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Abstract 
 

 Defense Advanced Research Projects Agency 
(DARPA) is running a program to create an analog 
quantum-mechanical simulator for strongly interacting 
quantum particles.  It is called an optical lattice emulator, 
and it involves ultracold neutral atoms moving in a 
corrugated periodic potential created by an optical 
lattice.  The atoms interact with each other via collisions.  
In this work, we show how one can apply 
inhomogenenous dynamical mean-field theory (IDMFT) 
as an approximate computational tool to study the 
behavior of just such a system.  Ultimately, conventional 
computation will be employed to benchmark the optical 
lattice emulator on a numerically tractable problem (a 
verification and validation study), and then the emulator 
will be applied to problems that cannot be solved with 
conventional computation.  Here, we demonstrate an 
efficient massively parallel implementation of the IDMFT 
algorithm that is transportable, scales to many thousands 
of processors, and runs at approximately 50% of the 
theoretical peak speed of the machine.   
 
1.  Introduction  
 
 In 1982, Richard Feynman proposed the idea of an 
analog quantum computer that could be used to simulate 
strongly interacting systems.[1]  One simply creates an 
artificial system that behaves as the one that you wish to 
study, and then you let it evolve on its own over time and 
finally readout its properties.  Carrying out such a 
program has proved to be difficult, but recently there has 
been a significant advance in achieving this goal, due to 
new experiments in ultracold atoms placed in optical 
lattices.   
 Using laser cooling and evaporation techniques, a 
number of different atomic systems can be made into the 
coldest “material” in the universe (at temperatures on the 
order of nano Kelvins).  The atoms in these systems, 

which are typically the alkali atoms, interact with each 
other via collisions with scattering lengths that can often 
be tuned by something called a Feshbach resonance.  In 
addition, by focusing retroreflected laser light onto the 
atomic cloud, one can create a standing wave of light that 
acts like a periodic potential for the atoms.  The atoms are 
also trapped by an additional (often harmonic) trap that 
keeps them localized in a particular region of space.  
Atoms in such an optical lattice can move (via quantum-
mechanical tunneling) between neighboring sites, and 
they interact with other atoms when two (or more) sit on 
the same lattice site.  The quantum statistics of the 
particles (fermions or bosons) can be controlled by 
choosing an appropriate isotope for the different atomic 
species (although some atoms like Rb and Cs only have 
stable bosonic species).   
 The physical system, now consisting of a set of 
quantum particles which move between nearest neighbors 
on a lattice and interact when two particles are located on 
the same lattice site, is reminiscent of the simplified 
models used in solid state physics to describe strongly 
correlated electrons in a crystal (like the Hubbard model[2] 
or the Falicov-Kimball model[3]).  The atoms act like 
electrons (or effective bosonic particles), but now move 
on a much larger sized system, allowing for easier access 
to study their properties.  Furthermore, because the 
particles have significant internal structure, there is a 
range of new probes that can be used to examine their 
behavior.  Finally, since these systems have no defects 
and the lattices are essentially rigid, one can study the 
pure analog of correlated electrons without worrying 
about the purity of the system or the vibrations of the 
lattice.  This cannot be done in solid state systems.   
 In our work, we focus on mixtures of two different 
mass atoms, both of them (spin-polarized) fermions.  This 
could be made from mixtures of Li and K or from 
mixtures of Li or K with Sr or Yb.  The system is put into 
an optical lattice, where the hopping of the light atom 
from site to site is large, but the hopping of the heavy 
atom  from  site  to  site  is  so  small,  it can be neglected.  
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This means we ignore the quantum-mechanical effects of 
the heavy atom kinetic energy.  But, we assume that the 
system can explore all possible positions for the heavy 
atoms, and hence we analyze the problem by using an 
annealed statistical ensemble, like in the Ising model for 
magnetism.  This system is described by the Falicov-
Kimball (FK) model[3] which has two kinds of particles: 
itinerant particles with creation and annihilation operators 

ic†  and ci for the light atoms at site i (located at position 
Ri) and localized particless with the corresponding 
operators if

†  and fi.  The FK Hamiltonian is  
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ij i j i i i i
ij i
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where −tij=−t is the nearest-neighbor hopping matrix, U is 
the on-site repulsion between c and f particles, μ is the 
chemical potential of the mobile particles and Ef is the 
local site energy of the localized particles.  The two 
potentials Vi and f

iV  represent the additional trap, which 
is chosen to be harmonic for both species but with 
different tunable curvatures.  We parametrize the traps 
with an effective length R and Rƒ where ( )2 2/ 2i iV tR R=  

and ( )2 2/ 2f f
i iV tR R= .   

