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Abstract

This work is part of a Defense Advanced Research
Projects Agency (DARPA) sponsored project to build an
optical lattice emulator, where models of strongly
correlated electrons in condensed matter physics are
simulated with ultracold atoms moving in an optical
lattice. Recently, members of our team have been able to
form dense clouds of dipolar fermionic molecules from
mixtures of (fermionic) °K and (bosonic) “Rb. Here, we
use high performance computing (HPC) resources to find
a way to improve the efficiency of molecule formation
from the current 20% to almost 100% and thereby show
how to create a much denser cloud aof dipolar molecules.
Our code scales nearly linearly on up to 4,000 {or more)
processors, and runs at an efficiency that is almost at
100% of the speed for one arithmetic operation per clock
cycle. We have not been able to get the code to run with
multiple operations per clock cycle in spite of using
highly efficient and optimized libraries for BLAS and
LAPACK

1. Introduction

Recent experimental work on mixtures of ultracold
K (fermionic) and *Rb (bosonic) has shown how to
bind the atoms into weakly bound molecules via a sweep
of the magnetic field and then employ a complicated
pulse sequence of light (called stimulated Raman
adiabatic passage or STIRAP) to make a transition from
the weakly bound molecular state to the tightly bound
ground state, which is dipolar!!l. Being able to create a
quantum degenerate gas of molecular dipoles has been a
long quest for experimental researchers. This novel state
of matter has the potential for illustrating new and unique
quantum-mechanical effects. It is believed that these
systems might be able to illustrate topological quantum
phases due to the long-range interaction of the dipoles. In
addition, if the system becomes quantum coherent, it may
have unique properties in response to electric fields which
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could ultimately be used as ultrasensitive electric field
sensors (similar to how superconductivity led to the
SQUID as an ultrasensitive sensor for magnetic fields).
Finally, these systems could also be employed as quantum
computers.

Unlike ordinary computers, quantum computers have
the potential to revolutionize the way that certain types of
problems are solved. For example, a quantum computer
can factorize large numbers into their prime factors much
more efficiently than a conventional computer can, which
would require a change in the way that standard
encryption technology 1s employed. Tt also could allow
for completely secure transmission of one-time key pads
for encrypted communication purposes. But Defense
Advanced Research Projects Agency’s (DARPA) interest
in this problem lies in another direction. They want to use
quantum computers as analog simulators of complex
quantum-mechanical systems (ultimately with the goal of
speeding up the process for novel matenals design). This
idea was first described in 1982 by Richard Feynman!*!
He proposed to create artificial, but well controlled,
quantum-mechanical systems that could mimic the
behavior of real physical systems. By performing
experiments on these artificial systems, one could
determine how the quantum systems behave and leam
how to tune or optimize properties of interest.

One of the major technological breakthroughs of the
past few decades has been the technology of laser cooling
(which was awarded a Nobel Prize in 1997). By shining
light that is tuned close to an atomic resonance, one can
create a situation where atoms moving toward the light
can absorb it and be pushed back, but those moving away
cannot absorb the light (via the Doppler effect) and
thereby reduce the average velocity of the atoms. Next,
the atoms are further cooled by letting the most energetic
atoms evaporate out of the trap, and leaving behind only
the coldest atoms. The field of ultracold atomic physics
has created a wealth of new experimental work on these
systems. The final important advance for the work we
discuss here is the creation of an optical lattice by making
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a standing wave with a laser which results in a corrugated
potential that the atoms move in. If their energy 1s low
enough and the corrugation deep enough, then the atoms
act like quantum particles that tunnel between
neighboring sites and interact with each other when on the
same lattice site.

