for small frequencies. In this case, we
need a large time domain (infinite in the case of a delta func-
tion) to properly reproduce the density of states or self-energy
after Fourier transforming. This means that the time-domain
cutoff needs to be made larger as the electron correlations are
made stronger.

Similarly, the more fine-structure that is present in the
Green’s functions as functions of time, the smaller the step
size ∆t in the time domain needs to be to be able to accurately
discretize the matrix operators. In general, we expect the dis-
cretization error to grow as the electron correlations increase,
so ∆t will need to be reduced for larger values of U . We typi-
cally choose ∆t = 0.1 − 0.05 in our calculations. Obviously,
we cannot keep increasing the time domain, and decreasing the
step size when we have finite computational resources. The
maximal matrix that we consider has a size on the order of
2500 × 2500. This choice is not a function of memory limita-
tions, but rather is an issue of the computational time needed to
invert these matrices as part of the DMFT algorithm. The bot-
tom line is that these calculations will not be able to be pushed
to too large a value for U without running into resource prob-
lems.

In order to benchmark our code, we have chosen to examine
the equilibrium solutions using the nonequilibrium formalism.
This is a particularly nice exercise to undertake, because the
equilibrium solutions are all known to high accuracy via a di-
rect solution using an algorithm in the frequency domain [10],
[11]. It is also a challenging test of the nonequilibrium codes,
because we need to Fourier transform the solutions in time to
functions of frequency, and the effects of the discretization step
size, and of the time-domain cutoff can play critical roles in the
accuracy. The other important parameter in governing the ac-
curacy is the step size employed in the energy integrations to

determine the local Green’s function. As discussed above, if
the step size is too large, then we can generate spurious signal
at large relative times, which will Fourier transform into high-
frequency wiggles in the frequency domain. If we know that
such structures are not present in the exact results, we can eas-
ily filter them out, but this becomes problematic when we are
not sure whether such structures are real or numerical artifacts
(which occurs when we perform nonequilibrium calculations).

We benchmark our results by examining the equilibrium so-
lutions at high temperature (β = 1) and for a large value of U
(U = 1) that is still in the metallic phase (the metal-insulator
transition occurs at U =

√
2). We choose this for our initial

benchmarking exercise because the self-energy does not have a
pole; hence, the numerical issues should be under better con-
trol. We will briefly discuss issues that occur in the insulating
phase below.

Our first result is shown in Fig. 2. It plots the lesser self-
energy at T = 0 as a function of ω, which is calculated by per-
forming the Fourier transformation with respect to trel. This re-
sult should be independent of T , because we are in equilibrium,
but the results do have a small dependence on T , that is due to
the fact that we have instituted a finite cutoff in time tmax = 15.
In this figure, we study how sensitive the results are to changing
the number of points in the integration over ε (recall, the inte-
gration over ε̄ is trivial when we are in equilibrium). The blue
curve is the exact result, the black curve employs Gaussian in-
tegration, averaging over the N = 54 and N = 55 cases, while
the red curve is similar with N = 100 and N = 101 points.
The green curve uses a much smaller step size in ε, employ-
ing N = 1000 points in a trapezoidal rule integration, ranging
from −3 to 3. Note how all of the results lie on top of each other
for small ω, although they do differ from the exact result. In the
tails, for larger |ω|, we see oscillations develop for the Gaussian
integrations, that are reduced as the step size is made smaller,
and completely disappear by the time N = 1000. These results
show that by carefully controlling the step size used for the en-
ergy integration, one can obtain converged results without any
extraneous oscillations, but those converged results are not ex-
act, because they were calculated with finite values for ∆t and
tmax.

In Fig. 3, we show the results for the imaginary part of the
lesser self-energy as a function of trel. Once can see partic-
ularly good quantitative agreement for small times, and then
there is a region with oscillations out in the tail (trel ≈ −20).
This region is blown up in the inset. The oscillations are only
present for the coarse ε integrations, and the amplitude of the
oscillations shrinks as the step size is made smaller. It is pre-
cisely these spurious results that lead to the oscillations in the
Fourier transform (see Fig. 2). If we know about this kind of
spurious behavior, we can filter the oscillations out before per-
forming the Fourier transform, but this is an ad hoc procedure
that cannot be generalized to the nonequilibrium case.

In Fig. 4, we show the ∆t dependence of the calculations
with fixed values for tmax = 15, and N = 54 and N = 55 av-
eraged Gaussian integrations. The results vary the most at small
frequency, and appear to systematically approach the exact re-
sult as ∆t → 0. The results are less sensitive to ∆t for larger
frequencies, and since we have already seen that reducing the



step size in ε tends to only smooth out the oscillations (without
changing the shape too much), the errors at higher frequencies
must be coming from the finite cutoff tmax.

Finally, we show the Green’s function as a function of trel in
Fig. 5. The imaginary part is in the main plot, and the real part is
in the inset. In the exact result (blue curve), the imaginary part
is an even function, and the real part is an odd function. The
results of the nonequilibrium calculation do not share this sym-
metry, but it appears to be getting restored as ∆t → 0. More
problematic is the issue of the value of g< at trel = 0, which
is determined solely by the electron filling. The results appear
to be getting worse as ∆t → 0. It must be that if we increase
the time cutoff, the results will ultimately start moving back to-
ward their correct value, but we cannot check this explicitly due
to the finite computer resources that are available.

