
Modeling Mixtures of Different Mass Ultracold Atoms in Optical Lattices: An
Illustration of High Efficiency and Linear Scaling on the Cray XT4 via a

Capability Applications Project at ERDC

J.K. Freericks
Department of Physics, Georgetown University, Washington, DC

freericks@physics.georgetown.edu

Abstract

 Defense Advanced Research Projects Agency
(DARPA) is running a program to create an analog
quantum-mechanical simulator for strongly interacting
quantum particles. It is called an optical lattice emulator,
and it involves ultracold neutral atoms moving in a
corrugated periodic potential created by an optical
lattice. The atoms interact with each other via collisions.
In this work, we show how one can apply
inhomogenenous dynamical mean-field theory (IDMFT)
as an approximate computational tool to study the
behavior of just such a system. Ultimately, conventional
computation will be employed to benchmark the optical
lattice emulator on a numerically tractable problem (a
verification and validation study), and then the emulator
will be applied to problems that cannot be solved with
conventional computation. Here, we demonstrate an
efficient massively parallel implementation of the IDMFT
algorithm that is transportable, scales to many thousands
of processors, and runs at approximately 50% of the
theoretical peak speed of the machine.

1. Introduction

 In 1982, Richard Feynman proposed the idea of an
analog quantum computer that could be used to simulate
strongly interacting systems.[1] One simply creates an
artificial system that behaves as the one that you wish to
study, and then you let it evolve on its own over time and
finally readout its properties. Carrying out such a
program has proved to be difficult, but recently there has
been a significant advance in achieving this goal, due to
new experiments in ultracold atoms placed in optical
lattices.
 Using laser cooling and evaporation techniques, a
number of different atomic systems can be made into the
coldest “material” in the universe (at temperatures on the
order of nano Kelvins). The atoms in these systems,

which are typically the alkali atoms, interact with each
other via collisions with scattering lengths that can often
be tuned by something called a Feshbach resonance. In
addition, by focusing retroreflected laser light onto the
atomic cloud, one can create a standing wave of light that
acts like a periodic potential for the atoms. The atoms are
also trapped by an additional (often harmonic) trap that
keeps them localized in a particular region of space.
Atoms in such an optical lattice can move (via quantum-
mechanical tunneling) between neighboring sites, and
they interact with other atoms when two (or more) sit on
the same lattice site. The quantum statistics of the
particles (fermions or bosons) can be controlled by
choosing an appropriate isotope for the different atomic
species (although some atoms like Rb and Cs only have
stable bosonic species).
 The physical system, now consisting of a set of
quantum particles which move between nearest neighbors
on a lattice and interact when two particles are located on
the same lattice site, is reminiscent of the simplified
models used in solid state physics to describe strongly
correlated electrons in a crystal (like the Hubbard model[2]
or the Falicov-Kimball model[3]). The atoms act like
electrons (or effective bosonic particles), but now move
on a much larger sized system, allowing for easier access
to study their properties. Furthermore, because the
particles have significant internal structure, there is a
range of new probes that can be used to examine their
behavior. Finally, since these systems have no defects
and the lattices are essentially rigid, one can study the
pure analog of correlated electrons without worrying
about the purity of the system or the vibrations of the
lattice. This cannot be done in solid state systems.
 In our work, we focus on mixtures of two different
mass atoms, both of them (spin-polarized) fermions. This
could be made from mixtures of Li and K or from
mixtures of Li or K with Sr or Yb. The system is put into
an optical lattice, where the hopping of the light atom
from site to site is large, but the hopping of the heavy
atom from site to site is so small, it can be neglected.

DoD HPCMP Users Group Conference 2008

978-0-7695-3515-9/08 $25.00 © 2008 IEEE

DOI 10.1109/DoD.HPCMP.UGC.2008.38

424

Authorized licensed use limited to: Georgetown University. Downloaded on January 24, 2009 at 14:56 from IEEE Xplore. Restrictions apply.