 We will simulate a system on a 51×51 square lattice 
with 625 ± 10 light atoms and 625±10 heavy atoms.  The 
two chemical potentials μ and Eƒ must be adjusted to 
produce the correct filling at each temperature for which 
the simulation is run.  We fix Rƒ=30 and adjust R to five 
different values 12.9, 17, 18.5, 20, and 30.  We also fix 
U=5.  In this case, the system is in a regime that favors 
phase separation of the two species at low temperature, 
but by squeezing the light atoms in a tighter trap, we can 
examine the crossover from when the heavies are on the 
inside and the lights on the outside to the opposite case 
with the lights on the inside and the heavies on the 
outside.  These are precisely the parameters that have 
already been examined with quantum Monte Carlo 
simulations and with the local density approximation at 
T=0.[4]  Here, we use inhomogenenous dynamical mean-
field theory (IDMFT), because it allows us to examine 
many more temperatures, with much less critical solwing 
down in the simulation.  IDMFT allows us to calculate the 
entropy, which is difficult to do for the quantum Monte 
Carlo simulations.   
 
2.  Algorithm 
 
 The IDMFT algorithm is based on the generalization 
of the highly successful dynamical mean-field theory[5] to 

inhomogeneous systems.  This was first done for 
multilayered systems by Potthoff and Nolting[6] and now 
is the subject of a book[7].  More recently, Tran applied it 
to ultracold atoms in traps[8], and since then much work 
has followed[9,10].   
 The IDMFT approach begins with the quantum-
mechanical Green’s functions, which are defined, for 
imaginary time τ, as  

 ( ) ( ) ( ) 1Tr 0ij i jG e c cβ
ττ τ−= − HT

Z
† , (2) 

where Tr denotes the trace over all many-body 
eigenstates, β=1/T is the inverse temperature, Tτ is the 
time-ordering operator, which moves earlier times to the 
right (with a sign change if two fermionic operators are 
interchanged), and Z=Tr exp[−βH] is the partition 
function.  The time-dependent fermionic creation and 
annihilation operators are written in the Heisenberg 
picture where  

 ( )  i ic e c eτ ττ −= H H  and ( )  .i ic e c eτ ττ −= H H† †  (3) 

By using the invariance of the trace, one can show that the 
Green’s function is antiperiodic in τ over the range 0≤τ≤β, 
so one can describe the Green’s function by a Fourier 
series using the Matsubara frequencies iωn=iπT(2n + 1) 
for n an integer.  So we have  

 ( ) ( )
0

.ni
ij n ijG i d e G

β ω τω τ τ= ∫  (4) 

Using an equation of motion, found by differentiating the 
Green’s function with respect to τ, then yields the 
equation  

( ){ } ( ) ,n i i n ik ik kj n ij
k

i V i t G iω μ ω δ ω δ⎡ ⎤+ − −∑ + =⎣ ⎦∑  (5) 

so the Green’s function is found by inverting the matrix 
defined in the square brackets.  We have introduced the 
notation Σi(iωn) for the local self-energy at site i.  The 
self-energy is local (meaning it is diagonal, rather than a 
matrix in the spatial coordinates) within the DMFT 
approach, but it can vary from site to site.  The self-
energy is calculated by solving an effective single-site 
impurity problem in a time-dependent field, which is 
determined self-consistently.  Without going into details, 
the set of equations that the self-energy satisfies for the 
FK model in References 11 and 5  
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and 
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Here, the symbol ( )0
ii nG iω  is called the effective medium 

and f
in  is the density of heavy particles at site i.  The 

IDMFT algorithm to solve for the Green’s function for a 
given set of parameters is as follows: (i) set the self-
energy equal to an initial value on all lattice sites; (ii) 
calculate the local Green’s function from Eq. 5 at each 
lattice site i; (iii) determine the effective medium using 
the local Green’s function and the old self-energy in Eq. 
6; (iv) find the new Green’s function from Eq. 7; and (v) 
find the new self-energy from Eq. 8 using the new 
Green’s function and the effective medium.  Steps (ii–v) 
are repeated until the results stop changing at a fixed 
point.  This can take many thousands of iterations in some 
cases.   
 In order to carry out the calculation, we still need to 
determine f

in  at each lattice site.  The heavy particle 
filling is a functional of the Green’s functions, and is 
expressed as ( )1 0 1/f

i i i in = +Z Z Z  with  
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Finally, the light particle filling is found from  