This physical system, constructed from a set of atoms
which move between nearest neighbors on a lattice and
interact when two particles are located on the same lattice
site, is reminiscent of the simplified models used in solid
state physics to describe strongly correlated electrons in a
crystal (like the Hubbard model™ or the Falicov-Kimball
model®).  The atoms act like electrons (if they are
fermions), but now move on a much larger sized lattice
(microns rather than nanometers), allowing for easier
access to study their properties. Furthermore, because the
particles have significant internal structure, there is a
range of new probes that can be used to examine their
behavior.

We focus on Bose-Fermi mixtures of rubidium with
potassium. The ®'Rb is more than twice as heavy as the
K, and we will work in a regime where the motion of the
Rb relative to the K is sharply suppressed due to the
larger mass. In particular, we ensure that the hopping of
the K is at least ten times larger than the hopping of the
Rb, so that we can neglect the quantum-mechanical
effects of the Rb motion. But, we assume that the system
can explore all possible positions for the heavy atoms (at
least during the period where the optical lattice 1s imitially
turned on, but possibly also during the period of the
experiment when the optical lattice is at its full depth),
and hence we analyze the problem by using an annealed
statistical ensemble, like in the Ising model for
magnetism. This system is described by the Falicov-
Kimball (FK) model” which has two kinds of particles:
itinerant spinless fermionic K atoms with creation and

annihilation operators ¢/ and ¢; for the K atoms at site i
(located at position R,) and localized spinless bosonic Rb
atoms with the corresponding operators 5 and &, The
fermionic operators satisfy canonical anticommutation

relations {cf,cj} =J, while the bosonic operators
+

satisfy canonical commutation relations {b:,bj} =6,
N

The Bose-Fermi FK Hamiltonian 1s

H= —Z:lycchr Uy Z clebd,
- -
+%Ubb ZbeI (6/5,-1)

I pele, (7 E, BB,

1
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where —£,=— 1s the nearest-neighbor hopping matrix, Uy,
< 0 1s the on-site attraction between K and Rb atoms (we
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choose an attraction because we want to optimize the
probability to find a K sitting in the same lattice site as a
Rb and because this interaction can be tuned by an
interspecies Feshbach resonance) U,;>0 is the Rb-Rb
repulsion, u 1s the chemical potential of the K atoms and
Ep is the local site energy of the Rb atoms. The two

potentials F; and Vf represent the additional trap, which

1s chosen to be harmonic for both species but (in
principle) with different tunable curvatures. We
parametrize the traps with an effective length R and R
where V,— R’ /R* and V' —tR?/R".
polarizabilities of K and Rb are so close, we choose the
trap curvatures to be equal (assuming an optical trap) and
to be characterized by the length corresponding to eleven
lattice spacings (R =R°=11).

We will simulate a system on a 51x51 square lattice
with 625410 light atoms and 625+10 heavy atoms. The
two chemical potentials x4 and —F;, must be adjusted to
produce the correct filling at each temperature for which
the simulation is run. We choose two lattice depths for
the optical lattice potential (these depths must be deep
enough that the single-band model applies to the system).
The first depth 1s 15 recoil energies {expressed in terms of
the ¥Rb recoil energy Fz) and the second depth is 20
recoil energies (these are the depths in the x—y plane; we
choose the depth along the z-axis to be 40y so we have
well separated planes). For the 15F; depth lattice, we
have the K hopping is 190 Hz, while the Rb hopping 15 14
Hz (and will be neglected). The Bose-Bose repulsion
satisfies [7,,/1=5.70. The Bose-Fermi attraction can be
tuned via a magnetic interspecies Feshbach resonance,
and is chosen to satisty U, /t=—2, —6, and —10 here. For
the 20F case, we have the K hopping 1s 109 Hz and the
Rb hopping is 5.4 Hz (and is neglected). The Rb-Rb
repulsion is U,/t=11.52. We pick the Bose-Fermi
attraction to be U,/=—8, —12, and —16.