This means we ignore the quantum-mechanical effects of
the heavy atom kinetic energy. But, we assume that the
system can explore all possible positions for the heavy
atoms, and hence we analyze the problem by using an
annealed statistical ensemble, like in the Ising model for
magnetism. This system is described by the Falicov-
Kimball (FK) model[3] which has two kinds of particles:
itinerant particles with creation and annihilation operators

ic† and ci for the light atoms at site i (located at position
Ri) and localized particless with the corresponding
operators if

† and fi. The FK Hamiltonian is

() () ,

ij i j i i i i
ij i

f
i i i i f i i

i i

t c c U c c f f

V c c V E f fμ

= − +

+ − + +

∑ ∑

∑ ∑

H † † †

† †
, (1)

where −tij=−t is the nearest-neighbor hopping matrix, U is
the on-site repulsion between c and f particles, μ is the
chemical potential of the mobile particles and Ef is the
local site energy of the localized particles. The two
potentials Vi and f

iV represent the additional trap, which
is chosen to be harmonic for both species but with
different tunable curvatures. We parametrize the traps
with an effective length R and Rƒ where ()2 2/ 2i iV tR R=

and ()2 2/ 2f f
i iV tR R= .

 We will simulate a system on a 51×51 square lattice
with 625 ± 10 light atoms and 625±10 heavy atoms. The
two chemical potentials μ and Eƒ must be adjusted to
produce the correct filling at each temperature for which
the simulation is run. We fix Rƒ=30 and adjust R to five
different values 12.9, 17, 18.5, 20, and 30. We also fix
U=5. In this case, the system is in a regime that favors
phase separation of the two species at low temperature,
but by squeezing the light atoms in a tighter trap, we can
examine the crossover from when the heavies are on the
inside and the lights on the outside to the opposite case
with the lights on the inside and the heavies on the
outside. These are precisely the parameters that have
already been examined with quantum Monte Carlo
simulations and with the local density approximation at
T=0.[4] Here, we use inhomogenenous dynamical mean-
field theory (IDMFT), because it allows us to examine
many more temperatures, with much less critical solwing
down in the simulation. IDMFT allows us to calculate the
entropy, which is difficult to do for the quantum Monte
Carlo simulations.

2. Algorithm

 The IDMFT algorithm is based on the generalization
of the highly successful dynamical mean-field theory[5] to

inhomogeneous systems. This was first done for
multilayered systems by Potthoff and Nolting[6] and now
is the subject of a book[7]. More recently, Tran applied it
to ultracold atoms in traps[8], and since then much work
has followed[9,10].
 The IDMFT approach begins with the quantum-
mechanical Green’s functions, which are defined, for
imaginary time τ, as

 () () () 1Tr 0ij i jG e c cβ
ττ τ−= − HT

Z
† , (2)

where Tr denotes the trace over all many-body
eigenstates, β=1/T is the inverse temperature, Tτ is the
time-ordering operator, which moves earlier times to the
right (with a sign change if two fermionic operators are
interchanged), and Z=Tr exp[−βH] is the partition
function. The time-dependent fermionic creation and
annihilation operators are written in the Heisenberg
picture where

 () i ic e c eτ ττ −= H H and () .i ic e c eτ ττ −= H H† † (3)

By using the invariance of the trace, one can show that the
Green’s function is antiperiodic in τ over the range 0≤τ≤β,
so one can describe the Green’s function by a Fourier
series using the Matsubara frequencies iωn=iπT(2n + 1)
for n an integer. So we have

 () ()
0

.ni
ij n ijG i d e G

β ω τω τ τ= ∫ (4)

Using an equation of motion, found by differentiating the
Green’s function with respect to τ, then yields the
equation

(){ } () ,n i i n ik ik kj n ij
k

i V i t G iω μ ω δ ω δ⎡ ⎤+ − −∑ + =⎣ ⎦∑ (5)

so the Green’s function is found by inverting the matrix
defined in the square brackets. We have introduced the
notation Σi(iωn) for the local self-energy at site i. The
self-energy is local (meaning it is diagonal, rather than a
matrix in the spatial coordinates) within the DMFT
approach, but it can vary from site to site. The self-
energy is calculated by solving an effective single-site
impurity problem in a time-dependent field, which is
determined self-consistently. Without going into details,
the set of equations that the self-energy satisfies for the
FK model in References 11 and 5

 ()
() ()

0
1

1 ,ii n
n i n

G i
G i i

ω
ω ω−

=
+ ∑

 (6)

() () ()
()

0
10

11 ,f f
ii n i ii n i

ii n

G i n G i n
G i U

ω ω
ω

−
= −

⎡ ⎤ −⎣ ⎦

 (7)

and

425

Authorized licensed use limited to: Georgetown University. Downloaded on January 24, 2009 at 14:56 from IEEE Xplore. Restrictions apply.