 ( ) 1,
2i ii n

n

n T G iω
∞

=−∞

= +∑  (11) 

where special care must be taken to properly regularize 
the summation.   
 Since we want to work with a fixed number of heavy 
and light particles, we need to run the calculation for a 
few different values of the chemical potentials μ and Eƒ, 
and then adjust them so that one reaches the target particle 
numbers.  Typically somewhere between two to fifteen 
runs are required to get the fillings within the target range 
of 625±10.  But at low-temperature, when the system is 
phase separated, it sometimes is difficult to find a 
solution, because the filling can vary exceedingly rapidly 
with changes in the chemical potentials, making it 
challenging to achieve the target densities.   
 This IDMFT algorithm is well-suited for parallel 
implementation within a master-slave format.  The 
solution of the impurity problem for the self-energy 
requires only information of the Green’s functions at each 
site.  We do need to evaluate the infinite products to find 

the heavy particle density, but then the remainder is 
straightforward arithmetic.  We have each slave node 
solve for the self-energy at a given site for all Matsubara 
frequencies used in the simulation as one step in the 
parallel implementation.  The other step is to send the 
matrix inversion for each Matsubara frequency to a 
different slave node.  Since in both cases, the 
communications involves just vectors, rather than 
matrices, the code rarely encounters communications-
based limitations in scaling.   
 The parallel implementation for the algorithm is then 
as follows: 1) the master node initializes all parameters 
for the calculation and sends them to the slave nodes; 2) 
the master node loops through the Matsubara frequencies, 
sending a vector of self-energy values Σi(iωn)with fixed n 
to each slave node; 3) the slave nodes perform the matrix 
inversion and send the local Green’s function vector back 
to the master; 4) once all Matsubara frequency 
calculations are complete, the master sends each slave 
node the local Green’s function and the self-energy for a 
fixed lattice site and all Matsubara frequencies (also 
vectors); and 5) the slave nodes solve the impurity 
problem to determine the new self-energy and send them 
back to the master.  This procedure is iterated, and when 
errors are small enough, the calculation stops (our 
tolerance is usually errors of less than one part in 108 for 
the self-energy at all lattice sites).   
 LAPACK and BLAS routines are used for the matrix 
operations to maximize the speed and efficiency of the 
code.  In addition, since the computational size of the 
problem grows with the number of Matsubara frequencies 
used in the simulation (as do the memory requirements), 
we use sum rules for the high frequency behavior of the 
Green’s function, effective medium and self-energy to 
reduce the number of Matsubara frequencies used in the 
calculation by about one order of magnitude with no loss 
in accuracy.[12]  We typically use between 64 (T=0.1) and 
1,020 (T=0.05) positive Matsubara frequencies for a given 
calculation.  Details for how such a scheme is 
implemented will appear elsewhere.[12] 
 In addition to the Green’s functions on the imaginary 
axis, we also need the Green’s functions on the real axis, 
particularly to determine the local entropy of the system.  
The local entropy can be found via a simple integration of 
the local density of states ρi(ω)=−ImGii(ω)/π, where 
Gii(ω) is the local Green’s function on the real axis.  The 
local entropy density is then  

 

( ) ( ) ( )

( ){ } ( ){ }
( ) ( )