There are two main quantities we are interested in
calculating. The first is the efficiency for pre-formed
molecules, defined to be the probability to find a K atom
on the same lattice site as a Rb atom, and defined to be
the expectation value

Because the

(2 cleblh P)

min [Zl (c:fcI ):Z; (bjbI ” ;

where the angular brackets denote the conventional trace
over all states weighted by the statistical density matrix

exp[— AH )/ Z (with 2=Tr exp[—fH] the partition function
and #1/T the inverse temperature), and the operator P

@)

projects onto the subspace with no sites that have two or
more bosons per site. This expectation value can be
calculated directly from the Green’s functions on the
imaginary axis, as described below. The second is the



entropy per particle, which can be found most easily via
an integral over the many-body density of states, and
requires a real-axis calculation of the Green’s functions.
It is the latter calculation that requires the most significant
CPU time to complete.

2. Algorithm

The computational approach is based on
inhomogeneous dynamical mean-field theory (IDMFT),
which is a generalization of the successful DMFTI! to
inhomogeneous systems. This generalization was first
worked out for multilayered systems by Potthoff and
Nolting!? and is now summarized in a book!®!. More
recently, Tran applied it to ultracold atoms in traps®), and
since then much work has followed (see, for example,
References 10and 11).

The IDMFT approach begins with the guantum-
mechanical Green’s functions for the fermions, which are
defined, for imaginary time z, as

G, (5)= =T T 6, (2)¢] (0) = = (e, (5)¢] (0)). @

where Tr denotes the trace over all many-body eigenstates
and 7, is the time-ordering operator, which moves earlier

times to the right (with a sign change if two fermionic
operators are interchanged). The time-dependent
fermionic creation and annthilation operators are written
in the Heisenberg picture as

¢ (r)- eTHcIe’TH and c: (z)- emcjefm )

for the imaginary time z By using the invariance of the
trace under the interchange of the product of two
operators, one can show that the Green’s function is
antiperiodic in 7 over the range 0<#<fi so one can
describe the Green’s function by a Fourier series using the
Matsubara frequencies im,=ial (2ntl) for n an integer
(which corresponds to extending the range of the
imaginary time to all values, but preserving the
antiperiodicity). Sowe have
£
G, (z’a)n):jo dre'™'G, (). (5)
Using an equation of motion, found by differentiating the
Green’s function with respect to 7, then yields the
equation

D [Him, +u=V - 2,10, )} 8, 1, |3, (ie,) = 5. (©)
k
so the Green’s function is found by inverting the matrix
defined in the square brackets (because of the
inhomogeneity, the matrix can only be inverted
numerically). We have introduced the notation Z,(iem,) for
the local self-energy at site i. The self-energy is local
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(meaning it is diagonal, rather than a matrix in the spatial
coordinates) within the DMFT approach, but it can vary
from site to site for IDMEFT. The self-energy is calculated
by solving an effective single-site impurity problem in a
time-dependent field that is determined self-consistently.
Without going into details, the set of equations that the
self-energy satisfies for the FK model is!>¢!

1

) S ) 7
> 1
G, (i, )= ' (i) - ; (8)
; [Glliw, )] - U,
and
%, (iw,) =[G (i) -G, (im,) ©)

Here, the symbol G (i, ) is called the effective medium

and p” () is the probability to have j bosonic atoms at

site i. The IDMFT algorithm to solve for the Green’s
function for a given set of parameters is as follows: (1) set
the self-energy equal to an initial value on all lattice sites;
(i1) calculate the local Green’s function from Eqn. 6 at
each lattice site 7; (1) determine the effective medium
using the local Green’s function and the old self-energy in
Egn. 7; (iv) find the new Green’s function from Eqn. 8;
and (v) find the new self-energy from Hgn. 9 using the
new Green’s function and the effective medium. Steps
(i1)—(v) are repeated until the results stop changing at a
fixed point. This can take many thousands of iterations in
some cases, but in nearly all cases shown here the number
of iterations is less than a few hundred.