 () () ()
10 1 .i n ii n ii ni G i G iω ω ω

− −⎡ ⎤∑ = −⎣ ⎦ (8)

Here, the symbol ()0
ii nG iω is called the effective medium

and f
in is the density of heavy particles at site i. The

IDMFT algorithm to solve for the Green’s function for a
given set of parameters is as follows: (i) set the self-
energy equal to an initial value on all lattice sites; (ii)
calculate the local Green’s function from Eq. 5 at each
lattice site i; (iii) determine the effective medium using
the local Green’s function and the old self-energy in Eq.
6; (iv) find the new Green’s function from Eq. 7; and (v)
find the new self-energy from Eq. 8 using the new
Green’s function and the effective medium. Steps (ii–v)
are repeated until the results stop changing at a fixed
point. This can take many thousands of iterations in some
cases.
 In order to carry out the calculation, we still need to
determine f

in at each lattice site. The heavy particle
filling is a functional of the Green’s functions, and is
expressed as ()1 0 1/f

i i i in = +Z Z Z with

 ()
()

/2
0 0

12 ,iV
i

ii n nn

e
G i i

β μ

ω ω

∞
−

=−∞

= ∏Z (9)

and

() () ()
10

/2
1 2 .

f
f i i ii nE V V U

i
nn

G i U
e

i
β β μ ω

ω

−
∞

+ + − −

=−∞

⎡ ⎤ −⎣ ⎦= ∏Z (10)

Finally, the light particle filling is found from

 () 1,
2i ii n

n

n T G iω
∞

=−∞

= +∑ (11)

where special care must be taken to properly regularize
the summation.
 Since we want to work with a fixed number of heavy
and light particles, we need to run the calculation for a
few different values of the chemical potentials μ and Eƒ,
and then adjust them so that one reaches the target particle
numbers. Typically somewhere between two to fifteen
runs are required to get the fillings within the target range
of 625±10. But at low-temperature, when the system is
phase separated, it sometimes is difficult to find a
solution, because the filling can vary exceedingly rapidly
with changes in the chemical potentials, making it
challenging to achieve the target densities.
 This IDMFT algorithm is well-suited for parallel
implementation within a master-slave format. The
solution of the impurity problem for the self-energy
requires only information of the Green’s functions at each
site. We do need to evaluate the infinite products to find

the heavy particle density, but then the remainder is
straightforward arithmetic. We have each slave node
solve for the self-energy at a given site for all Matsubara
frequencies used in the simulation as one step in the
parallel implementation. The other step is to send the
matrix inversion for each Matsubara frequency to a
different slave node. Since in both cases, the
communications involves just vectors, rather than
matrices, the code rarely encounters communications-
based limitations in scaling.
 The parallel implementation for the algorithm is then
as follows: 1) the master node initializes all parameters
for the calculation and sends them to the slave nodes; 2)
the master node loops through the Matsubara frequencies,
sending a vector of self-energy values Σi(iωn)with fixed n
to each slave node; 3) the slave nodes perform the matrix
inversion and send the local Green’s function vector back
to the master; 4) once all Matsubara frequency
calculations are complete, the master sends each slave
node the local Green’s function and the self-energy for a
fixed lattice site and all Matsubara frequencies (also
vectors); and 5) the slave nodes solve the impurity
problem to determine the new self-energy and send them
back to the master. This procedure is iterated, and when
errors are small enough, the calculation stops (our
tolerance is usually errors of less than one part in 108 for
the self-energy at all lattice sites).
 LAPACK and BLAS routines are used for the matrix
operations to maximize the speed and efficiency of the
code. In addition, since the computational size of the
problem grows with the number of Matsubara frequencies
used in the simulation (as do the memory requirements),
we use sum rules for the high frequency behavior of the
Green’s function, effective medium and self-energy to
reduce the number of Matsubara frequencies used in the
calculation by about one order of magnitude with no loss
in accuracy.[12] We typically use between 64 (T=0.1) and
1,020 (T=0.05) positive Matsubara frequencies for a given
calculation. Details for how such a scheme is
implemented will appear elsewhere.[12]
 In addition to the Green’s functions on the imaginary
axis, we also need the Green’s functions on the real axis,
particularly to determine the local entropy of the system.
The local entropy can be found via a simple integration of
the local density of states ρi(ω)=−ImGii(ω)/π, where
Gii(ω) is the local Green’s function on the real axis. The
local entropy density is then