ln

 1 ln 1

ln 1 ln 1 ,

i i

f f f f
i i i i

s d f f

f f

n n n n

ωρ ω ω ω

ω ω

⎡= − ⎣

⎤+ − − ⎦

− − − −
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with f(ω)=1/[1+exp(βω)], which is the Fermi-Dirac 
distribution function.   
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 The real-axis Green’s function is found from 
analagous equations to those used for the imaginary axis, 
except now we know what the heavy particle densities are 
at each lattice site, so we do not need to recalculate them 
during the iterations, and we know the chemical potentials 
too.  Hence, we merely need to set up a grid in frequency 
space and perform the IDMFT algorithm using a real 
frequency ω instead of a Matsubara frequency.  Since we 
have a fixed grid of frequencies, the computational size is 
identical for all temperatures.  We typically use 1,204 
processors and run for about 200 iterations.  All relevant 
moment sum rules for the Green’s functions and self-
energies are checked, and they are verified to high 
accuracy in nearly all cases.  We do see errors when the 
self-energy picks up sharp delta-function-like peaks, 
because our (coarse) grid will overestimate their 
contribution to the moments, and we find a sum-rule 
violation for the Green’s functions if the trap is too tight, 
because we do not have frequency points at high enough 
frequencies to include all of the nonzero spectral weight 
of the Green’s functions for the outermost lattice sites.  
Both of these issues are not serious and are well 
controlled in our computations.   
 
3.  Results 
 
 When the XT4 was originally configured at ERDC, it 
used dual core chips running at 1.8 GHz.  There were 
approximately 2,100 boards or 4,200 processors available.  
Since each processor is capable of achieving two double 
precision arithmetic computations during each clock 
cycle, one could, in principle, run at speeds up to 3.6 
Gflops per processor.  The initial Capabilities 
Applications Project (CAP) was run on this configuration 
of Jade.  After the Phase I of the CAP ended (scaling 
demonstration), the system went down for about six 
weeks and all boards were updated to 2.1 GHz quad 
cores, making approximately 8,400 CPUs available for 
computation (with a maximum flop rate of 4.2 Gflops).  
We performed a few scaling studies during Phase II of the 
CAP, but found that our results were similar enough to 
the phase I studies that they did not warrant further 
examination, and instead we focused on our production 
runs. 
 The IDMFT algorithm uses two main codes.  The 
first, an imaginary axis code, determines the chemical 
potentials and then the local densities of the light and 
heavy atoms.  The second, a real axis code, determines 
the local density of states, and hence the entropy 
distribution.  Since the two codes are so similar in 
structure, and since more computational time is spent on 
the imaginary axis code, most of the scaling and 
performance analysis was performed on that code. 

 We used a few different techniques to determine the 
scaling and performance of the codes.  The simplest 
technique we used was just timings of the code.  Since the 
input/output part of the code is infrequent (it is performed 
every 200 iterations for the imaginary axis code and every 
50 iterations for the real axis code) the timings were 
restricted to the main computational loops of the code, 
namely the IDMFT algorithm itself.  We performed a 
strong-scaling analysis, where a large problem was run on 
a series of different numbers of CPUs for a parallel run.  
By examining how the performance varies as the number 
of CPUs increases, one can examine how the 
computational speed is related to the number of CPUs and 
determine the overall strong scaling performance for the 
code; for perfect performance, the speed will increase 
linearly with the number of CPUs.  We also examined 
weak scaling, where one takes the same type of problem, 
but increases the size of the problem when running on 
more CPUs and examines the total computational time, 
which would be a constant for perfect weak scaling.  In 
our code, we easily can increase the code size by merely 
lowering the temperature and thereby using more 
Matsubara frequencies in the calculation.   
 We went further than just a scaling analysis though.  
It is possible to have a code that is inefficient, but scales 
well, because the code never pushes the machine to the 
limits in communications or computation, due to the 
inefficient way that the code handles data or orders the 
computational steps.  In order to verify the overall 
efficiency of the code, we used the PAPI suite to measure 
the Gflops of each of the slave nodes to determine how 
they perform during the main computational loop of the 
code.  This was done primarily for the strong-scaling 
case, where one expects there to be a degradation of the 
overall performance, as the computational speed is 
increased (due to more communications, etc.).   
 Finally, we tested two different implementations of 
LAPACK and BLAS on Jade.  We examined the xt-
LibSci implementation and we examined the ACML 
implementation.  The Portland group FORTRAN77 
compiler was used and the compiler flags were set to -
fast.  We found no significant improvement in 
performance with any other flag options for the compiler.   
 In Figure 1, we show the strong scaling analysis for 
the imaginary axis code.  The theoretical maximum speed 
up (linear curve) is compared to the dual core (black line 
with circles) and quad core (red line with squares) One 
can immediately see that the code is giving almost perfect 
linear scaling up to 4,096 CPUs.  The dual core case is 
better than 90% of linear scaling, while the quad core case 
is closer to 99% of linear scaling.  This is outstanding 
performance for strong scaling.   
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Figure 1. Strong-scaling data for the imaginary axis code on 

both the dual core and quad core versions of Jade.  The 
theoretical maximum (dashed line) is found by fitting the 

computational speed versus number of CPUs for small CPUs 
and extrapolating the linear curve.  Note how the dual core 
configuration had better than 90% scaling, while the quad 

core is coming in at more than 99% of strong scaling.  Such 
performance is outstanding. 