In order to carry out the calculation, we still need to

determine p! () at each lattice site. The Rb filling is a
functional of the K Green’s functions, and 1s expressed as
P ()= 2,(7)/ 27, 2 (j) with

Z(j)-2 e—ﬂ(Eb+Vf)J—ﬂku—l)fzw(#—z—mf)fz

= [Gz? (ico, )Tl —JUy (10
I
n=—tm za)rz
Finally, the K atom filling on each site i is found from
c 1
=TS G, liw, )+=, 11
n =T % G,lie,)+> (1)

n=—w

where special care must be taken to properly regularize
the summation.

Since we want to work with a fixed number of K and
Rb atoms, we need to run the calculation for a few
different values of the chemical potentials x4 and —F;, and
then adjust them so that one reaches the target particle
numbers. Typically, somewhere between two to fifteen



runs are required to get the fillings within the target range
of 625410, although in most cases our fillings are 625£1.
In addition, since the computational size of the
problem grows with the number of Matsubara frequencies
used in the simulation (as do the memory requirements),
we use sum rules for the high frequency behavior of the
Green’s function, effective medium and self-energy to
reduce the number of Matsubara frequencies used in the
calculation by about one order of magnitude with no loss
in accuracy!™. We typically use between 64 (T=0.1) and
1,020 (T=0.05) positive Matsubara frequencies for a given
calculation. The general approach for these sum rules is
discussed in Reference 13, but here they must be
generalized to the case where the heavy particles are

bosons. For example, the first moment " (i,i) sum rule

for the local Green’s function is

L olm G, (w)=U,, (bsz)f,quVI, (12)
JT o —m
and the second moment 4" (i,i) is
lj‘*’ 2
-—| doo'ImG,( L1, +(
Lo i, (o) S “

oI

—2(u-V)

Here G(e)is the analytic continuation of the retarded
Green’s function to the real axis. We have determined
these moment sum rules through third order for the local
Green’s function and through first order for the self-
energy. They are emploved to verify the accuracy of the
calculations, as described below. In addition, they are
used to reduce the number of Matsubara frequencies
needed to perform summations over Matsubara
frequencies, as in Eqn. 11. To illustrate how this is done,
one first defines an approximate Green’s function via

R )+#§(i,i)+#§(i:i)
ia)n (za)) (z'a)n)3 (ia)n)4 ’
with the exact values of the moments determined, for

example, in Eqns. 12 and 13. Then, we find the filling
satisfies

Uy (bb,)+ U3, (zﬂbb% )

G (iw, )= (14)

1 L -
”1:5 gﬂl (z,z)+f—8/¢f(z,z)

+TZ[

n=-p,-1

(15)
-G (i, )}

where the summation is over a finite number of
Matsubara frequencies determined by the cutoff n,.

Instead of having this sum decay like 1/m, as it does in
Eqn. 11, here it decays like 1/@ and hence one can

employ a much smaller cutoff. One can use a similar
approach to improve the accuracy of the infinite products
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needed to determine the different contributions to the
partition function and to the probabilities for finding j
bosons on site i. We don’t show those formulas here.

The parallel implementation of the IDMFT algorithm
is efficiently done within the master-slave format. The
solution of the impurity problem for the self-energy
requires only information of the Green’s functions at each
site. We do need to evaluate the infinite products to find
the Rb atom density as in Eqn. 10, but then the remainder
is straightforward arithmetic. We have each slave node
solve for the self-energy at a given site for all Matsubara
frequencies used in the simulation as one step in the
parallel implementation. The other step is to send the
calculation of the matrix inversion needed to find the
local Green’s function for each Matsubara frequency to a
different slave node. Since in both cases, the
communications involve just vectors, rather than matrices,
the code rarely encounters communications-based
limitations in scaling to large numbers of processors.