() () ()

(){ } (){ }
() ()

ln

 1 ln 1

ln 1 ln 1 ,

i i

f f f f
i i i i

s d f f

f f

n n n n

ωρ ω ω ω

ω ω

⎡= − ⎣

⎤+ − − ⎦

− − − −

∫
 (12)

with f(ω)=1/[1+exp(βω)], which is the Fermi-Dirac
distribution function.

426

Authorized licensed use limited to: Georgetown University. Downloaded on January 24, 2009 at 14:56 from IEEE Xplore. Restrictions apply.

 The real-axis Green’s function is found from
analagous equations to those used for the imaginary axis,
except now we know what the heavy particle densities are
at each lattice site, so we do not need to recalculate them
during the iterations, and we know the chemical potentials
too. Hence, we merely need to set up a grid in frequency
space and perform the IDMFT algorithm using a real
frequency ω instead of a Matsubara frequency. Since we
have a fixed grid of frequencies, the computational size is
identical for all temperatures. We typically use 1,204
processors and run for about 200 iterations. All relevant
moment sum rules for the Green’s functions and self-
energies are checked, and they are verified to high
accuracy in nearly all cases. We do see errors when the
self-energy picks up sharp delta-function-like peaks,
because our (coarse) grid will overestimate their
contribution to the moments, and we find a sum-rule
violation for the Green’s functions if the trap is too tight,
because we do not have frequency points at high enough
frequencies to include all of the nonzero spectral weight
of the Green’s functions for the outermost lattice sites.
Both of these issues are not serious and are well
controlled in our computations.

3. Results

 When the XT4 was originally configured at ERDC, it
used dual core chips running at 1.8 GHz. There were
approximately 2,100 boards or 4,200 processors available.
Since each processor is capable of achieving two double
precision arithmetic computations during each clock
cycle, one could, in principle, run at speeds up to 3.6
Gflops per processor. The initial Capabilities
Applications Project (CAP) was run on this configuration
of Jade. After the Phase I of the CAP ended (scaling
demonstration), the system went down for about six
weeks and all boards were updated to 2.1 GHz quad
cores, making approximately 8,400 CPUs available for
computation (with a maximum flop rate of 4.2 Gflops).
We performed a few scaling studies during Phase II of the
CAP, but found that our results were similar enough to
the phase I studies that they did not warrant further
examination, and instead we focused on our production
runs.
 The IDMFT algorithm uses two main codes. The
first, an imaginary axis code, determines the chemical
potentials and then the local densities of the light and
heavy atoms. The second, a real axis code, determines
the local density of states, and hence the entropy
distribution. Since the two codes are so similar in
structure, and since more computational time is spent on
the imaginary axis code, most of the scaling and
performance analysis was performed on that code.

 We used a few different techniques to determine the
scaling and performance of the codes. The simplest
technique we used was just timings of the code. Since the
input/output part of the code is infrequent (it is performed
every 200 iterations for the imaginary axis code and every
50 iterations for the real axis code) the timings were
restricted to the main computational loops of the code,
namely the IDMFT algorithm itself. We performed a
strong-scaling analysis, where a large problem was run on
a series of different numbers of CPUs for a parallel run.
By examining how the performance varies as the number
of CPUs increases, one can examine how the
computational speed is related to the number of CPUs and
determine the overall strong scaling performance for the
code; for perfect performance, the speed will increase
linearly with the number of CPUs. We also examined
weak scaling, where one takes the same type of problem,
but increases the size of the problem when running on
more CPUs and examines the total computational time,
which would be a constant for perfect weak scaling. In
our code, we easily can increase the code size by merely
lowering the temperature and thereby using more
Matsubara frequencies in the calculation.
 We went further than just a scaling analysis though.
It is possible to have a code that is inefficient, but scales
well, because the code never pushes the machine to the
limits in communications or computation, due to the
inefficient way that the code handles data or orders the
computational steps. In order to verify the overall
efficiency of the code, we used the PAPI suite to measure
the Gflops of each of the slave nodes to determine how
they perform during the main computational loop of the
code. This was done primarily for the strong-scaling
case, where one expects there to be a degradation of the
overall performance, as the computational speed is
increased (due to more communications, etc.).
 Finally, we tested two different implementations of
LAPACK and BLAS on Jade. We examined the xt-
LibSci implementation and we examined the ACML
implementation. The Portland group FORTRAN77
compiler was used and the compiler flags were set to -
fast. We found no significant improvement in
performance with any other flag options for the compiler.
 In Figure 1, we show the strong scaling analysis for
the imaginary axis code. The theoretical maximum speed
up (linear curve) is compared to the dual core (black line
with circles) and quad core (red line with squares) One
can immediately see that the code is giving almost perfect
linear scaling up to 4,096 CPUs. The dual core case is
better than 90% of linear scaling, while the quad core case
is closer to 99% of linear scaling. This is outstanding
performance for strong scaling.