 
Figure 2. Weak-scaling data for the imaginary axis code on 
the dual core version of Jade.  Note how the weak scaling 

curve has approximately the same computational time 
regardless of the size of the job. 

 
Figure 3. Performance analysis of the imaginary axis code 

using the PAPI suite.  Two curves are shown for each 
configuration of the machine (dual core and quad core).  One 

uses the LibSci math library and the other uses the ACML 
math library.  Note the greater variation in the flop rates for 

the quad core machines. 

 
Figure 4. False color plot of the entropy distribution for the 

case with R=30, U =5, and various temperatures (top to 
bottom: T=0.2, T=0.125, T=0.075, T=0.01).  Ordering begins at 
T ≈ 0.125, and the entropy is quite small at the lowest T. 
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 Next, we examine the weak scaling in Figure 2.  Note 
how there are some small variations, but in general, the 
weak scaling curve is showing a nearly constant run time 
as the job size and number of CPUs are increased.   
 Now we move on to the performance analysis using 
Performance Application Programming Interface (PAPI).  
We ran the performance analysis for the strong scaling 
cases already shown in Figure 1, but we also included an 
analysis of the different package options for the LAPACK 
and BLAS routines.  Our two choices were the LibSci 
library and the ACML library.  The results are shown in 
Figure 3, and are strange.  To begin, we are achieving 
something in the vicinity of 50% of peak speed on each 
CPU (dual core or quad core) with the percentage being 
slightly higher for the dual core case.  The drop off in 
performance is quite moderate for the dual core case, and 
is a bit more rapid for the quad core case.  Surprisingly, in 
the dual core case, the ACML library was faster, while in 
the quad core case it is the LibSci library that is faster.  
Even more surprising is the fact that on the quad cores we 
see a definite drop in the flop rate as we move to larger 
and larger numbers of CPUs, but our scaling analysis 
based on the total run time is showing better linear scaling 
for the quad cores.  It is hard to reconcile these facts.  One 
possibility is that the implementation of PAPI on the quad 
core Jade is having errors in accurately measuring the 
number of floating point operations on each CPU, and the 
flop rates are not so accurate.  This issue is one we have 
not been able to resolve.   
 We briefly discuss some of the scientific results from 
this work.  In Figure 4, the entropy distribution is plotted 
for the case with R=30 and U=5.  The panels are for 
different temperatures ranging from hot at the top to cold 
at the bottom.  Note how the entropy, which is initially 
distributed primarily in the center of the trap, moves to an 
annulus and eventually becomes very small at the lowest 
temperature.  Even at T=0.01, the dominant contribution 
to the entropy is coming from the heavy particles in the 
regions where the heavy particle density is non-integer on 
particular lattice sites; this is the boundary region of the 
phase separation.  This can be seen more clearly in 
Figure 5, where density plots for the heavy particles are 
shown for the same four temperatures.  Here we can now 
clearly see that ordering starts near T≈0.125, and becomes 
nearly complete at the lowest T.   
 Further results will be presented elsewhere, when the 
work is complete.   

 
Figure 5. Density distribution of the heavy atoms for the case 

with R=30, U =5, and various temperatures (top to bottom: 
T=0.2, T=0.125, T=0.075, T=0.01).  Ordering begins at T≈0.125, 

and is nearly complete at the lowest T. 
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4.  Conclusions  
 
 In this work, we have shown how to implement an 
efficient algorithm for the IDMFT approach to many-
body physics.  The algorithm has been applied to the 
problem of understanding the behavior of mixtures of 
different mass atoms in optical lattices, which will serve 
as one potential benchmark calculation for the optical 
lattice emulator currently being developed with the 
support of a Defense Advanced Research Projects Agency 
(DARPA) program.  We ran most of the code on the Cray 
XT4 machine at the US Engineer Research and 
Development Center (ERDC), in both its dual core and 
quad core configurations.  We found the code scales well 
to a large number of processors and operates at almost 
50% of the theoretical peak speed on the largest size we 
ran on, which was 4,096 CPUs.   
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