The parallel implementation for the IDMFT
algorithm 1s then as follows: 1) the master node nitializes
all parameters for the calculation and sends them to the
slave nodes; 2) the master node loops through the
Matsubara frequencies, sending a vector of self-energy
values X {iay,) with fixed » to each slave node; 3) the slave
nodes perform the matrix inversion and send the local
Green’s function vector back to the master, 4) once all
Matsubara frequency calculations are complete, the
master sends each slave node the local Green’s function
and the self-energy for a fixed lattice site and all
Matsubara frequencies (also vectors), and 5) the slave
nodes solve the impurity problem to determine the new
self-energy and send them back to the master. This
procedure is iterated, and when errors are small enough,
the calculation stops (our tolerance 1s usually errors of
less than one part in 10° for the self-energy at all lattice
sites). LAPACK and BLAS routines are used for the
matrix operations to maximize the speed and efficiency of
the code.

The efficiency E can be determined from the Green’s
functions on the imaginary axis. It satisfies

A, G, U ]
min[STT,G, (i0,).53,00 ()7 ]

This sum can be evaluated efficiently by using the sum
rules to make the summation decay faster than it does
without making any adjustments, but the final formula 1s
too long to be included here.

In addition to the Green’s functions on the imaginary
axis, we also need the Green’s functions on the real axis,
particularly to determine the local entropy of the system.
The local entropy can be found via a simple integration of
the local density of states p{@)=—ImG{w)/m where

-1

(16)



G;{w) is the local Green’s function on the real axis. The
local entropy density is then

=37 ()l ()

[ dop (0)]f (0)n 1 (0)+ {1 (o)} {1~ (@)}],

with flw)=1/[1+exp(fw)] the Fermi-Dirac distribution
function.

The real-axis Green's function is found from
analogous equations to those used for the imaginary axis,
except now we know what the Rb atom densities are at
each lattice site, so we do not need to recalculate them
during the iterations, and we know the chemical potentials
too. Hence, we merely need to set up a grid in frequency
space and perform the IDMFT algorithm using a real
frequency @ instead of a Matsubara frequency. Since we
have a fixed grid of frequencies, the computational size is
identical for all temperatures. We typically use 1,250 or
2,500 processors and run for about 200 iterations. All
relevant moment sum rules for the Green’s functions and
self-energies are checked, and they are verified to high
accuracy in nearly all cases. We do see errors when the
self-energy picks up sharp delta-function-like peaks,
because our (coarse) grid will overestimate their
contribution to the moments, and we find sum-rule
violation for the Green’s functions at both high and low
temperatures. At high temperatures, significant spectral
weight sits beyond the finite range of frequency used in
the calculation, while at low temperature, the Green’s
function develops sharp peaks which are difficult to
properly represent on a coarse frequency grid. But neither
of these issues is too significant to cause any serious
problems.

amn

3. Implementation of Algorithm on HPC
Resources

This work has been supported by both a challenge
project and a Capabilities Application Project (CAP).
The Challenge Project was run primarily on the Engineer
Research and Development Center (ERDC) [jade, Cray
XT4] and Air Force Research Laboratory, DoD
Supercomputing Resource Center (AFRL DSRC) [hawk,
Altix] machines, while the CAP was run at Arctic Region
Supercomputing Center (ARSC) on pingo (Cray, XT5).
The code is highly transportable, and has been run on
many different machines, with essentially no modification
of the code needed to run on different platforms. The
code was written by the user, but does employ both
LAPACK and BLAS routines, which encompass the vast
majority of the computational time. Since these libraries
are always highly optimized for different machines, the

portability often maintains the high efficiency and (near)
linear scaling.

The IDMFT algorithm uses two main codes. The
first, an imaginary axis code, determines the chemical
potentials and then the local densities of the K and Rb
atoms; it also determines the efficiency for the pre-formed
molecules. The second, a real axis code, determines the
local density of states, and hence the entropy distribution.
Since the two codes are so similar in structure, most of the
scaling and performance analysis was performed on the
imaginary axis code.