427

Authorized licensed use limited to: Georgetown University. Downloaded on January 24, 2009 at 14:56 from IEEE Xplore. Restrictions apply.

Figure 1. Strong-scaling data for the imaginary axis code on

both the dual core and quad core versions of Jade. The
theoretical maximum (dashed line) is found by fitting the

computational speed versus number of CPUs for small CPUs
and extrapolating the linear curve. Note how the dual core
configuration had better than 90% scaling, while the quad

core is coming in at more than 99% of strong scaling. Such
performance is outstanding.

Figure 2. Weak-scaling data for the imaginary axis code on
the dual core version of Jade. Note how the weak scaling

curve has approximately the same computational time
regardless of the size of the job.

Figure 3. Performance analysis of the imaginary axis code

using the PAPI suite. Two curves are shown for each
configuration of the machine (dual core and quad core). One

uses the LibSci math library and the other uses the ACML
math library. Note the greater variation in the flop rates for

the quad core machines.

Figure 4. False color plot of the entropy distribution for the

case with R=30, U =5, and various temperatures (top to
bottom: T=0.2, T=0.125, T=0.075, T=0.01). Ordering begins at
T ≈ 0.125, and the entropy is quite small at the lowest T.

428

Authorized licensed use limited to: Georgetown University. Downloaded on January 24, 2009 at 14:56 from IEEE Xplore. Restrictions apply.

 Next, we examine the weak scaling in Figure 2. Note
how there are some small variations, but in general, the
weak scaling curve is showing a nearly constant run time
as the job size and number of CPUs are increased.
 Now we move on to the performance analysis using
Performance Application Programming Interface (PAPI).
We ran the performance analysis for the strong scaling
cases already shown in Figure 1, but we also included an
analysis of the different package options for the LAPACK
and BLAS routines. Our two choices were the LibSci
library and the ACML library. The results are shown in
Figure 3, and are strange. To begin, we are achieving
something in the vicinity of 50% of peak speed on each
CPU (dual core or quad core) with the percentage being
slightly higher for the dual core case. The drop off in
performance is quite moderate for the dual core case, and
is a bit more rapid for the quad core case. Surprisingly, in
the dual core case, the ACML library was faster, while in
the quad core case it is the LibSci library that is faster.
Even more surprising is the fact that on the quad cores we
see a definite drop in the flop rate as we move to larger
and larger numbers of CPUs, but our scaling analysis
based on the total run time is showing better linear scaling
for the quad cores. It is hard to reconcile these facts. One
possibility is that the implementation of PAPI on the quad
core Jade is having errors in accurately measuring the
number of floating point operations on each CPU, and the
flop rates are not so accurate. This issue is one we have
not been able to resolve.
 We briefly discuss some of the scientific results from
this work. In Figure 4, the entropy distribution is plotted
for the case with R=30 and U=5. The panels are for
different temperatures ranging from hot at the top to cold
at the bottom. Note how the entropy, which is initially
distributed primarily in the center of the trap, moves to an
annulus and eventually becomes very small at the lowest
temperature. Even at T=0.01, the dominant contribution
to the entropy is coming from the heavy particles in the
regions where the heavy particle density is non-integer on
particular lattice sites; this is the boundary region of the
phase separation. This can be seen more clearly in
Figure 5, where density plots for the heavy particles are
shown for the same four temperatures. Here we can now
clearly see that ordering starts near T≈0.125, and becomes
nearly complete at the lowest T.
 Further results will be presented elsewhere, when the
work is complete.