We can be more quantitative about the short time behavior
though. To do so, we can calculate the first few moments of
the integrals of the Green’s function and the self-energy over ω,
and compare them to the exact results for those integrals. The
zeroth moment relates to the function at trel = 0, the first power
to the slope, and the second power to the curvature. When we
examine the results for U = 0.5 and U = 1, we find the zeroth
moment of g and Σ is in error by about 7%, the first moment
by 10% for g and 20% for Σ, and the second moment of g
and Σ by 15 − 20%. The results do not depend too strongly
on the step size for ε in the integrations, as expected, because
the oscillations average out of the moments. The first moment
appears to extrapolate to its correct value as ∆t → 0 for the
N = 54, 55 Gaussian integration with a fixed tmax, but the
zeroth and second moments do not appear as if they scale to
the right result. This is most likely due to the fact that the tmax

needs to be increased, but the large step size for ε may also play
a role.

When we try to examine the insulating phase, we find the
agreement with the exact results becomes much worse. This is
because there are low-energy features which require large times
to be determined accurately. Also, the larger U , the smaller ∆t
needs to be to obtain good accuracy. Our results for U = 1.5
are too preliminary to report quantitative values here.

The important question is whether these low-energy features
survive as the electric field is turned on. If they are destroyed
by the field, then the computational scheme that we are using
should be able to accurately determine nonequilibrium results
at short times. If they survive, then it will be difficult to get
high accuracy results for the nonequilibrium case in the Mott
insulator. Since the presence of a field pumps energy into the
system, and that energy can be used to create excitations across
a gap, it is easy to believe that the gap features do not survive the
introduction of a large electric field, but we cannot definitively
say whether this is actually true at this point.

V. BLOCH OSCILLATIONS

One of the most interesting nonlinear phenomena of a mate-
rial is the production of Bloch oscillations in the current as a
function of time when a constant (dc) electric field is applied.
In the absence of interactions (which cause scattering), the cur-
rent will oscillate forever, with a constant amplitude (the period
is determined by the strength of the electric field). As we turn

on the scattering, we expect the oscillations to be dampened,
but perhaps to maintain the same period (and even survive in
the steady state). If the scattering becomes large enough, then
the oscillations should disappear completely. By calculating the
Green’s functions in the presence of a field that is turned on at
T = 0, we can study how the current initially starts, and how
it evolves into a steady state. Due to the need for a finite tmax,
we can only go so far out in time before the calculation must
terminate.

In Fig. 6, we plot the Bloch oscillations of the current as a
function of the average time, for U = 0.5, β = 1, E = 1, and
the N = 54, 55 Gaussian integration scheme. The tmax is equal
to 15. As ∆t is reduced, one can clearly see that the results are
beginning to converge. Furthermore, it is also clear that there
is a damping of the transient response as we move forward in
time. We examine the behavior of this transient damping in
Fig. 7, where we have preliminary results for the current density
for three values of U . The results for U = 0.5 and U = 1, are
calculated with a step size of ∆t = 0.05. At the moment, it
is not clear how much of an effect the boundaries at tmax have
on the results, but it may be that the largest time results are not
fully trustworthy. Some interesting behavior can be seen in the
figure: (i) we see the damping that is expected, and that it gets
more strongly damped as U is increased; (ii) as U is increased,
it appears that the period may be decreasing, which is not an
expected result; and (iii) the behavior of the transient evolution
is quite complex, and we do not appear to have reached the
steady state yet.

VI. CONCLUSIONS

In conclusion, we have shown that there is a straightforward
way to perform many-body physics calculations in real time for
both equilibrium and nonequilibrium situations by formulating
the problem on a Kadanoff-Baym contour and discretizing it.
There are a number of numerical issues that arise from this ap-
proach, coming from the discretization of the contour and its
truncation, as well as from the discretization of the energy space
needed to perform numerical quadratures. By using the equilib-
rium results as a benchmark, we can see how the different dis-
cretization operations affect the overall accuracy of the calcula-
tions. It seems like the small-time behavior can be understood
fairly well by using reasonable choices for the discretizations
and the time-domain cutoffs. It is more difficult to obtain good
results for the longer-time behavior. One also needs to have
good control of the numerics to be able to accurately perform
Fourier transformations to real frequency. Maintaining control
of these different approximations is made more difficult by the
finite computational power that is available to solve these prob-
lems.

The fact that we must iterate our equations to a self-
consistent solution brings a number of unknown issues to the
table. First, we have modified the Green’s function by intro-
ducing a time-domain cutoff, which is artificially changing the
boundary conditions. It is well known that Green’s functions
are determined uniquely by their equation of motion and their
boundary conditions. How much of an effect the change of the
boundary condition has on the results is difficult to estimate be-
cause of the nonlinearities introduced by the iterative solution.



Second, we are not able to iterate the equations for an infinitely
long period of time, so the smaller we make the discretizations,
the fewer iterations we are able to complete. For example, when
the matrices have a size on the order of 700 × 700, we can eas-
ily perform 50 or more iterations, but we are reduced to about 7
iterations when they are 2000 × 2000. It is difficult to tell how
much error is introduced by this.

In the future, we will use this technique to study and analyze
better the behavior of strongly correlated materials in a large
electric field. Eventually, we hope to be able to generalize this
approach to apply it to multilayered nanostructures and thereby
be able to directly calculate the current-voltage characteristic of
a strongly correlated device.
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