We used a few different techniques to determine the
scaling and performance of the codes. The simplest
technique we used was just timing of the code. Since the
input/output part of the code is infrequent (it is performed
every 200 iterations for the imaginary axis code and every
50 iterations for the real axis code) the timings were
restricted to the main computational loops of the code,
namely the IDMFT algorithm itself. We performed a
strong-scaling analysis, where a large problem was run on
a series of different numbers of CPUs for a parallel run.
By examining how the performance varies as the number
of CPUs increases, one can e¢xamine how the
computational speed is related to the number of CPUs and
determine the overall strong scaling performance for the
code; for perfect performance, the speed will increase
linearly with the number of CPUs. We also examined
weak scaling, where one takes the same type of problem,
but increases the size of the problem when running on
more CPUs and examines the total computational time,
which would be a constant for perfect weak scaling. In
our code, we easily can increase the code size by merely
lowering the temperature and thereby using more
Matsubara frequencies in the calculation. These timings
appear in Figure 1. The weak scaling results were
similarly impressive, but we do not show the plots here.
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Figure 1. Strong-scaling data for the computational speed of
the imaginary axis code (with no input/output) on pingo. The
theoretical maximum (dashed line) is found by fitting the
computational speed versus number of CPUs for small CPUs
and extrapolating the linear curve. Note how the codes are
performing well above 95% of linear scaling for over 3,400
CPUs (essentially the full size of the machine). Such
performance is outstanding.



We went further than just a scaling analysis though.
Linear scaling is not enough to show that a code is
utilizing a resource effectively. One can have a code that
is inefficient, but nevertheless scales well with the
number of CPUs, because the code never pushes the
machine to the limits in communications or computation,
due to the inefficient way that the code handles data or
orders the computational steps. In order to verify the
overall efficiency of the code, we used the PAPI suite to
measure the Gflops of each of the slave nodes to
determine how they perform during the main
computational loop of the code. We examined both the
strong and weak scaling results, but here we focus again
on the strong-scaling case in Figure 2. Note that we have
essentially no degradation in going to larger numbers of
processors, but we are only able to get to about one
operation per clock cycle, while the chip is theoretically
supposed to be able to perform four operations per clock
cycle. The chip runs at 2.3 GHz, and hence can perform
9.2 Gflops if one achieves 4 operations per clock cycle. A
performance near 2 Gflops indicates one is achieving
almost one operation per clock cycle.
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Figure 2. Strong-scaling data for the flop rate of the
imaginary axis code (with no input/output) on pingo. Note
how the rate remains almost constant up to 3,400 CPUs. The
overall rate corresponds to nearly one operation per clock
cycle. But this is much less than the theoretical peak flop
rate corresponding to four operations per clock cycle. In
spite of trying many different compiler options, the
performance never improved to higher than one per clock
cycle.

L
0U 500

] L 3
1000 3000 3500

We tested two different library options, both LibSci
and ACML. The performance was always somewhat
better overall for the LibSci library, although there was
not a significant difference. The codes are written in
FORTRAN, using essentially all FORTRAN-77 calls
except for dynamical memory addressing in the real-axis
code which requires FORTRAN-90. Our compiler flags
(PGI) were set to fast optimization options. We found no
significant improvement in performance with any other
flag options for the compiler. One can see in Figure 1,
that the theoretical maximum speed up (linear curve) for
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the Lib-Sci case (black line with circles) is better than the
ACML case (red line with squares). One can immediately
see that the code is giving almost perfect linear scaling up
to 3,400 CPUs. The overall performance is much better
than 95% of linear scaling, which is outstanding
performance for strong scaling. We see similar results for
the flop rate in Figure 2. We ran the performance analysis
package (PAPI) for the strong scaling cases already
shown in Figure 1. We also examined two library
packages (LibSci and ACML) for the LAPACk and
BLAS subroutines. One can see that the performance is
outstanding but we are unable to achieve better than one
operation per clock cycle. We also checked the real axis
codes, and the performance was similar to the imaginary
axis codes.