Figure 5. Density distribution of the heavy atoms for the case

with R=30, U =5, and various temperatures (top to bottom:
T=0.2, T=0.125, T=0.075, T=0.01). Ordering begins at T≈0.125,

and is nearly complete at the lowest T.

429

Authorized licensed use limited to: Georgetown University. Downloaded on January 24, 2009 at 14:56 from IEEE Xplore. Restrictions apply.

4. Conclusions

 In this work, we have shown how to implement an
efficient algorithm for the IDMFT approach to many-
body physics. The algorithm has been applied to the
problem of understanding the behavior of mixtures of
different mass atoms in optical lattices, which will serve
as one potential benchmark calculation for the optical
lattice emulator currently being developed with the
support of a Defense Advanced Research Projects Agency
(DARPA) program. We ran most of the code on the Cray
XT4 machine at the US Engineer Research and
Development Center (ERDC), in both its dual core and
quad core configurations. We found the code scales well
to a large number of processors and operates at almost
50% of the theoretical peak speed on the largest size we
ran on, which was 4,096 CPUs.

Acknowledgments

 This work was supported under Army Research
Office Award W911NF0710576 with funds from the
DARPA OLE Program. We would also like to
acknowledge useful conversations with T-L. Ho, H.R.
Krishnamurthy, and C.J. Williams. J. Thomas provided
technical assistance with the implementation of PAPI.
Supercomputer time was provided under CAP Phase II on
the Cray XT4 at ERDC.

References

1. Feynman, R.P., “Simulating physics with computers.” Int. J.
Theor. Phys., 21, pp. 467–488, 1982.

2. Hubbard, J., “Electron Correlations in Narrow Energy
Bands.” Proc. R. Soc. London. Ser. A, Mathematical and
Physical Sciences, 276, pp. 238–257, 1963.
3. Falicov, L.M. and J.C. Kimball, “Simple model for
semiconductor-metal transitions: SmB6 and transition-metal
oxides.” Phys. Rev. Lett., 22, pp. 997–999, 1969.
4. Maska, M.M., R. Lemański, J.K. Freericks, and C.J.
Williams, “Pattern formation in mixtures of ultracold atoms in
optical lattices.” arXiv:0802.3894 (preprint), 2008.
5. Freericks, J.K. and V. Zlatić, “Exact dynamical mean field
theory of the Falicov-Kimball model.” Rev. Mod. Phys., 75, pp.
1333–1382, 2003.
6. Potthoff, M. and W. Nolting, “Metallic surface of a Mott
insulator-Mott insulating surface of a metal.” Phys. Rev. B, 60,
pp. 7834–7849, 1999.
7. Freericks, J.K., Transport in multilayered nanostructures: the
dynamical mean-field theory approach, Imperial College Press,
London, 2006.
8. Tran, M-T., “Inhomogeneous phases in the Falicov-Kimball
model: Dynamical mean-field approximation.” Phys. Rev. B, 73,
205110, 2006.
9. Helmes, R.W., A. Costi, and A. Rosch, “Mott Transition of
Fermionic Atoms in a Three-Dimensional Optical Trap.” Phys.
Rev. Lett., 100, 056403, 2008.
10. Snoek, M., I. Titvinidze, C. Toke, K. Byczuk, and W.
Hofstetter, “Antiferromagnetic Order of Strongly Interacting
Fermions in a Trap: Real-Space Dynamical Mean-Field
Analysis.” arXiv:0802.3211 (preprint), 2008.
11. Brandt, U. and C. Mielsch, “Thermodynamics and
correlation functions of the Falicov-Kimball model in large
dimensions.” Z. Phys. B–Condens. Mat., 75, pp. 365–370, 1989;
“Thermodynamics of the Falicov-Kimball model in large
dimensions II.” Z. Phys. B–Condens. Mat., 79, pp. 295–299,
1990.
12. Freericks, J.K. and V.M. Turkowski, unpublished.

430

Authorized licensed use limited to: Georgetown University. Downloaded on January 24, 2009 at 14:56 from IEEE Xplore. Restrictions apply.