These codes are highly transportable, and there is
similar performance on the other machines used in the
challenge project. In total, we have used about 2,500,000
CPU-hrs on the CAP and about 1,500,000 CPU-hrs on the
Challenge Project to date.

4. Scientific Results

We briefly discuss some of the scientific results from
this work. In Figure 3, we show the efficiency versus
temperature for a 20E; depth optical lattice. We set the
Bose-Fermi attraction to three different values U,=—16¢,
—12t, and —8t. In all cases. the K and Rb rapidly “bind”
together to create a pre-formed molecule, that is, the K
and Rb atoms prefer to sit on the same lattice site. The
efficiency itself does not depend too strongly on the
magnitude of the attraction once it is large enough. For
example, in the case where the attraction is —16t, and the
temperature is equal to the hopping, the efficiency is
nearly 100%. Even at a temperature on the order of the
bandwidth of 87, the efficiency is near 45%. One can see
that this optical Ilattice produces a significant
improvement in the efficiency for pre-forming molecules.
One needs to be able to get the temperature low enough
that the enhancement of the efficiency can be seen. This
is a challenge for the experimentalists, but improvements
of the efficiency are certainly likely to be seen if the
experiments move onto optical lattices.
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Figure 3. Efficiency versus temperature for the 20Ex lattice
depth case and three different values of U, (=16t, =12t, =8t).
Note how the efficiency rapidly rises to near 100% as the
temperature is lowered and how there is relatively weak
dependence on the K-Rb attraction.
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In Figure 4, we show a plot of the entropy per
particle versus temperature for the same case. The
entropy 1s an important quantity in cold atom
experiments, because the trapped systems are isolated,
and hence if modifications are made slow enough, the
system remains adiabatic, and preserves its total entropy.
Hence, one can use the entropy as a type of thermometer
for the system that determines how low in temperature
one can go on the lattice. The entropy here is high for the
disordered high temperature phases, and then becomes
small at low temperature, decreasing linearly at the lowest
temperatures, as expected for this system. One can see
that while there is some difference in entropy at a given
temperature for the different attractions, once the
temperature 1s low enough all of the curves coalesce to
very similar values. In thisregime, where the temperature
is smaller than about half the bandwidth, the entropy is
low, on the order of kg or less. These entropy values will
be challenging to achieve in the experiments, but are the
realm one needs to get to in order to see the large
enhancements to the efficiency. We feel that this is one
of the most promising methods for rapidly improving the
efficiency of the molecule formation using existing
technology. The hardest aspect for this approach is the
cooling problem.

Further results will be presented elsewhere, as will a
comprehensive discussion of the science behind pre-
formed molecules and the advantages one can find by
employing optical lattices to improve the efficiency of
dipolar molecule formation!™!,
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Figure 4. Entropy per particle versus temperature for the
20ER lattice depth case and three different attractive
interactions U,-= =16t, =12t, and -8t

5. Conclusions

In this work, we have shown how to implement an
efficient algorithm for the IDMFT approach to many-
body physics. The algorithm has been applied to the
problem of understanding how to improve the efficiency
of dipolar molecule formation in optical lattices, which
will set the stage for CAP Phase Il work in the optical
lattice emulator program currently being developed with
support of a DARPA program and Army Research Office
(ARQO). We ran most of the code on the Cray XT5
machine at ARSC. We found the code scales well to
large number of processors and operates at almost 100%
of the peak speed for one operation per clock cycle. The
scaling was nearly linear on up to 3,400 CPUs. On the
science side, we found a significant improvement in the
formation efficiency for molecules if one can achieve a
low-enough temperature. By properly tuning the K-Rb
attraction, one should be able to achieve nearly 100%
conversion of the mixture into dipolar ground-state
molecules.
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